
1

On Implementing Social Community Clouds Based
on Markov Models

Stavros Souravlas, Member, IEEE, and Sofia Anastasiadou

Abstract—Social networks reflect, to a wide extent, the real
world relationships that allow users to connect and share infor-
mation. The number of people that interact in social networks
keeps increasing and the devices used are equipped with more and
more computational capacities. This gives rise to the formulation
of social clouds, which refer to resource sharing infrastructures
that enable friends to share their resources within the social
network. As the modern applications become more and more
sophisticated, users should be able to share their own services
and computing resources through social networks. This poses
many challenges for the design options of a computing system
composed of a set of trusted friends. The spotlight turns on the
design of a proper trust model which considers the suitability
of the trusted users to execute an application’s tasks and on
the fair distribution of these tasks among these users. Therefore,
social networks and their trust-based applications in a distributed
environment have seen an increasing attention in the research
community. In this regard, we present a social community cloud
implementation model, where friendly relationships determine
the resource provisioning. The issues of fairness and alloca-
tion time are of great importance and they are thoroughly
investigated. We use extensive simulations to illustrate that the
communities can be employed to construct cloud infrastructures,
such that, the shared resources can be utilized in a fair and
efficient manner. Our experiments have shown that our model
achieves higher allocation rate (percentage of tasks successfully
allocated and completed) than competitive models and reduces
the average response time and the total execution time. Finally,
our work does not over-utilize the resources.

Index Terms—Social Clouds, Social Networks, Cloud Comput-
ing, Resource Allocation

I. INTRODUCTION

Cloud computing is a very popular internet-based technol-
ogy, which provides resource and computing services to users
with different needs [1]. Nowadays, the number of people
who interact on social networks increases, while these users
are equiped with higher computer capabilities. In this regard,
there is a good potential of setting up a resource sharing
network which enables users to share their resources within the
community. This is the concept of a ”social cloud”. Apart from
resource sharing, social clouds are important because they
enhance cooperation among multiple users and they provide
a means of making available additional capacity to friends
and the capability of executing heavier applications. Finally,
a community cloud can execute internal tasks (within the

Stavros Souravlas is with the Department of Applied Informatics, University
of Macedonia, Thessaloniki, Greece. Also, a Postdoc researcher in the
Department of Midwafery, University of Western Macedonia

Email: sourstav@uom.edu.gr, ssouravlas@uowm.gr
Sofia Anastasiadou is with Department of Midwafery, University of Western

Macedonia, School of Health Sciences.
Email: sanastasiadou@uowm.gr

community) as well as external tasks (in cooperation with
other communities). To make the importance of social clouds
more clear, we note that ”if only 0.5% of Facebook users
provided CPU time on their personal compute resources the
potential computational power available would be comparable
to a www.top500.org supercomputer” [2]. Community clouds
have a number of applications. For example: (1) Technical
forums, which are a common place for professionals to ask
questions, discuss a problem, and get suggestions or solutions
for a problem of their interest. All the data is placed in the
cloud, for future reference and use, and (2) Mobile applica-
tions: Many mobile users have difficulties in maintaining the
phone memory to accommodate the data gathered from all
the applications. The cloud memory is a solution. Also, com-
munity clouds have can be used in education and healthcare
sectors.

Social networking has become more than an everyday need
for a huge number of people. Every day, vast data amounts
are generated by the famous social networks such as Face-
book, Twitter, Instagram, and so on. For example, Facebook
alone generates 4 petabytes of data per day. The study of
communities has received considerable attention a long time
ago and it is one of the most important research topics in social
networking. Usually, graphs are used to show the connections
among individuals who are related as colleagues, friends and
so on. The rapid growth of cloud computing and the extensive
use of social networks have given rise to the exploration of
new means of interaction between users, in order to benefit
from these infrastructures.

Given some information (like sharing of interests such as
music, sports or politics), clusters called communities can
be detected. The detection of such communities has been
widely investigated with a number approaches ranging from
data structure to machine learning based approaches [3].
A community can be thought of as a structure of nodes
(users) connected by edges. This connection represents the
trust relationship. The trust is used as the basis for resource
sharing in the community cloud. In a community cloud, a
large number of computing devices like personal computers
or mobile phones use the available resources to complete any
processing, storage, or other type of task. In other words,
the community cloud is an infrastructure that extends the
computing and storage capabilities by resources contributed
by users among a group of friends. The model is similar
to a volunteer computing approach, where friends share their
resources for some or no gain through the inherited friendship
and trust relationships [4].

There are many challenges in the construction of a social
cloud: (1) Technical challenges: Technically, to enable re-

2

source sharing, the social community cloud needs to have the
proper mechanisms to handle the non-static IP addresses of
the mobile users and ensure of the best quality of service. (2)
Shared policies and protocols: A community cloud requires
the specification of certain policies regarding the building, the
operation, and the maintenance of the entire system. These
policies include: (i) Access policies which are tailored to the
requirements of every interested part, (ii) Resource aggregation
and allocation policies, which clearly define how the resources
are aggregated, how and when they are allocated and what hap-
pens when members disconnect or withdraw, and (iii) Security
policies which guarantee security (like protecting the shared
resources and the running applications from malicious attacks).
(3) Design of a trust model: To utilize social structures for
resource sharing, first the identification of trusted users is
required. This relies on everyday social network data, which
is retrieved from each user’s everyday transactions within
the community. Moreover, an efficient community detection
scheme is required in order to define the set of trusted users
that will share their resources. Apart from defining these users,
their computing capabilities must be known so that the social
cloud can be aware if they are suitable to execute tasks of
an application. In turn, this necessitates a fast and efficient
procedure, which selects the proper users whose resources
are going to be shared. (4) Fairness: The tasks should be
fairly assigned to the selected users. This is important, in
order to utilize resources of different capabilities (for example,
CPU power, memory, etc) in an efficient manner, so that
the execution is as fast as possible. Also, there is another
important issue regarding fairness: the allocation of resources
for monetary exchange. In this case, the resources are sold to
the interested part and in this case, the need for fairness grows
even bigger. In such a competing environment, the social cloud
users need to assign values to their resources and also to
declare which tasks they are willing (or able) to perform. The
implementation of economic models in this regard is of high
importance, but it is not part of this work.

In this work, we consider the last two challenges (apart
from monetary issues) and we show how resources can be
shared once communities have been formed. For each user
within a community, there is a set of trusted friends which,
based on their computing capabilities, are employed by the
user to execute a set of tasks. We implement a distributed cloud
framework based on community resources and we show how
these resources can be allocated fairly to execute the user tasks.
This approach has been used in numerous research papers and
has a number of advantages: (1) it facilitates the access to a
number of services by enhancing their visibility to users, (2)
the resource selection process can remain localized (within
the borders of a community), (3) it improves the QoS and user
management, and (4) the overall system relies on existing trust
relationships that have already been formed.

The basic components of a social community cloud are
shown in Fig. 1: The monitor us a system that keeps all the
information regarding the community users, they resources
they can donate, the required resources, their preferences,
friend and trust information, their availability and current
resource allocations. The trust evaluation and management-

TEM is a control system, which is necessary to guarantee that
the resource allocation is reliable and trustworthy and thus, it
determines which community users can interact. The service
discovery and matching mechanism refers to the system that is
responsible to aggregate the shared resources and implement
a strategy for their proper and fair allocation.

Our proposed resource allocation strategy employs a queu-
ing network model and each node is modeled as a single
queue where the assigned tasks are inserted and wait for
their execution. A task can enter the queue provided that
the corresponding device satisfy the requirements defined by
the requester. Such requirements can include, CP (computing
power in MIPS), RAM capacity, type and location of device
and availability. We divide the time into time slots and perform
the allocation during each slot. We can assume that during
this short time the network the number of requested tasks
remains fixed, that is, our community behaves like a closed
network. The main contributions of our work are summarized
as follows:

1. We provide a distributed framework for task execution
within a community or among different communities. The
framework consists of a candidate selection procedure a
fair resource allocation policy.

2. The proposed candidate selection policy is linear in terms
of time as it is based on a community detection scheme
which has logarithmic running time (based on threaded
binary tree structures).

3. We provide a fair, envy-free resource allocation policy
within the community. This model is based on Markovian
system modeling and its computations are proven to be
linear.

4. From contributions (2) and (3), it is clear that the model
is easy to apply and it is computationally efficient with
linear complexity.

5. We conduct extensive simulations under different scenar-
ios to evaluate the proposed resource allocation policy.
The results have shown that the proposed scheme outper-
forms competitive strategies in terms of allocation rate,
average response time and total execution time without
over-utilizing the resources.

The remaining of this work is organized as follows: In
Section 2, we describe the related work. Section 3 defines the
problem to be solved. In Section 4 we present our resource
allocation policy within the community and we prove that it
guarantees fairness and high utilization. Section 5 presents a
variety of simulation scenarios. Section 6 concludes this paper
and discusses issues that need to be further investigated in the
future.

II. RELATED WORK

Volunteer computing is a distributed computing model, in
which users donate their computing resources to specific user
applications [4]. For a social community cloud, some level of
accountability and reliability is required. In some models [5],
there is a credit system in which the contributors earn credits
when contributing their resources. Also, community users that
borrow resources need to spend their credits. The aforemen-
tioned limitations can be overcome by employing the concept

3

 Monitor

 Trust Evaluation

 and Management

 Servive Discovery or

 Maching Mechanism

 Community
 Social Community Cloud

Resource

Request

 Donator selection

 Allocated Resources

Fig. 1. The system model.

of friendship or trust among community members. In such
a context, the computing services are offered by trustworthy
users, taking advantage of pre-existing trust relationships [6].

A lot of papers devoted on social community clouds have
focused individually on trust management [7]–[12]. These
strategies can be classified in many categories based on the
strategy being used [13], [14]. The objective TEM strategies
are based on the QoS properties of each machine [15], while in
subjective TEM strategies, the criterion is the individual opin-
ions of the community members [16], [17]. The context based
models are based on object behavior and use techniques like
crediting, in order to evaluate the trust among users. Users that
provide good services are highly credited [18]. The composite
models combine friend opinions and recommendations, social
contact and common interests within the community to define
trust [9], [10], [19]. The direct trust models are based on the
direct experience of a user with the neighbors [20], while the
indirect trust models are based on indirect recommendations
and reputation, from other users experience. Usually, both
direct and direct factors are taken into account [21], [22] to
develop more concise TEM models. The aforementioned trust
models can also be characterized as dynamic, in the sense that
the trust values do change over time, when the community
configuration and conditions also change. An exception is [10],
which is an example of a static model. The main disadvantages
of these problems is that the selection of machines to perform
the tasks is based merely on trust while their complexity is
rather high [13].

A number of papers has been devoted to cooperative strate-
gies (mobile crowdsensing), where users which have been
assigned a complex task need to cooperate and communicate
in order to accomplish it [23]–[28]. Such tasks may require
specific amount of users, with specific machine characteristics.
The user selection and the task allocation is an important and
challenging problem for crowdsensing and affects the quality
of the services offered. The majority of the aforementioned
strategies focus on a tradeoff between quality and cost and
they try to find the appropriate users that will cooperate

to accomplish the task ([23] is an exception). However,
the issue of trust is not taken into account, although it is
obvious that such a cooperation would produce better results
if the recruited users have direct social relationships. In this
regard, the selected group of users provides no guarantee of
quality of service. Moreover, these schemes do not take into
account the task allocation problem in a large-scale scenario.
A a few exceptions are [28]–[30] however, explicit fairness
mechanisms are still missing.

Efficient allocation mechanisms can be constructed by em-
ploying community detection: in [31] the authors investigate
community detection algorithms for social networks. The
objective is to organize and gather the devices available in
communities that share mutual interests and characteristics.
In [32], a framework that detects different communities of
devices is proposed, and trustworthy peers with social relations
are identified. Then a machine learning algorithm is used to
predict the total time needed to process the requested tasks, by
candidates of the same community. The study in [33] proposed
an automated framework to handle mobile crowdsourcing
requests within a large-scale network. The network is split into
multiple virtual communities using the social relations. Both
overlapping and non-overlapping communities are detected.
Then, a natural language process (NLP)-based approach is
executed to capture the information from the textual request
to match the with communities, so that a list of candidate
devices is found to execute the tasks. A simple algorithm for
resource/service discovery within communities is presented in
[34]: Two key ideas are combined, i) Detection of communities
among established networks and ii) intra-community and inter-
community service search algorithms for efficient service
discovery among communities. This work also introduced the
idea of locality similarity based on the objects position. Wu
et al. [35] addressed the case where some exemplar nodes are
provided in advance and the set of interested communities is
mined for some specific task services.

This work presents a resource allocation strategy for so-
cial community clouds. We employ the community detection

4

t1, t2

 t4

 t7

0.90.8

0.95

0.9

0.7

0.8

0.75

0.8

1.0

0.6

u1

u2

u3
u4

C1

C2

C3

u5

u6
u7

u8u9

u10

u11

u12

u13

u14

t3

t5, t6

Fig. 2. Example of tasks within communities.

paradigm [36] to guarantee trust and social relationships
among the recruited users.

There are plenty of community detection schemes in the
literature and the detailed presentation of them is beyond our
purposes here. Generally, they can be categorized into three
major groups: (1) Top-down graph approaches: they divide
the overall network into small group [37], [38], (2) Bottom-
up graph approaches: They start from local structures and
expand to the overall network [39], [40], (3) Machine Learn-
ing Schemes: This is the more recent trend in community
detection, which use machine and deep learning strategies
[41].

III. PROBLEM OVERVIEW AND DEFINITIONS

Let G = (V,E) be a weighted, undirected graph, where V
is the set of nodes and G is the set of edges. The nodes
represent the users and the edges represent the relationships
between them. The community detection paradigm is used to
define communities of related users. Let us consider a set of
such communities Ci, as shown in Fig.2. Each community
contains a number of users (nodes) ui, which can be connected
directly or indirectly via a small number of hops, to indicate
a social relationship among them. The social relationship is a
sign of trust among the community members. The weight of
each edge is used to describe the strength of this relationship.
More specifically, the similarity wi,j between users ui and
uj is defined as the weight of the edge that connects i and
j and lies in the interval [0, . . . , 1]. It is important to point
out the existence of signed networks, where the weight values
can be positive or negative, indicating a positive or negative
relationship. In this paper, we do not consider signed networks
but only positive relationships. The community users can be
considered as candidates to provide for resources for task
execution.

Within the system, there are two types of tasks that can be
executed: [6], [23]:

• Internal tasks: The tasks that can be completed solely
within a community. For such tasks, the resources are
donated by the community members.

• External tasks: The tasks that require collaboration
among members of different communities.

Each task T is divided to a set of N activities or subtasks
(like execution, or data storage), that is t = {t1, t2, . . . , tN}.
Each community is equipped with a monitor, which is re-
sponsible to maintain important information regarding each
requested task and the community itself (like subtasks, com-
puting requirements, similarities among users and processing
capabilities of each user). Also, based on the current infor-
mation, it is responsible to select the nodes that will execute
each task, using a fair policy that will be described later in
this work.

In the example of Fig.2, there are 7 subtasks, t1, . . . , t7,
which have been submitted from user u14 (the one within
the red frame) and 3 communities, C1, C2, and C3. The
communities have been defined using a community detection
strategy. Based on the information regarding the computing
requirements of each task as well as the computing capabilities
of each node, the monitor system has determined which
community can serve each subtask. In our example, t1 and
t2 can be completed by communities C1, and C3, while task
t3 can be covered only by the members of C3. Task t4 can
be covered by the members of C1 and C2. Finally, subtasks
t5, . . . , t7 can be covered solely in communities C2 and C1,
respectively. In this regard, t3, t5, . . . , t7 are internal subtasks,
while t1, t2, and t4 are external subtasks.

The social relationship guarantees good cooperation, when
users are assigned subtasks of the same task, which they have
to accomplish. This approach suggests that, when the users are
connected either directly or indirectly, the social cost (which is
discussed later in this section) of task assignment is reduced.
Also, the quality of task service is improved [6], [23].

Based on the problem overview, we need to make a number
of definitions.

Definition 1: A task T consists of a set of smaller subtasks
tn, n = 1, . . . , N . The following rules apply:

• Each subtask ti is completed by a user that has the
sufficient resources or by multiple cooperative users, if
this is required. In the second case, the subtask is broken
into smaller pieces that we call processes.

• The task T is submitted when there are related users with
adequate computing capabilities to run all the subtasks,
to avoid huge social costs and cooperation issues.

• A task T or a subtask ti is shared among a set of users that
have an average node connectivity degree (see Definition
2) above a certain threshold.

• An internal task is assigned within a community.
• An external task can either be assigned to a member

or members of one community or to members of dif-
ferent communities depending on the current computing
capabilities and the node connectivity degree of the users
involved.

Definition 2: The social cost c between two nodes i, j is
computed by their similarity if they are directly connected or

5

by the sum of similarities of the ”path” that links the two
nodes. If there is no linking at all, then the cost is infinitely
large. That is:

ci,j =

1

wi,j
, i and j are directly connected

ℓ2∑
wj→j

i and j are indirectly connected

∞, i and j are not connected

(1)

where
∑

wj→j indicates the sum of the weights of all the
links leading from i to j and ℓ is the number of these
links. Apparently, as the similarities of the links are larger,
the corresponding social costs are smaller. Also, the direct
connections are clearly preferable in terms of cost. In this
regard, the average social cost c between a node i and a set
of K cooperative users Lm is given by

ci,Lm
=

K∑
K′=1

ci,K′

K
(2)

Definition 3: The user suitability is a measure that computes
how suitable is a node to implement part of the task submitted
by a user ⊓. The suitability of a user depends on its similarity
with ⊓ and its computing capabilities:

S⊓
i = wi,⊓ ×

[
α

(
CPi

CP⊓

)
+ β

(
Mi

M⊓

)
+ γ

(
Di

D⊓

)]
(3)

where:
• CP is the computing power of a device expressed in

Millions of Instructions Per Second (MIPS)
• M is the amount of a device’s available RAM memory
• D is the amount of a device’s available bandwidth
Equation 4 computes the ration of the computing capabil-

ities (CPU, RAM, disk) of a user’s device compared to the
device of user ⊓ that submitted the task. The parameters α, β,
and γ are used to weigh the suitability value in case the
task submitted is source-intensive (CPU-intensive, memory-
intensive or bandwidth-intensive). If this is not the case, the
three parameters can be equal. The computing capability is
multiplied by the similarity value between i and ⊓, which
guarantees better quality of service.

Definition 4: The notion of fairness refers to the decision on
how to allocate the resources in such a way that the resource
contributors execute the tasks according to their processing
capacity [42].

With the definitions given, the problem we try to solve can
by defined as follows:

Definition 5: Given:
1) A task T submitted by a user ⊓, which is broken into a

set N of cooperative tasks t1, . . . , tN , each requiring one
or more users to complete,

2) A set of communities C, to which ⊓ is connected either
directly or indirectly

3) The similarity values and the social cost between ⊓ and
the community users, which are stored in the monitor.

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Description
G(V,E) A weighted, undirected graph
C A set of communities
V A set of graph nodes, each node is a user
E A set of graph edges, that represent user relationships
T A task that requires extra resources
tN Subtask of T
wi,j Weight of the link connecting two users i, j, denoting

the similarity between i and j
ui Community user
K A number of users collaborating to accomplish a task

or a subtask∑
wj→j The sum of weights of all the links leading from i to j

ℓ The number of links that connect users i, j indirectly
ci,j The social cost between two nodes i and j
⊓ The user that submits a task that requires extra resources
S⊓
i Suitability of user i to accomplish part of user’s ⊓ task

s The number of selected users after the application of the
first phase

4) The user suitability to accomplish a subtask or a number
of subtasks based on their computing capabilities and
their similarity to ⊓

we try to allocate the set of cooperative tasks among the
suitable users in a fair manner based on their computing ca-
pabilities so that the number of accomplished tasks increases
and the tasks are completed in a timely efficient manner.

Table 1 provides the notations used in this paper.

IV. OUR APPROACH ON RESOURCE ALLOCATION

Our approach is composed of two stages: the first stage applies
a selection policy to pick-up the appropriate candidates to
implement the task. The second stage is the fair resource
allocation policy among the selected candidates.

A. Candidate Selection

In the Social Internet of Things (SIoT) context , the com-
munities are formed by smart devices, which establish social
relationships autonomously via their users. Our fair resource
allocation scheme requires an efficient service discovery mech-
anism, which is input by a set of selected representative
objects or leaders ([23], [34]). The representatives periodically
collect important data like the user similarities and the network
connectivity degrees based on the users’ social behavior, as
well as the computing capabilities of the various devices. This
information is fed into our community detection scheme [43],
which provides updated communities as well as similarities
between different communities. The later information is very
useful in cases where the request for resources has to be
forwarded outside the community. Our community detection
scheme implements pipeline-based parallel processing tech-
niques on a typical data structure like binary trees, which
have been enhanced with threads to accelerate processing. It
has been implemented over weighted networks with irregular
topologies and it is based on a stepwise path detection strategy,
where each step finds a link that increases the overall strength
of the path being detected. Its functionality has been verified
in a number of real world data sets like Facebook, Twitter,

6

Algorithm 1: Candidate Selection
input : Users suitability S⊓

i and the updated
community data from [43] (similarities
between users wi,j)

output: The group of users G that will execute tasks
submitted by ⊓

1 begin
2 Set suitability threshold T ′

S⊓
i

3 // Update lists of suitable nodes
4 for all m′ ∈ [1, . . . ,m] such that ⊓ ∈ Cm do
5 Lm′ ← ∅
6 for all ui ∈ Cm′ do
7 compute S⊓

i from Eq. (3)
8 if S⊓

i ≥ T ′
S⊓
i

then
9 Lm′ ← Lm′ ∪ ui

10 end if
11 end for
12 end for
13 // Remove unrelated nodes from the lists
14 for m′ = 1 to m do
15 if ∃ i such that ci,j =∞ ∀ j then
16 Lm′ ← Lm′\{i}
17 end if
18 end for
19 // Compute the average social cost and sort
20 L← L1, . . . , Lm // List of lists
21 for m′ = 1 to m do
22 for all s ∈ Lm′

23 Compute the average social cost by Eq.(2)
24 end for
25 end for
26 Sort L by ascending average social costs
27 Generate final candidate G.

G =

{
L\{Lm′}, m′ = k, . . . ,m, non-exhausting
L, exhausting

Google+, Pokec, and LiveJournal. All the updated information
provided by our scheme is stored on the monitor, to be used
upon a new task submission. We advocate the use of our
scheme because of its logarithmic running time (based on
threaded binary tree structures).After the submission of a task
T from user ⊓, the candidate selection is implemented as
shown in Alg. 1.

As shown in Algorithm 1, we initially set a suitability
threshold value (line 2) and then for each community defined
by the community detection scheme we initialize the list of
all the possible candidate users (line 5). Then, we use Eq.(3)
to compute each users suitability and if the value computed
is above the threshold we add the user to the candidate list
Lm′ (line 9). Then, we need to remove the list nodes, which
are completely unrelated, as they are considered unsuitable to
cooperate in order to complete a task. This can be examined
by checking if, for a node i, its communication cost with every
other node j within the community is∞ (line 15). Such nodes

are removed from the candidate list Lm′ of each community
m′ (line 16). All the lists Lm′ are merged into L (line 20),
which contains all the candidates from all the neighbors. Then,
for each list Lm′ that has remained after the update, we
compute the average social costs by Eq. (2) (line 23). Then, we
sort list L, in ascending order of the average social costs of the
sublists (communities) Lm, which were previously computed.
In the end, the final candidate list G can be generated by
adding the communities found in L: if the users found in the
first k communities are enough to complete all the submitted
subtasks (non-exhaustive approach), then these communities
are selected. Otherwise, all the communities in L may be
needed. This usually occurs when there are many internal tasks
which need to be assigned to a specific community or a few
communities only.

The computational cost for the list update (lines 4-12) is
O(mui). In lines 13-18. we remove the nodes which are
completely unrelated from the lists. The complexity is O(ms),
where s is the number of nodes per community, as defined
in the list update phase. Similarly, the average social cost
computation is also O(ms). Finally, the list sorting is O(m).
Therefore, the total complexity of Algorithm 1 can be easily
obtained to be at most O(mui), which is linear on the number
of community users.

Algorithm 1 guarantees that the candidate nodes will co-
operate to complete the tasks assigned to each community.
Moreover, all the assigned selected candidates have a bounded
social cost (not infinite), since they are all related to the
submitter. In the example of Fig.2, the submitting node u14

indirectly connects all the nodes in communities C1 to C3.
In the next paragraph, we discuss the issue of assigning the
subtasks equally among the candidate nodes.

B. Fair Task Allocation Policy

We let s = u′
i represent the overall number of selected users

found in the selection stage. Particularly, throughout this work,
we use the index value of 1 for the submitting node and indices
2 to s+1 for the selected users. Also, we assume that we divide
the total time in small time slots, where a time slot is the time
it takes for a user to complete a portion of its assigned work.
The state of our network with s + 1 elements is given by a
vector N = (N1, N2, . . . Ns+1), where Ni is the number of
subtasks being assigned to a user and N is the overall number
of tasks, that is

∑s+1
i=2 Ni = N . In this regard, our system can

be modeled as a Markov system model. A Markov proposes
model is irreducible, that is, at any time, each state can be
reached from any other state with non-zero probability [44].
Therefore, the equilibrium state probability distribution can be
derived as follows:

P (N) = F (N) P (N, 0, . . . , 0), (4)

where and P (N, 0, . . . , 0) is the probability that all the tasks
are located in the submitting user x1 and the normalization
function F (N), is computed by [44]:

F (N) =
∑

for all N

s+1∏
i=2

xNi
i (5)

7

The xi’s of Eq. 5 are the users’ relative processing capacity
which are expressed as the ratio of user’s i suitability com-
pared to the suitability of the submitter to execute his own
tasks.

xi =
S⊓
i

S⊓
1

, (6)

1) Computing the User Utilization: An important aspect
of our proposed community cloud scheme is, at any time, to
keep the users with the highest relative capacity as utilized as
possible. In a Markov process model, the state of the system
is described, at any time, by the number of tasks distributed
among the system nodes. To compute the utilization of each
user, we must consider only the states where Ni > 0, that is,
the user is utilized. This is expressed by Gi(N):

Gi(N) =
∑

for all N,
Ni>0

s+1∏
i=2

xNi
i , (7)

The utilization p of each user i is then computed by dividing
Gi(N) by F (N), where F (N) includes also the states where
user i can be completely unutilized:

pi =
Gi(N)

F (N)
. (8)

The F (N) function can be efficiently computed by using the
recursive function [44]:

F (N) = Fi−1(N)+xiFi(N−1), for all N, i = 2, . . . , s+1
(9)

To compute the Gi(N) values for all users i, we need to
subtract from F (N) all the terms for which Ni = 0, that
is, all the combinations of task distributions for which user i
is assigned no tasks:

Gi(N) = F (N)−
∑

for all N,
Ni=0

s+1∏
i=2

xNi
i (10)

For a user i, the products for which Ni = 0 are in the form
(here, we use index j for the remaining users other than i):

x0
i

s+1∏
j=2

x
Nj

j (11)

Thus, Eq. 10 becomes:

Gi(N) = F (N)−
[
x0
i

(
x0
2x

0
3 · · ·xN

s+1

)
+ x0

i

(
x0
2x

0
3 · · ·x1

s xN−1
s+1

)
+ x0

i

(
x0
2x

0
3 · · ·x1

s−1 x0
s xN−1

s+1

)
+ x0

i

(
x1
2x

0
3 · · ·x0

s xN−1
s+1

)
+

...

+ x0
i

(
xN
2 x0

3 · · ·x0
s+1

)]
(12)

Proposition 1: During a task allocation problem, the users
are utilized according to their relative processing capacity.

Proof: Consider two users i1 and i2 with xi1 > xi2 (xi1

and xi2 will appear in boldface during the proof, to separate
them from the remaining relative processing capacities). The
utilizations pi1 and pi2 are given by Eq.8. We will show that
pi1 > pi2 . From Eq. 12, for xi1 we have:

Gi1(N) = F (N)− x0
i1

s+1∏
j=2

x
Nj

j = F (N) (13)

−
[
x0
i1

(
x0
i2x

0
3 · · ·xN

s+1

)
+ x0

i1

(
x0
i2x

0
3 · · ·x1

s xN−1
s+1

)
+ x0

i1

(
x0
i2x

0
3 · · ·x1

s−1 x0
s xN−1

s+1

)
+ x0

i1

(
x1
i2x

0
3 · · ·x0

s xN−1
s+1

)
+

...

+ x0
i1

(
xN
i2x

0
3 · · ·x0

s+1

)]
(14)

To obtain Gi2(N), we simply have to mutually exchange
the positions for factors xi1 and xi2 in Eq. 13:

Gi2(N) = F (N)−
s+1∏
j=2

x
Nj

j = F (N)−
[
x0
i2

(
x0
i1x

0
3 · · ·xN

s+1

)
+ x0

i2

(
x0
i1x

0
3 · · ·x1

s xN−1
s+1

)
+ x0

i2

(
x0
i1x

0
3 · · ·x1

s−1 x0
s xN−1

s+1

)
+ x0

i2

(
x1
i1x

0
3 · · ·x0

s xN−1
s+1

)
+

...

+ x0
i2

(
xN
i1x

0
3 · · ·x0

s+1

)]
(15)

Let us consider separately the products subtracted from
F (N) for to produce Gi1 and Gi2 . From Eq. 13 and Eq. 14,
the first products subtracted from F (N) are

x0
i1

(
x0
i2x

0
3 · · ·xN

s+1

)
and x0

i2

(
x0
i1x

0
3 · · ·xN

s+1

)

for Gi1 and Gi2 respectively. Then, the products

x0
i1

(
x0
i2x

0
3 · · ·x1

s xN−1
s+1

)
and x0

i2

(
x0
i1x

0
3 · · ·x1

s xN−1
s+1

)

are subtracted. One can easily notice that as long as the
exponents of xi1 and xi2 are zero, the products subtracted
are equal. However, let us consider the portions of

∏s+1
j=2 x

Nj

j

for which the the exponents of xi1 and xi2 are non-zero. These
factors are

x0
i1

(
x1
i2x

0
3 · · ·x0

s xN−1
s+1

)
and x0

i2

(
x1
i1x

0
3 · · ·x0

s xN−1
s+1

)
(16)

...

x0
i1

(
xN
i2x

0
3 · · ·x0

s+1

)
and x0

i2

(
xN
i1x

0
3 · · ·x0

s+1

)
(17)

8

Comparing the pairs, we can easily see that (because xi1 >
xi2).

x0
i1

(
x1
i2x

0
3 · · ·x0

s xN−1
s+1

)
< x0

i2

(
x1
i1x

0
3 · · ·x0

s xN−1
s+1

)
... <

...

x0
i1

(
xN
i2x

0
3 · · ·x0

s+1

)
< x0

i2

(
xN
i1x

0
3 · · ·x0

s+1

)
Thus, the sum of the factors subtracted from F (N) is larger

for user i2 (the one with the smaller relative capacity xi2 .
Thus, Gi2 < Gi1 ⇒

Gi2

F (N) <
Gi1

F (N) or pi1 > pi2 . Thus,
the users are utilized according to their relative processing
capacity. ■

Proposition 2: The utilization computation has linear
complexity

Proof: This derives simply from the way the terms involved in
Eq. 8 are computed. See Eq. 9. The F (N) terms are computed
by a linear recursive function. The Gi(N) factors are the
F (N) factors subtracted by the factors produced in cases when
Ni = 0, so they are also linear. This completes the proof. ■

2) Fair Task Allocation: To embed fairness in the Markov
process model, we need to distribute the workload of N
tasks in such a manner that each user takes on the workload
proportionally to its processing capacity and (ii) the variance
of all the user utilizations approaches zero for a set of
homogeneous, in terms of processing power, users. The steps
of the fair task allocation strategy are as follows:

STEP 1: For each user we compute r, the sum of all the
relative processing capacities:

r =

s∑
i=2

xi (18)

STEP 2: The load distribution factor, f , can simply be
computed as the fraction of N and r:

f =
N

r
, (19)

STEP 3: The workload per user is computed as

Wi = f × xi, i = 2, . . . , s (20)

Clearly, the three steps described distribute the tasks propor-
tionally to the xi values. The complexity of the fair allocation
scheme is clearly linear, depending on the number of members
that form G. We introduce the δ(t), which computes the total
variance between the average utilization and the utilization of
each user:

δ(p) =

∑s
i=2

[
δ(p)− pi

]2
s

(21)

where s is the number selected community users from the first
stage and δ(p) is the average utilization given by:

δ(p) =

s∑
i=2

pi

s
(22)

We use Proposition 2 to prove the fairness of our scheme in
terms of the users’ utilization.

Proposition 2: The variance among all the utilizations
approaches zero for a homogeneous, in terms of processing
power, set of users.

Proof: The proposition applies in case all the selected users
have equal processing capacities, where the variance is zero.
Let is consider the variance of the utilizations between two
users i1 and i2. From Equations 16 and 17, it is clear that the
utilization difference among the system users is clearly driven
by their xN

i values:

pi1 − pi2 =
(x1

i2
−x1

i1
)(x0

3···x
0
s xN−1

s+1)+···+(xN
i2

−xN
i1

)(x0
3···x

0
s+1)

F (N)
(23)

Obviously, the difference between the two utilizations is
dictated by the fraction xi1

xi1
. When this fraction approaches

1, the numerator in Eq. 22 reduces, regardless of the number
of tasks. Also, two different pairs of users, say (i1, i2) and
(i3, i4) for which xi1

xi1
=

xi3

xi4
will produce the same term in

the computation of δ(p). Thus, for infinitely large number of
executed tasks, the difference δ(p) − pi can be considered
to be bounded by a relatively small value ∆ over a set of
homogeneous, in terms of processing capacity, users. ■

From Proposition 2, it is made clear that the proposed model
does not exhaust the selected users, in the sense that they are
loaded according to their processing capacity. For an almost
homogeneous network of selected users, the contributors are
almost equally loaded. Queues appear when a set of users is,
to a large extent, more computationally powerful compared to
others, thus their utilization increases thus causing queues of
waiting tasks. In this regard, our model produces quite short
task queues. Regularly, the tasks remain in the queues just for
the time required until they are executed. This will be shown
in the simulation results.

C. Combining Parts to Create a Big Picture of our Approach

In this paragraph, we briefly show how to combine the ideas
presented in the previous paragraph, to create a big picture of
our scheme. We use Algorithm 2 for this purpose.

We initially apply Algorithm 1, in order to allocate the users
which have the capacity and are sufficiently trusted by user
⊓ to share their resources. Then, the processing capacity of
each user is computed. According to the Markovian model we
have described, each user’s utilization must be proportional to
his/her computing capacity. These utilization values are com-
puted, verified and used to test for possible over-utilizations.
These computations indicate that, under the current community
structure, relationships and processing capacities, each user
will be utilized by a certain percentage, which is based on
his/her processing capacity. In case some of these values
approach or equal 1, there is a clear indication that one user
(or many users) may be overloaded. Then, the stepwise task
allocation procedure that follows should be aware of this fact
and remove a portion of this extra load from the overloaded

9

Algorithm 2: Overall View of the Proposed Model

1 begin
2 Apply Algorithm 1 to find the group of users G which

are suitable execute tasks submitted by ⊓
3 For G, compute the relative processing capacity of all

its users, using Eq. 6
4 Compute each users utilization according to Eq. 8.

Make sure that no over-utilization occurs and verify
that all the users are utilized based on their
processing capacity.

5 In case very large value is found (close or equal to 1,
which denotes possible over-utilization), some of the
load must be distributed to another user during the
load distribution step (Step 6 that follows).

6 Distribute the overall number of tasks proportionally to
the selected users, by applying Eq. 17- Eq 19 in a
stepwise fashion (Steps 1-3 of the fair task allocation
strategy).

7 end

user/users. In this scenario, this extra load may be shared
equally among the other users. Also, the community detection
scheme should be able to detect overlaps. Then, such a re-
assignment can be found more easily.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we provide experimental results to test and
validate the performance of our model. The objective of these
experiments is to test the efficiency of our solution in terms
of throughput, response time and source (CPU, memory, disk)
utilization. For this reason, we have conducted our experiments
using CloudSim environment. The machines are equipped with
an Intel Core i7-8559U Processor system, with clock speed
at 2.7GHz, four cores and two threads/core, for a total of 8
logical processors and 16 GB RAM. The basic components
of Cloudsim, which enable the simulation of realistic cloud
environments are (see [45]): (1) Datacenter: It is used to model
the core services at the system level of a cloud infrastructure.
It consists of a set of hosts which manage a set of virtual
machines whose tasks are to handle ”low level” processing,
and at least one data center must be created to start the
simulation, (2) Host: It is used to assign processing capabilities
(which is specified in the milion of instruction per second
that the processor could perform), memory and a scheduling
policy to allocate different processing cores to multiple VMs,
(3) Virtual machines: This component manages the allocation
of different virtual machines different hosts, (4) Datacenter
broker: The broker identifies which service provider is suitable
for the user based on the information it has from the Cloud
Information Service, (5) Cloudlet: It represents the application
service whose complexity is modeled in CloudSim in terms of
the computational requirements, and (6) CloudCoordinator: It
manages the communication between other CloudCoordinator
services and brokers.

For the cloud, we create a datacenter with 6 physical
machines each of which is assigned with a number of VMs

TABLE II
SOCIAL NETWORKS AND THEIR FEATURES

Network Network size Number of Selected Nodes
ego-Facebook 4.39 170
Wiki-vote 7.115 405
musae Facebook 22.470 620
feather-deezer 28.291 780
musae twitch 34.118 955

varying from 5 to 50. Every VM is equipped with a CPU
with a capacity of MIPS, RAM capacity of 16 GB and hard
disk storage of 512 GB. We used real datasets of an existing
application, the typical word count. Each tasks process a part
of a large file and seeks for all the words starting from a
selected letter. Once the task is complete, the proper data are
given back to the cloud. Our experimental assumptions are the
following: (1) We assumed an incremental scenario, where we
start from 20 tasks and we gradually increment the number
of tasks to 200. In this way, we prove that our scheme can
improve the performance for different task numbers, (2) We
assign a predefined probability to each user to complete a
task. In cases when a user fails to complete a series of tasks,
we perform rescheduling and the tasks are assigned to one
or more users. Community overlaps are important to locate
more candidates for this purpose. This assumption is made
to have fair comparison to the compatible schemes, (3) The
user’s utilization approach 1 only in cases when their capacity
is significantly higher compared to other users in G. Typically,
our model prevents such cases.

For the community formulations, we we used 5 relatively
small real-world datasets, namely ego-Facebook, wiki-vote,
musae facebook, feather-deezer, and musae twitch. The data
we used is available online at [46]. The network sizes vary
from 4.000 - 38.000 nodes which are enough for serving our
purposes. Table 2 shows the network size and the number of
user that were selected from the first stage of our scheme from
the aforementioned networks.

To evaluate our work, we compare various performance
metrics like the allocation rate, the throughput, and the ex-
ecution time against two very recent state-of-the-art works,
namely [17] and [28]. In [17], the authors develop a trust
model that uses objective and subjective sources of trust to
optimize the credibility of the trust scores. Based on these
trust relationships, the hypervisor can learn about the optimal
detection load percentage that should be allocated to each of its
guest VMs in real time. In [28], the authors propose a service
computing framework for time constrained-task allocation
systems. This framework relies on a recruitment algorithm that
implements a multi-objective task allocation algorithm based
on Particle Swarm Optimization and a queuing scheme that
efficiently handles the incoming tasks. Also, a task delegation
mechanism is used to avoid delays. The selection of users is
based on a reputation management component, which manages
the reputation of users based on their sensing activities.
There are three reasons behind the choice of the comparable
schemes: (1) The are novel, state of the art schemes, (2) They
develop trust models as well as task allocation/load distribution

10

 20 50 80 110 140 170 200
 0.0%

20%

40%

60%

80%

 100%

Number of tasks

T
a
s
k

 a
ll

o
c
a
ti

o
n

 r
a
te

100

PSO-MOA

Markovian

Trust-based scheme

Fig. 3. Task allocation rate.

schemes, and (3) They provide straightforward comparisons to
performance metrics we also consider.

A. Allocation Rate and Response Times
The task allocation paradigm which is examined involves a
task queue within the service discovery and matching mecha-
nism which implements all the scheduling. In this paragraph,
we discuss the allocation rate. This metric represents the
percentage of tasks being effectively allocated to workers
and completed successfully. We compare our scheme against
the PSO-MOA (Particlie Swarm Optimization-Based Multi-
Objective Task Allocation Algorithm) and the trust-based
schemes.

The task allocation rate increases by long queues which
can incur because of the following reasons: (1) unavailability
of users to implement the tasks, and (2) rescheduling due to
system changes (for example, some users disconnect from the
network while other users are connected). In our experiments,
the contributing users were used exhaustively only when they
crushingly overpower others in terms of processing capacity.
This results in long task queues for those users. However, when
the network of contributing users is composed of somehow
homogeneous (although not similar) processing elements, their
utilization variance is small, there is no over-utilization and the
queue lengths are short. Moreover, in case re-scheduling is
necessary, the computations involved in the Markovian model
of Section 4.2 take only linear time. On the average, the PSO-
MOA and the trust-based models generated longer queues,
thus our model has higher allocation rate as can be seen in
Fig. 3. During our simulations, we forced a re-scheduling
when the number of tasks exceeded 110 (see the vertical line)
to indicate the fact that our task allocation rate plot remains
smooth while the other two schemes incur certain reduction
in its task allocation rate before improving it later.

Also, we study the average time the machines need to
respond to the tasks being distributed to them. The response
time is taken by the average of all the differences between
the time a task is assigned and the time it starts execution.
As a result of obtaining shorter queues and higher allocation
rates, our model reduces the average response time compared
its competitors, as shown in Fig. 4.

B. Total Execution Time
In this section, we compare the total execution time between

the Markovian model, the PSO-MOA scheme and the trust-
based scheme. The trust-based model uses a fair allocation

A
v

er
a

g
e

re
sp

o
n

se
 t

im
e

(i
n

 s
ec

s)

Markovian
Trust-based scheme

800

900

 1000

 1300

 1200

 1100

Number of virtual machines

 20 25 30 35 40 35 50

PSO-MOA

Fig. 4. Average response times.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PSO-MOA

Markovian

Number of virtual machines

 20 25 30 35 40 35 50

Trust-based scheme

E
xe

cu
ti

on
 ti

m
e

(s
ec

on
ds

)

Fig. 5. Average execution times.

model that simply divides the load equally among the ma-
chines, thus reducing the total time spent on computing an
optimal distribution, but it needs time to collect and compute
the trust scores. On the other hand, the PSO-MOA scheme
is based on a priority queue system, which queues the tasks
until a potential user is found to execute it. This priority is
defined by the response time. In this regard, the PSO-MOA
scheme selects the task that needs to be served first according
to the remaining response time. As its response time was found
larger (see Fig. 4) the PSO-MOA had the largest execution
time among the the compared schemes. Our work executes the
tasks proportionally to the processing capacities of the selected
machines and, in this regard, it manages to outperform the
compared schemes in terms of execution time (see Fig.5).

C. Utilization

In the final set of experiments, we study the effectiveness
of the Markovian model in terms of the resources being used.
We compare the CPU, memory and bandwidth consumption
to the results found in the trust-based scheme. The trust-
based scheme relies on a defensive hypervisor policy that
aims at optimizing the resource allocation strategy by de-
tecting possibly malicious requests. However, the completely
fair policy it uses, where the loads are equally distributed
results in exhausting some of the resources, especially the
resources of the “weaker” machines. Another disadvantage
of this policy is that, as the number of tasks (and thus the
number of user machines) increases, such detection are not
always possible or they are time-consuming. In this regard, the
performance decreases (more and more resources are utilized)
as the number of machines increases, as can be seen in Figures

11

0 25 50 75 100 125 150 175 200

0.3

0.4

0.5

0.6

0.7

C
P

U
 u

ti
li

z
a

ti
o

n

Markovian

Trust-based scheme

Number of tasks

Fig. 6. Average CPU utilization.

0 25 50 75 100 125 150 175 200

0.3

0.4

0.5

0.6

0.7

M
em

o
ry

 u
ti

li
za

ti
o

n

Markovian
Trust-based scheme

Number of tasks

Fig. 7. Average memory utilization.

0 25 50 75 100 125 150 175 200

0.3

0.4

0.5

B
a

n
d

w
id

th
 u

ti
li

z
a

ti
o

n Markovian

Trust-based scheme

Number of tasks

Fig. 8. Average bandwidth utilization.

6 to 8. Indeed, for small number of tasks this policy appeared
to have better results compared to the Markovian based model.
On the other hand, our proposed scheme does not over-utilize
any resources (see Proposition 2) regardless of the number of
tasks and the load distribution computations are linear (see Eq.
9). As can be seen from Figures 6 to 8, the utilization curves
for our strategy appear to be rather smooth as the number of
tasks keep on increasing. Also, recall in our examples that
we considered that our tasks are mostly CPU and memory-
intensive. This explains the fact that the average CPU and
memory utilizations were larger compared to the bandwidth
utilization.

VI. CONCLUSIONS - FUTURE WORK

This paper presented a framework for task allocation in
social community clouds. It consists of the candidate selection

phase and the task allocation algorithm. The user selection
policy uses a community detection strategy to locate the
suitable users which will implement the tasks. The task
allocation scheme was implemented using the Markov-based
model, which can be used to fairly assign the tasks among
the users based on their processing capacity. The users are
utilized based on their capacity. Our scheme was compared to
two other schemes: the trust-based scheme and the PSO-MOA
scheme. The results have shown that our scheme improves the
task allocation rate by about 20-30%, because of the shorter
queues it produces and thus lower response times. Also, our
strategy decreases the total execution time by about 40%
compared to the trust-bases scheme. This improvement is even
higher when compared to the PSO-MOA scheme, when the
number of VMs increases. Finally, our scheme was found to
use the system resources more efficiently without exhausting
them, as the number of assigned tasks keeps on increasing.
In the future, we will investigate the use of open network
models in implementing community clouds. Also, we will try
to embody the Markov based model as a benchmark to assess
the results of a community detection scheme. Finally, we need
to investigate signed networks and relative relationships and
add them to the candidate selection process. Basing resource
allocations only on positive relationships is adequate, but it
does not tell the whole story. There are many different types of
relationships (e.g. family, friends, colleagues, simple followers
and so on). These relationships can include negative feelings
and judgments among users, without necessarily affecting
the trust between them. Moreover, there can be different
trust levels corresponding to different types relationships (for
example an opposed family member can still be trusted while
an opposed follower cannot).

REFERENCES

[1] C. Liu, K. Li, and K. Li, “A game approach to multi-servers load
balancing with load-dependent server availability consideration,” IEEE
Trans. Cloud Comp., vol. 9, no. 1, pp. 1–13, 2021.

[2] S. Caton, C. Haas, K. Chard, K. Bubendorfer, and O. Rana, “A social
compute cloud: Allocating and sharing infrastructure resources via social
networks,” IEEE Trans. Serv Comp., vol. 7, no. 3, pp. 359–372, 2014.

[3] S. S., A. S., and K. S., “A social compute cloud: Allocating and sharing
infrastructure resources via social networks,” Applied Sciences, vol. 11,
no. 16, p. 7179, 2021.

[4] K. Chard, S. Caton, O. Rana, and p. y. K. Bubendorfer, booktitle=IEEE
3rd International Conference on Cloud Computing, “Social cloud: Cloud
computing in social networks.”

[5] G. Cui, Z. Wang, L. Dong, X. Cao, Y. Liu, and Z. Zhang, “Influence of
contribution-based resource allocation mechanism on individual resource
sharing cooperation in social networks,” International Journal of Modern
Physics C, vol. 30, no. 12, p. 2050007, 2019.

[6] J. I. Petri, Diaz-Montes, M. O. Rana, Punceva, I. Rodero, and
M. Parashar, “Modelling and implementing social community clouds,”
IEEE Transactions on Services Computing, vol. 10, no. 3, pp. 410–422,
2015.

[7] F. Hao, G. Min, J. Chen, F. Wang, M. Lin, C. Luo, and L. T. Yang,
“An optimized computational model for multi-community-cloud social
collaborative computing,” IEEE Trans Serv. Comput., vol. 7, no. 3, pp.
346 – 358, 2014.

[8] F. Hao, D.-S. Park, J. Kang, and G. Min, “2l-mc3: A two-layer multi-
community-cloud/cloudlet social collaborative paradigm for mobile edge
computing,” IEEE Internet of Things., vol. 6, no. 3, pp. 4764 – 4773,
2019.

[9] C. R, G. J., and B. F, “Trust management for soa-based iot and its
application to service composition,” IEEE Trans Serv. Comput., vol. 9,
no. 3, p. 482–495, 2014.

12

[10] C. IR, B. F, and G. J, “Trust-based service management for social
internet of thing systems,” IEEE Trans. Dependable Secure Comput,
vol. 13, no. 6, pp. 684–696, 2015.

[11] B. F, C. I.R, and p. y. Guo J, booktitle=IEEE Eleventh International
Symposium on Autonomous Decentralized Systems (ISADS), “Scalable,
adaptive and survivable trust management for community of interest
based internet of things systems.”

[12] V. Sharma, I. You, D. Nalin, and M. Atiquzzaman, “Cooperative trust
relaying and privacy preservation via edge-crowdsourcing in social
internet of things,” Future Generation Computer Systems, vol. 92, no. 6,
p. 758–776, 2018.

[13] M. M. Rad, A. M. Rahmani, A. Sahafi, and N. N. Qader, “Social internet
of things: vision, challenges, and trends,” Human-centric Computing and
Information Sciences, vol. 10, no. 52, pp. 1–40, 2020.

[14] B. R. e. a. Roopa MS, Pattar S, “Social internet of things (siot):
foundations, thrust areas, systematic review and future directions,”
Comput. Commun, vol. 139, pp. 32–57, 2019.

[15] O. B. Abderrahim, M. H. Elhedhili, and L. Saidane, “Ctms-siot: A
context-based trust management system for the social internet of things,”
in 13th International Wireless Communications and Mobile Computing
Conference (IWCMC), 2017, pp. 1903–1908.

[16] N. M, G. R, and A. L, “Trustworthiness management in the social
internet of things,” IEEE Trans Knowl Data Eng, vol. 26, no. 5, p.
1253–1266, 2014.

[17] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Optimal load
distribution for the detection of vm-based ddos attacks in the cloud,”
IEEE Trans. on Serv Comp, vol. 13, no. 1, pp. 114–129, 2020.

[18] X. H, S. N, and C. B, “Guarantor and reputation based trust model for
social internet of things,” in International Wireless Communications and
Mobile Computing Conference (IWCMC), 2015, pp. 600–605.

[19] T. NB, U. TW, and L. GM, “A reputation and knowledge based trust
service platform for trustworthy social internet of things,” in 19th
International ICIN Conference - Innovations in Clouds, Internet and
Networks, 2016, pp. 430–441.

[20] V. T. Kokoris-Kogias E, Voutyras O, “Trm-siot: A scalable hybrid trust
and reputation model for the social internet of things,” in 2016 IEEE
21st International Conference on Emerging Technologies and Factory
Automation (ETFA), 2016, pp. 1–9.

[21] K. M and V. ML, “Trust management in the social internet of things,”
Wireless Peers Communications, vol. 96, no. 2, p. 2681–2691, 2017.

[22] K. AM and V. ML, “Trust management for reliable decision making
among social objects in the social internet of things,” IET Networks,
vol. 6, no. 4, pp. 75–80, 2017.

[23] W. Tan, L. Zhao, B. Li, L. D. Xu, and Y. Yang, “Multiple cooperative
task allocation in group-oriented social mobile crowdsensing,” IEEE
Trans. on Serv. Comp., vol. Early Access, pp. 1–1, 2021.

[24] J. Wei, Y. Lin, X. Yao, and J. Zhang, “Differential privacy-based
location protection in spatial crowdsourcing,” IEEE Trans. on Serv.
Comp, vol. 15, no. 1, pp. 45 – 58, 2019.

[25] F. Basık, B. Gedik, H. Ferhatosmanoglu, and K.-L. Wu, “Fair task
allocation in crowdsourced delivery,” IEEE Trans. on Serv. Comp,
vol. 14, no. 4, pp. 1040 – 1053, 2018.

[26] Y. Li, W. Xu, and M. L. Yiu, “Client-side service for recommending
rewarding routes to mobile crowdsourcing workers,” IEEE Trans. on
Serv. Comp, vol. 14, no. 6, pp. 1995 – 2010, 2019.

[27] L. Zhao, W. Tan, N. Xie, and L. Huang, “An optimal service selection
approach for service-oriented business collaboration using crowd-based
cooperative computing,” Applied Soft Computing, vol. 92, p. 106270,
2020.

[28] R. Estrada, R. Mizouni, H. Otrok, A. Ouali, and J. Bentahar, “A crowd-
sensing framework for allocation of time-constrained and location-based
tasks,” IEEE Trans. on Serv. Comp, year=2020, volume=13, number=5,
pages=769–785.

[29] Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, , and D. Zhang, in ACM Int.
Joint Conf. Pervasive Ubiquitous Comput, 2016, pp. 403–414.

[30] B. Guo, Y. Liu, W. Wu, Z. Yu, and Q. Han, “Activecrowd: A framework
for optimized multitask allocation in mobile crowdsensing systems,”
IEEE Trans. Human-Mach Syst., vol. 47, no. 3, p. 392–403, 2017.

[31] A. Khanfor, H. Ghazzai, Y. Yang, and Y. Massoud, “Application of
community detection algorithms on social internet-of-things networks,”
in IEEE International Conference on Microelectronics (ICM’19), 2019,
p. 94–97.

[32] A. Khanfor, R. Hamadi, H. Ghazzai, Y. Yang, M. R. Haider, and Y. Mas-
soud, “Computational resource allocation for edge computing in social
internet-of-things,,” in IEEE 63rd International Midwest Symposium on
Circuits and Systems (MWSCAS), 2020, pp. 233–236.

[33] A. Khanfor, H. Ghazzai, Y. Yang, M. R. Haider, and Y. Massoud,
“Automated service discovery for social internet-of-things systems,” in
IEEE International Symposium on Circuits and Systems (ISCAS’20),
2020, pp. 1–5.

[34] A. M. Kowshalyaa, Xiao-Zhi, Gaob, and V. MLc, “Efficient service
search among social internet of things through construction of commu-
nities,” yber-Physical Systems, vol. 6, no. 1, pp. 33–49, 2020.

[35] P. Wu, L. Pan, and C. Zheng, “Mining set of interested communities
with limited exemplar nodes for network based services.”

[36] L. Ma, M. Gong, J. L. Qing, and C. L. Jiao, “Multi-level learning based
memetic algorithm for community detection,” Applied Soft Computing,
vol. 19, pp. 121–133, 2014.

[37] S. Qiao, N. Han, Y. Gao, R.-H. Li, J. Huang, J. Guo, L. A. Gutierrez,
and X. Wu, “A fast parallel community discovery model on complex
networks through approximate optimization,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 9, pp. 1638–1651, 2018.

[38] Z. Lu, X. Sun, Y. Wen, G. Cao, and T. La Porta, “Algorithms and
applications for community detection in weighted networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 11, pp.
2916–2926, 2015.

[39] D. Džamić, D. Aloise, and N. Mladenović, “Ascent–descent variable
neighborhood decomposition search for community detection by modu-
larity maximization,” Annals of Operations Research, vol. 272, no. 1-2,
pp. 273–287, 2017.

[40] R. Santiago and L. C. Lamb, “Efficient modularity density heuristics
for large graphs,” European Journal of Operational Research, vol. 258,
no. 3, pp. 844–865, 2017.

[41] L. Ma, Z. S. an; Xiaocong Li, and Q. L. et al., “Influence maximiza-
tion in complex networks by using evolutionary deep reinforcement
learning,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. Early Access, pp. 1–15, 2022.

[42] T. Bahreini, H. Badri, and D. Grosu, “An envy-free auction mechanism
for resource allocation in edge computing systems,” in IEEE/ACM
Symposium on Edge Computing (SEC), 2018, pp. 313–322.

[43] S. Souravlas, A. Sifaleras, and S. Katsavounis, “A parallel algorithm
for community detection in social networks, based on path analysis and
threaded binary trees,” IEEE Access, vol. 7, pp. 20 499–20 519, 2019.

[44] W. J. Gordon and G. F. Newell, “Closed queuing systems with exponen-
tial servers,” Operations Research, vol. 15, no. 2, pp. 254–265, 1967.

[45] S-Logix. (2017) Last time accessed on Aug 22th, 2022. [Online].
Available: https://slogix.in/source-code/cloudsim-samples/what-are-the-
basic-components-and-features-of-cloudsim/

[46] J. Leskovec and A. Krevl. (2014, June) SNAP datasets: Stanford large
network dataset collection. University of Stanford. Stanford. [Online].
Available: http://snap.stanford.edu/data

Stavros Souravlas is an Assistant Professor of
Computer Architecture at the Department of Ap-
plied Informatics, School of Information Sciences,
University of Macedonia, where he joined in 2014.
His research interests include scheduling of parallel
and distributed computing systems, big data stream
scheduling, cloud computing, systems modeling and
simulation. He has published more than 40 papers
in peer reviewed journals and conferences including
6 papers in IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Compu-

tational Social Systems and IEEE Access. He is a member of the IEEE.

Sofia D. Anastasiadou is a Professor of Statistics
and Research Methodology at the Department of
Midwafery, School of Health Sciences, University
of Western Macedonia. Her areas of specialization is
Qualitative and Quantitative Methods in Social Sci-
ences, Applied Statistics, Implicative Statistic Anal-
ysis, Multivariate Statistical Analysis, Biostatistics,
Meta-Analysis, Structural equation models, Analyse
des donnees and Big Data.

