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Abstract

Introduction: Contemporary efforts to predict surgical outcomes focus on the associations between traditional discrete
surgical risk factors. We aimed to determine whether natural language processing (NLP) of unstructured operative notes
improves the prediction of residual disease in women with advanced epithelial ovarian cancer (EOC) following cytoreductive
surgery.

Methods: Electronic Health Records were queried to identify women with advanced EOC including their operative notes. The
Term Frequency – Inverse Document Frequency (TF-IDF) score was used to quantify the discrimination capacity of sequences
of words (n-grams) regarding the existence of residual disease. We employed the state-of-the-art RoBERTa-based classifier to
process unstructured surgical notes. Discrimination was measured using standard performance metrics. An XGBoost model
was then trained on the same dataset using both discrete and engineered clinical features along with the probabilities outputted
by the RoBERTa classifier.

Results: The cohort consisted of 555 cases of EOC cytoreduction performed by eight surgeons between January 2014 and
December 2019. Discrete word clouds weighted by n-gram TF-IDF score difference between R0 and non-R0 resection were
identified. The words ‘adherent’ and ‘miliary disease’ best discriminated between the two groups. The RoBERTa model reached
high evaluation metrics (AUROC .86; AUPRC .87, precision, recall, and F1 score of .77 and accuracy of .81). Equally, it
outperformed models that used discrete clinical and engineered features and outplayed the performance of other state-of-the-
art NLP tools. When the probabilities from the RoBERTa classifier were combined with commonly used predictors in the
XGBoost model, a marginal improvement in the overall model’s performance was observed (AUROC and AUPRC of .91, with
all other metrics the same).

Conclusion/Implications: We applied a sui generis approach to extract information from the abundant textual surgical data
and demonstrated how it can be effectively used for classification prediction, outperforming models relying on conventional
structured data. State-of-art NLP applications in biomedical texts can improve modern EOC care.
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Introduction

Contemporary efforts to predict surgical outcomes and
postoperative complications usually focus on the associations
between traditional surgical risk factors, including age or
preoperative albumin.1,2 In addition to risk factors in discrete
data fields, we now have access to abundant textual data
within digital medical records. In the era of healthcare digi-
talization, the increasing implementation of Electronic Health
Records (EHRs) at UK Hospitals has created valuable data
sources for clinical and translational research.3 Although
EHRs hold structured data, a large proportion of clinical notes
are in narrative text format. It is estimated that unstructured
data accounts for more than 80% of currently available
healthcare data.4 Reading note text and extracting information
are resource intensive. Artificial intelligence (AI) has emerged
as a potential solution for harnessing these data. More spe-
cifically, Natural Language Processing (NLP) is the AI dis-
cipline that focuses on extracting information from texts by
converting narrative clinical notes into a structured format.
The NLP methods have been shown to achieve remarkable
results in such tasks using hundreds to thousands of clinical
notes.5 Their implementation has been promoted and accelerated
during the COVID era.6 Nevertheless, clinical research has been
heavily affected by the underutilization of unstructured data from
EHRs.7

Amongst the best NLP models employed to date, the
Bidirectional Encoder Representations from Transformers
(BERT) model was created by Google in 2018. Thanks to its
architecture, it can extract information from texts by con-
sidering bidirectional contextual information.8 BERT’s ad-
vanced information extraction capacities when combined with
the fact that traditional NLP methods such as Word2vec have
shown promising results in classification tasks in clinical
settings and9 can lead to the reasonable expectation that a
BERT-based classification model would outperform previ-
ously used methodologies. Since 2018, several augmentations
occurred, with Facebook publishing the RoBERTa language
model in 2019,10 surpassing previously set records. The
RoBERTa is a late, robust, unsupervised pre-trained language
model that can be used in the context of supervised tasks with
outstanding results.11

Undoubtedly, the abundance of clinical information is
locked in clinical narratives. Documentation of EHRs is now
developing into standard practice. For instance, surgeons
spend significant time documenting and reading, amongst
other tasks, narrative descriptions of operative reports and
findings.12 Developing tools to facilitate clinical review of

these unstructured data can derive clinically meaningful in-
sights for advanced epithelial ovarian cancer (EOC), a het-
erogeneous disease. Compared to standard approaches, they
can potentiate condensation of results from several tasks and
optimize analysis time. One aspiration could be the prediction
of no residual disease (R0 resection) following cytoreductive
surgery for EOC. Such task of confirming macroscopic
clearance remains subjective,13 to the point that photographic
‘mapping’ has been recommended that allows for an as-
sessment of the surgical effort at primary surgery or provides a
baseline for determining the effect of neo-adjuvant chemo-
therapy at delayed surgery.14 As a result, most of the quan-
titative intraoperative assessment tools have mainly focused
on their predictive value for suboptimal surgery.15 To improve
modern care, the application of NLP tools could be useful to
determine whether processing of unstructured full-text doc-
uments improves the ability to forecast outcomes in clinical
conditions with significant heterogeneity such as EOC.

In this work, we utilized the pre-trained RoBERTa-base
language model to predict whether residual disease persists in
EOC patients following their cytoreductive surgery. We hy-
pothesized that operative notes contain valuable information
associated with surgical outcomes. We aimed to develop an NLP
methodology that would address the objectiveness of R0 resection
through information hidden in unstructured operative notes.

Methods

Electronic Health Records (EHRs) were queried to identify
women with advanced EOC who underwent cytoreductive
surgery at St James’s University Hospital, Leeds, from Jan-
uary 2014 to December 2019. The modern EHR dataset
included the following clinical features: diagnosis codes (ICD-
10 codes), procedure codes (OPCS-4 codes), age at diagnosis,
grade, stage, and operative notes with findings. An internally
developed advanced EOC clinical database was integrated with
the EHR system16 to provide the availability of discrete and
engineered data. Institutional research ethics board approval
was obtained through the Leeds Teaching Hospitals Trust
(MO20/133 163/18.06.20), and informed written consent was
obtained. The study was added to the UMIN/CTR Trial Reg-
istry (UMIN000049480). Treatment was pre-operatively
planned at the weekly central gynaecological oncology mul-
tidisciplinary team (MDT) meeting prior to patient review. The
cohort details, hospital setting, indications for surgery, and
surgical procedures have been described in our previous
studies.13,17 Comprehensive visual assessment of all the areas
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of the abdomen and pelvis was routinely performed, and no
visible residual disease was documented as R0 resection. The
analysis took place in three steps: Firstly, words and com-
binations of words were analyzed based on their frequency and
the case they concerned. Following the initial descriptive text
analysis, the RoBERTa classifier was employed to predict case
outcomes based on operative notes. Lastly, an XGBoost clas-
sification model was tasked with predicting the same outcome,
this time using tabular discrete data, but also the probabilities
that were derived from the RoBERTa classifier of the second
step. A flowchart of our approach is shown in Figure 1.

Textual Descriptive Analysis

For the analysis of the text, word frequencies were calculated,
and tables were created using the most common words and
n-grams. N-grams are continuous word sequences of words, as
they could be found in the text. The length of the n-grams can
be as small as one, meaning one word, or as large as the
entirety of the text. N-grams are important because they carry
contextual information more than simple words do. To find the
n-grams that best discriminated between the two cases, we
performed an analysis based on the Term Frequency – Inverse
Document Frequency (TF-IDF). The TF-IDF is a metric used
to quantify n-gram importance in a particular document.18 The
score, as implied by its name, is a function of the number of
times the n-gram appears in the document adjusted for the
number of times it appears in the rest of the documents, as
shown also in equation (1).

tfidfi, j ¼ tfi, j* log
N

dfi
(1)

where

(i) tfi,j is the number of occurrences of n-gram i in
document j

(ii) dfi is the number of documents containing i
(iii) N is the total number of documents

For each of the two possible outcomes (R0 resection vs
non-R0 resection), we compiled a document consisting of the
concatenation of all the individual notes that concerned this
outcome. The words inside the documents were reduced to
their lemmas, to make the analysis more representative of the
real n-gram frequency without accounting for word conju-
gation. The two resulting documents were inputted into
Sklearn’s TfidfVectorizer, which was tasked with assigning
scores per n-gram, per document. A high TF-IDF score for an
n-gram in a document signifies n-gram importance to this
document. The TF-IDF n-gram scores for the documents
reporting non-R0 resection were then subtracted from the TF-
IDF scores for the documents reporting R0 resection. This
way, the higher the absolute difference in scores, the higher the
ability of the n-gram to discriminate between the two cases.
Positive difference scores show that the n-gram belongs to R0
resection case notes, while negative scores show the opposite.

Natural Language Classification With RoBERTa

We utilized the pre-trained RoBERTa-base language model to
extract information from the unstructured surgical notes
through transfer learning. Transfer learning is the process of
re-training part of a pre-trained model on specific data to fine-
tune its performance for a specific task. The initial training

Figure 1. Components and the flow of the machine learning pipeline applied in our case.
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often uses vast datasets that hold most of the information
relevant to the task at hand. Re-training allows for finer details
to be captured by the model. The main advantage of transfer
learning is that the resulting model can reach high performance
without needing to use large amounts of data. The RoBERTa-
base language model is pre-trained on a large corpus of English
data using the BERT-base architecture and has 125 million
parameters.10 The surgical data was used to train and test the
model at a ratio of 4:1. The model was trained for 40 epochs.
Discrimination was measured using the most common per-
formance metrics for classification tasks, namely, with:

(i) Accuracy = TP + TN/TP + TN + FP + FN
(ii) Precision = TP/TP + FP
(iii) Recall = TP/TP + FN
(iv) F1-score = 2*Precision*Recall/Precision + Recall
(v) Area under the receiver operating characteristic curve

(AUC)
(vi) Area under the precision-recall curve (AUPRC)

Understanding how the RoBERTa reached the conclusions
is essential in evaluating its performance. For such an ex-
tremely complicated model, tracing the individual impact of
the text tokens on the final prediction is a task requiring
advanced decompositional methods. In this effort, we em-
ployed the transformers-interpret Python library19 to explain
and visualize the factors that contributed to the model’s
prediction accuracy. In turn, the library employs the Captum
model of interpretability and understanding library.20 Using
integrated gradients, the library evaluates the contribution of
each input feature to the model output of the model. The net
result is an attribution score for each token; that is positive
when the token contributes towards class prediction and
negative in the reverse scenario.

As a final step, we employed a surrogate model in order to
augment the explainability effort. In this context, a surrogate
model denotes a simpler model than the powerful original one
(in our case RoBERTa), whose outputs are interpretable. The
surrogate model trains on the outputs of the original and,
through its interpretable coefficients, offers a way to access the
decision process of the complex, original model. The surro-
gate model used was a simple logistic regression. The de-
pendent variable was the RoBERTa predictions in the form of
binary integer values, created by setting a threshold of .5 on
the original probabilities, while the independent variables
were the TF-IDF sentence vectors created through the method
of TF-IDF vectorization. In this way, the aim was 2-fold: The
surrogate model would serve both as an explainer and as a
conceptual link between the RoBERTa outputs and the TF-
IDF scores created in the descriptive analysis.

XGBoost Classification Model

Subsequently, we trained an XGBoost model21 to predict R0
resection using a combination of structured and unstructured

data sources. The independent variables included the Aletti
surgical complexity score (SCS), the size of the largest bulk of
the disease in centimeters, the age of the patient, the Pre-
Surgery CA125, the Intraoperative Mapping of ovarian cancer
(IMO) score, the operative time in minutes, the estimated
blood loss (EBL), the pre-treatment CA125, the tumour grade
encoded as a binary variable, the Peritoneal Carcinomatosis
Index (PCI), the timing of surgery (encoded as a binary
variable where primary debulking equaled 0 and interval
debulking surgery equaled 1), the ANAFI score and the
probabilities that the RoBERTa classifier outputted when
solely tasked to predict R0 resection (real number in the in-
terval of 0 to 1). The PCI and IMO scores were calculated at
the beginning of surgery to describe the intraoperative location
of the disease.22,23 The Aletti SCS was assigned to describe
the surgical effort.24 The ANAFI score is an AI-derived novel
intraoperative score that assigns specific weights to the EOC
dissemination patterns (ANAtomic FIngerprints).25 It appears
to be more predictive of R0 resection than the entire PCI and
IMO scores whilst it retains its prognostic power. Most of
these discrete and engineered data predictors have been in-
terrogated in our previous studies.13,17,25–27

The hyperparameters of the XGBoost model were selected
by using an exhaustive grid hyperparameter search. The grid
search also implemented cross-validation. The hyper-
parameter grid is shown in Table 3. The feature importance
was determined using the Shapley additive explanations
(SHAP) framework to interpret the model’s predictions based
on the Shapley values.28

Results

Using the ICD-10 code for EOC, we identified 555 cases of
EOC cytoreduction performed by eight surgeons between
January 2014 and December 2019. This cohort has been
previously described.13,17 Some basic descriptive statistics are
shown in Table 1. The rate of complete cytoreduction was
65.4%.

Textual Descriptive Analysis

Discrete word clouds weighted by n-gram TF-IDF score
difference (Table 2) between R0 and non-R0 resection were
identified (Figure 2).

The words ‘normal’ and ‘miliary’ best discriminated be-
tween both groups. For non-R0 resection prediction, these
included n-grams related to the EOC dissemination, such as
‘omental cake.’ The appearance of the cancer was best de-
scribed by the predictive n-gram ‘miliary disease.’ The av-
erage word count was 320 ± 98 vs 292 ± 105 in case notes with
non-R0 vs R0 resection, respectively. The average stop word
count was 11.22 ± 6.27 vs 9.86 ± 5.89 in case notes with non-
R0 vs R0 resection, respectively.
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Table 1. Cohort Statistics.

Variable
Overall
(n = 555)

Training Set
(n = 444)

Testing Set
(n = 111)

P-Value
(Training)

Zero
Residual
(n = 363)

Non-Zero
Residual
(n = 192)

P-Value
(R0 vs
Non-R0)

Grade_cat 502 (90.45) 403 (90.77) 99 (89.19) .745 332 (91.46) 170 (88.54) .337
IDS/PDS 385 (69.37) 306 (68.92) 79 (71.17) .730 247 (68.04) 138 (71.88) .404
Surgical complexity
score (SCS)

3.77 ± 2.07 3.8 ± 2.04 3.66 ± 2.2 .544 4.13 ± 2.27 3.08 ± 1.4 <.001

Size largest bulk of
disease (cm)

8.83 ± 5.57 8.71 ± 5.62 9.3 ± 5.37 .306 8.31 ± 5.67 9.79 ± 5.25 .002

Age 63.57 ± 11.23 63.88 ± 10.96 62.32 ± 12.25 .221 62.45 ± 11.65 65.69 ± 10.1 .001
Pre-surgery CA125 412.99 ± 1180.36 406.44 ± 1229.0 439.45 ± 963.76 .762 399.52 ± 1297.67 438.6 ± 919.64 .682
Intraoperative mapping
of ovarian cancer
(IMO)

4.9 ± 1.95 4.83 ± 1.91 5.2 ± 2.11 .096 4.36 ± 1.88 5.93 ± 1.65 <.001

Time procedure
(min)

168.82 ± 75.13 169.5 ± 72.33 166.08 ± 85.71 .699 172.77 ± 80.26 161.35 ± 63.84 .068

EBL 521.84 ± 386.84 523.06 ± 400.16 516.95 ± 329.82 .868 512.1 ± 417.74 540.26 ± 320.62 .377
Pre-treatment
CA125

1525.33 ± 2719.94 1421.98 ± 2573.98 1938.7 ± 3218.95 .118 1499.46 ± 2911.22 1574.24 ± 2322.0 .742

PCI 7.3 ± 4.39 7.16 ± 4.26 7.89 ± 4.85 .145 6.52 ± 4.3 8.79 ± 4.17 <.001
ANAFI 5.02 ± 5.45 4.72 ± 5.27 6.23 ± 5.98 .016 2.85 ± 4.4 9.13 ± 4.86 <.001

Table 2. Top 10 n-GramsWith the Highest TF-IDF Difference Scores per Case Outcome. The Two Top-Level Header Columns Indicate the
Case According toWhich the Score Difference was Sorted. R0 n-Grams had High Positive Score DifferenceWhile Non-R0 n-Grams had High
Negative Score Difference.

Word TF-IDF Score for Word in R0 Document TF-IDF Score for Word in Non-R0 Document TF-IDF Score Difference

R0

Normal .261 .154 .106
Liver .151 .068 .082
Diaphragm .141 .071 .070
Left .213 .164 .048
Uterus .213 .168 .044
Adhesion .108 .064 .044
Tube .094 .052 .042
Diaphragm normal .046 .006 .039
Sub-diaphragm
normal

.045 .006 .038

Liver sub .046 .007 .038

Non-R0

Miliary .026 .170 �.143
Miliary disease .018 .127 �.109
Disease .269 .346 �.077
Tumour .108 .178 �.069
Adherent .170 .237 �.066
Colon .058 .116 �.058
Involving .012 .059 �.046
Omental cake .031 .073 �.042
Cake .032 .073 �.040
Sigmoid .090 .131 �.040
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Natural Language Classification With RoBERTa

The model reached high evaluation metrics (area under ROC
.86; area under precision-recall curve .87, precision, recall,
and F1 score of .77 and accuracy of .81 [Figures 3–5]),
surpassing even specialized BERT and DistilBERT models
tested (BioBERT29: R .6, P 0.84, F1 .7, ACC .79, AUROC .84,
AUPRC .84, ClinicalBERT30: R .68, P 0.72, F1 .7, ACC .76,
AUROC .82, AUPRC .82 and BioClinicalBERT31: R .64, P
0.76, F1 .69, ACC .77, AUROC .81, AUPRC .79). The true
positives, true negatives, false positives and false negatives
were 35, 56, 10 and 10, respectively.

The explanations of the model’s predictions were visual-
ized in a highlighted text plot, where negatively contributing
tokens are coloured red, and positively contributing tokens are
coloured green, whereas the colour intensity is translated to an
attribution score strength (Figure 6).

As shown in the figure, it is easy to discern the fact that
there is a correlation between word contribution to the pre-
diction and TF-IDF score difference. This makes sense, as n-
grams with high TF-IDF score difference tend to discriminate
better between the two cases. However, it is equally important
to see that not all words that have high prediction contribution
score appear as entries in Table 2. That is due to the fact that
since RoBERTa is able to capture contextual meaning span-
ning several words that could also be non-sequential, it is
possible that local information that was not apparent through
simple TF-IDF analysis was now deemed as important to the
prediction.

The results of the surrogate logistic regression model
employed further reinforce the results acquired from the
RoBERTa model. Specifically, n-grams that reached high TF-
IDF difference scores (Table 2) appeared as top coefficients in
the logistic regression, in either direction (Figure 7).

Figure 2. N-gram word clouds for findings notes where residual disease is non-zero (left) and zero (right).

Figure 3. Receiver operating characteristic curve and area under
the curve for the RoBERTa classifier.

Figure 4. Precision-recall curve and area under the curve for the
RoBERTa classifier.
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XGBoost Classification Model

The XGBoost model that employed both discrete features and
the probabilities from the RoBERTa classifier was then trained
on the same training data set as the RoBERTa. The grid hy-
perparameter search resulted in 180 model evaluations with the
best combination of hyperparameters shown in Table 3
alongside the search spaces. For the XGBoost model, while
the precision, recall, F1 score, and accuracy remained static, a
marginal performance improvement was demonstrated as
shown by the AUPRC and AUROC reaching .91. The RoB-
ERTa probabilities, when used as a prediction feature, per-
formed significantly better than not only discrete features but
also engineered features such as the ANAFI score (Figure 8).

Discussion

In this proof-of-principle study, we demonstrated the capa-
bility of the RoBERTa classifier to extract and process

information from unstructured operative note formats that can
enable important clinical tasks, such as R0 resection prediction
following EOC surgical cytoreduction. We showcased how
EHRs can be a helpful data source for supporting surgeons’
activities by automated data coding for quality assessment
while reducing the burden of chart review. As an estimated
70% of clinicians report EHR-related, specialty-specific
burnout,32 this information may guide healthcare organiza-
tions on how to remediate burnout amongst their staff.
Equally, we surmise this effort can help establish interoper-
ability standards of surgical narration to ensure objectivity
when it comes to reporting residual disease. Working with
EHR data is relatively challenging due to data heterogeneity.
Being able to quickly retrieve important information stored in
surgical narratives carries the potential to improve under-
standing of patient journeys and identify subgroups of patients
for research purposes. For those reasons, the design and ap-
plication of a system that could offer the NLP AI-derived
insights directly to the surgeon in real-time would be ex-
tremely beneficial. The system could offer objective feedback
on written notes. A study on the effects of such a system
should be investigated.

The driving motivation behind this effort was to explore the
potential of using the RoBERTa algorithm in the EOC domain.
This transformer architecture has been recently used to extract
adverse drug events from biomedical text to monitor drug
safety.33 Barber et al initially developed an NLP-augmented
algorithm that improved the ability to predict postoperative
complications and hospital readmissions among women with
EOC undergoing surgical cytoreduction.34 They compiled
discrete data with different types of NLP features from un-
structured clinical notes and sequentially employed machine
learning to build new sets of features. Herein, we purely used a
novel NLP tool that recognizes the specific local textual
context, thus enabling a recommendation concerning the pre-
diction of residual disease. Pre-processing steps contributedFigure 5. Confusion matrix for the RoBERTa classifier.

Figure 6. Explainability of the RoBERTa inference on textual data. The green highlighting indicates the section of text that contributed
positively to the classification of the note as belonging to the assigned class, while the red highlighting indicates the opposite. Examples are
text instances correctly classified as describing cases where (A) residual disease persisted and (B) no residual disease persisted after surgery.
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Figure 7. Top 10 n-grams with the lowest (green) and highest (red) coefficients of the logistic regression model. The negative sign denotes
non-existence of residual disease and vice versa.

Table 3. Hyperparameter Search Space of Grid Search and Chosen Parameters.

Hyperparameter Search Space Chosen Hyperparameter Value

max_depth [4, 6, 8, 10] 4
n_estimators [500, 800, 1200] 500
learning_rate [.01, .03, .08] .01
colsample_bytree None 0.5

Figure 8. Explainability plots for the XGBoost classification model. The beeswarm feature impact plot (left) visualizes the relationship
between direction of model prediction and value of feature. The bar feature impact plot (right) shows the absolute impact of each feature on
model prediction.
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to the rather high AUROC of .86, which shows how surgeons
tend to capture more of the predictive information in their
words. This ‘hunch’ critically layered upon situational
awareness, and human factors have been addressed in our
previous study.13 The model specificity was higher than its
sensitivity, which is critical, should this be used as a cancer
screening tool for quality control. Reports of surgical findings
are less restrictive in vocabulary than other EHRs, but their
efficiency at scale has never been previously examined. They
do not usually contain highly complex sentence structures, so
they are not incorrectly abstracted as a result. By avoiding the
model to make assumptions, this advantage would potentially
explain the high-performance accuracy.

More importantly, we demonstrated a distinct pattern of
word differential expression between R0 resection and non-R0
resection operative notes from 555 surgical events. While
survival is the ultimate treatment outcome, prediction of re-
sidual disease is a key issue in the advanced EOC trajectory.
This disease quantification can valuably complement our
previous work using AI to predict EOC-specific surgical
outcomes13,17,25–27 and validate the paradigm shift towards
complete clearance to improve the survival outcomes of these
patients.13,35 The use of language in medicine is often un-
derestimated not that all Gynaecologic Oncology Surgeons
speak the same language.36 Historically, the quantification of
both peri-operative disease burden and post-operative residual
disease in advanced EOC was subject to significant intra- and
inter-observer variability, particularly in the case of miliary
peritoneal disease. While addressing the need to improve
standardization and reproducibility of surgical outcomes, we
made some interesting observations. Despite several words or
n-grams being commonly shared between examined surgical
outcomes, several descriptive words were found to be pre-
dictive of residual disease. For instance, the words ‘stuck’ and
‘adherent’ tend to describe a more complex and morbid
surgery; dissemination leading to residual disease was best
described by ‘(small volume) miliary disease’ or ‘miliary in all
peritoneal surfaces’. ‘Excellent response to chemo’ was
clearly an obvious indication to achieve R0 resection. Not
surprisingly, words demonstrating hepatobiliary involvement
were referring to those patients who had had macroscopically
complete resection of all visible tumours.37 Notably, the
‘completion of cytoreduction’ (CC) scoring system was de-
veloped to evaluate the extent of resection for peritoneal
malignancies.22 We clearly showed that the word ‘miliary’, if
quantified, rather refers to CC1 (residual disease nodules up to
2.5 mm in size) of the perhaps outdated Sugarbaker classi-
fication (PCI).22 We provide valid language evidence that the
CC score is more likely to give a convincing and reproducible
description of residual disease in EOC. In addition, the subtle
performance superiority of textual data when compared with
discrete surgical data can be also invoked. Going forward, data
integration between structured and unstructured formats can

promote innovative thinking to perfect the prediction of
surgical outcomes, offer important indications for the treat-
ment of patients and contribute to policies and clinical
guidelines with the goal of reducing the future risk of un-
necessary morbidity and mortality.38

The challenges of Machine Intelligence in healthcare have
been consistently addressed.39 Transfer learning requires a
close collaboration between clinicians and computer scien-
tists. Until that happens, the inherent resilience in these tools
will delay their widest adaptation.We anticipate the portability
of our RoBERTa algorithm across similar practice settings by
conducting original studies albeit we acknowledge the het-
erogeneous nature of the clinical language. Historically, lin-
guistic models are evaluated by perplexity, that is, the
probability of predicting the word in its context. Our study
used retrospective data from a single institution. On that note,
our data size was small-to-moderate, which entertains the
general wisdom that the fewer data feeds the model, the higher
the perplexity can get. Our important observations were made
in a tertiary referral center; hence, they might not be generally
applicable. We reiterate our strong preference for explainable
NLP methods,40 which has been showcased in this work.
Understanding the features that drive a model prediction can
potentially support decision-making in the healthcare domain.
As NLP is moving to deep learning, it is becoming increas-
ingly challenging for these complex non-linear data trans-
formations to satisfy transparency.41

The latest hype from the technological advancements in
large language models has been embraced with some
cautious excitement. Undoubtedly, AI-based chatbots en-
gage in a capacity to understand multiple languages and
possess knowledge of various topics. They can generate
fabricated information in healthcare settings word by
word.42 In ovarian cancer research, most efforts focus on
addressing the disease heterogeneity.43 It is likely that this
heterogeneity contains ‘special grammars’ that cannot be
distilled from simply vast amounts of pre-trained textual
data resources. Our work highlights the need for a bespoke,
proprietary ovarian cancer-specific natural language that
can pay attention to detail and learn beyond human
knowledge.

Conclusion

We applied a sui generis approach to extract the information
from the abundant textual surgical data through the use of an
NLP model utilizing transfer learning and demonstrated how
such tasks can be effectively modeled for the classification of
prediction important surgical tasks, such as R0 resection
following advanced EOC surgical cytoreduction. State-of-art
NLP applications in biomedical texts can improve modern
EOC care.

Laios et al. 9
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