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Abstract: Traffic forecasting has been an important area of research for several decades, with signifi-
cant implications for urban traffic planning, management, and control. In recent years, deep-learning
models, such as graph neural networks (GNN), have shown great promise in traffic forecasting due to
their ability to capture complex spatio–temporal dependencies within traffic networks. Additionally,
public authorities around the world have started providing real-time traffic data as open-government
data (OGD). This large volume of dynamic and high-value data can open new avenues for creating
innovative algorithms, services, and applications. In this paper, we investigate the use of traffic OGD
with advanced deep-learning algorithms. Specifically, we deploy two GNN models—the Temporal
Graph Convolutional Network and Diffusion Convolutional Recurrent Neural Network—to predict
traffic flow based on real-time traffic OGD. Our evaluation of the forecasting models shows that
both GNN models outperform the two baseline models—Historical Average and Autoregressive
Integrated Moving Average—in terms of prediction performance. We anticipate that the exploitation
of OGD in deep-learning scenarios will contribute to the development of more robust and reliable
traffic-forecasting algorithms, as well as provide innovative and efficient public services for citizens
and businesses.

Keywords: traffic flow forecasting; deep learning; graph neural networks; Artificial Intelligence; high-
value data; open-government data

1. Introduction

Traffic forecasting, which is an important component of intelligent transportation sys-
tems, assists policymakers and public authorities to design and manage transportation
systems that are efficient, safe, environmentally friendly, and cost-effective [1]. Traffic fore-
casts can be used to anticipate future needs and allocate resources accordingly, such as
managing traffic lights [2,3], opening or closing lanes, estimating travel time [4], and miti-
gating traffic congestion [5–7]. The prediction of future traffic states based on historical or
real-time traffic data can contribute to reducing the impact of negative effects on citizens
such as health problems brought on by air pollution, and economic costs such as increased
travel time spent, and wasted fuels, with a detrimental effect on both the environment and
the quality of citizens’ lives [8–11].

However, traffic forecasting is a challenging field due to the complex spatio–temporal
dependencies that occur in the road network. Literature usually exploits three types of tech-
niques to forecast future traffic conditions based on historical observations of traffic data;
(i) traditional parametric methods including stochastic and temporal methods (e.g., Autore-
gressive Integrated Moving Average—ARIMA [12]); (ii) machine learning (e.g., Support
Vector Machine [5]); and (iii) deep learning [11,13–15]. Artificial Intelligence approaches
outperform parametric approaches due to their ability to deal with large quantities of
data [16,17]. In addition, the parametric models fail to provide accurate results due to the
stochastic and non-linear nature of traffic flow [18].
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Recently, a significant number of research papers have explored the effectiveness of
deep-learning algorithms on urban traffic forecasting, especially graph neural networks
(GNNs) (e.g., [19–22]). These models manage to capture the complex topology of a road
network, by extending the convolution operation from Euclidean to non-Euclidean space,
while dynamic temporal dependencies are captured by the integration of recurrent units.

The rapid development of the Internet of Things (IoT) can significantly facilitate traffic
forecasting by providing data sources (e.g., sensors), which generate large quantities of
traffic data that can be analyzed to forecast the volume and density of traffic flow. Dynamic
(or real-time) data with traffic-related information (e.g., counted number of vehicles, av-
erage speed) that are generated by sensors have only recently started being provided as
open-government data (OGD) [23–25] available for free access and reuse. Dynamic OGD
are suitable for creating value-added services, applications and high-quality and decent
jobs, and are, hence, characterized as high-value data (HVD), with substantial societal,
environmental, and financial advantages [26]. However, collecting and reusing this type of
data requires addressing various challenges. For example, dynamic data are known for
their high variability and quick obsolescence and should, hence, be immediately available
and regularly updated to develop added-value services and applications. In addition,
a recent work [27] showed that dynamic traffic data confront major quality challenges.
These challenges are often caused by sensor malfunctions, e.g., brought on by bad climatic
conditions [28].

This paper aims to investigate the exploitation of traffic OGD using state-of-the-art
deep-learning algorithms. Specifically, we use two widely used and open-source GNN
algorithms, namely Temporal Graph Convolutional Network (TGCN) and Diffusion Con-
volutional Recurrent Neural Network (DCRNN), and real-time traffic data from the Greek
open-data portal to create models that accurately forecast traffic flow. The models forecast
traffic flow in three time horizons, i.e., in the next 3 (short-term prediction), 6 (middle-term
prediction), and 9 (long-term prediction) time steps (hours). The Greek data portal was
selected for this work since it provides an Application Programming Interface (API) to ac-
cess traffic data. We anticipate that the exploitation of OGD in deep-learning scenarios will
contribute towards both (a) the development of more robust and reliable traffic-forecasting
deep-learning algorithms and (b) the provision of innovative and efficient public services
to citizens and businesses alike.

The rest of this paper is organized as follows. Section 2 presents related work describ-
ing traffic-forecasting, deep-learning approaches, and graph neural networks for traffic
forecasting. Section 3 presents background knowledge regarding the two GNN algorithms
employed in this work. Thereafter, Section 4 describes in detail the specific steps followed
in this research. In addition, Sections 5 and 6 present the case study by first describing
the collection of the traffic data from the Greek open-data portal (Section 5), and the
pre-processing of the traffic data (Section 6), and then the creation and evaluation of the
forecasting model (Section 7). Finally, Section 8 discusses the results of this paper and
Section 9 concludes this paper.

2. Related Work

This section presents a review of the previous work in traffic forecasting, deep-learning
approaches, and graph neural networks for traffic forecasting to facilitate readers’ quick
understanding of the key aspects of this work.

2.1. Traffic Forecasting

Intelligent Transportation Systems (ITS) aim to improve the operational efficiency of
transportation networks by gathering, processing and analyzing massive amounts of traffic
information [29]. This information is produced by sensors (e.g., loop detectors), traffic
surveillance videos or Bluetooth devices that are in several control points of the transporta-
tion network such as roadways, highways, terminals, etc. In the rapid development of
intelligent transportation systems, traffic forecasting has been considered a very important
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and developing area for both research and business applications, with a large range of
published articles in the field [31]. Traffic forecasting is the process of estimating future
traffic states given a continuum of historical traffic data. Moreover, it is one of the most
challenging tasks among other time-series prediction problems because it involves huge
amounts of data that have both complex spatial and temporal dependencies. In the con-
text of traffic-forecasting problems, spatial dependencies of traffic time series, refer to the
topological information of the transportation network and its effects on adjacent or distant
traffic measurement points [32]. For instance, the traffic state in a particular location may
(or not) be affected by traffic on nearby roads. Furthermore, complex temporal dynamics
may include seasonality, periodicity, trend and other unexpected random events that may
occur in a transportation network, such as accidents, construction sites and weather.

Data-driven traffic-forecasting modeling has been at the center of transportation re-
search activity and efforts during the last three decades [1]. Most of the existing literature
focuses on the prediction of three main traffic states, namely traffic flow (vehicles/time
unit), average speed, and density (vehicles/distance). Many existing forecasting methods
consider temporal dependence based on classic statistics such as Autoregressive Integrated
Moving Average and its variants [33], and more complex machine-learning methods includ-
ing Support Vector regression machine method [34], K-nearest neighbor models [35,36],
and Bayesian networks [37]. Although both statistical and machine-learning models effec-
tively consider the dynamic temporal features of past traffic conditions, they fail to extract
spatial dependence.

2.2. Deep-Learning Approaches

Recently, the emerging development of deep-learning and neural networks has achieved
significant success in traffic-forecasting tasks [13,14]. To model the temporal non-linear
dependency, researchers proposed Recurrent Neural Networks (RNN) and their variants.
RNNs are deep neural network models that manage to adapt sequential data but suffer
from exploding and vanishing gradients during back propagation [38]. To mitigate these
effects during training of such models, numerous research studies proposed alternative
architectures based on RNNs, such as Long Short Memory networks (LSTM) and Gated Re-
current Units (GRU) [39–41]. These variants of RNNs use gated mechanisms to memorize
long-term dependencies in sequence-based data including historical traffic information [42].
Their structure consists of various forget units that determine which information could
be excluded from the prediction output, thus determining the optimal time windows [40].
GRUs are similar architectures to LSTMs, but they have a simpler structure being computa-
tionally efficient during training and their cells consist of two main gates, namely the reset
gate and the update gate [40]. Similar to the traditional statistical and machine-learning
models, the recurrent-based models ignore the spatial information that is hidden in traffic
data, failing to adapt the road network topology. To this end, many research efforts fo-
cused on improving the prediction accuracy by considering temporal, as well as spatial
features. An approach to capture the spatial relations among the traffic network is the use
of convolutional neural networks (CNNs) combined with recurrent neural networks (RNN)
for temporal modeling. For example, Ref. [43] proposed a 1-dimension CNN to capture
spatial information of traffic flow combined with two LSTMs to adapt short-term variability
and various periodicities of traffic flow. Another attempt to align spatial and temporal
patterns is made by [44], proposing a convolutional LSTM that models a spatial region with
a grid, extending the convolution operations applied on grid structures (e.g., images). Fur-
thermore, Ref. [45] deployed deep convolutional networks to capture spatial relationships
among traffic links. In this study the network topology is represented by a grid box, where
near and far dependencies are captured at each convolutional operation. These spatial
convolutions are then combined with LSTM networks that adapt temporal information.

In recent years, a significant amount of research papers have focused on embedding
spatial information into traffic-forecasting models [14,21]. However, methods that use
convolutional neural networks (CNNs) are limited to cases where the data have a Euclidean
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structure, thus they cannot fully capture the complex topological structure of transportation
networks, such as subways or road networks. Graph Neural Networks (GNNs) have become
the frontier of deep-learning research in graph representation learning, demonstrating state-
of-the-art performance in a variety of applications [46]. They can effectively model spatial
dependencies that are represented by non-Euclidean graph structures. To this end, they
are ideally suited for traffic-forecasting problems because a road network can be naturally
represented as a graph, with intersections modeled as graph nodes and roads as edges.

2.3. Graph Neural Networks for Traffic Forecasting

Deep-learning algorithms including convolutional neural networks (CNNs) and re-
current neural networks (RNNs) have significantly contributed to the progress of many
machine-learning tasks such as object detection, speech recognition, and natural language
processing [47–49]. These models can extract latent representations from Euclidean data
such as images, audio, and text. For example, an image can be represented as a regular
grid in Euclidean space, where a CNN can extract several meaningful features by identify-
ing the topological structure of the image. Although neural networks effectively capture
hidden patterns in Euclidean data, they cannot handle the arbitrary structure of graphs or
networks [50]. There is an increasing number of applications where data are represented as
graphs, such as social networks [51], networks in physics [52], and molecular graphs [53].
Traffic graphs are constructed based on traffic sensor data where each sensor is a node and
edges are connections (roads) between sensors.

A traffic graph is defined as G = (V, E, A), where V is the set of nodes that contains
the historical traffic states for each sensor, E is the set of edges between nodes (sensors)
and A the adjacency matrix. Recently, numerous graph neural network models have
been developed in the traffic-forecasting domain, which effectively consider the spatial
correlations between traffic sensors. They also integrate different sequence-based models,
leveraging the RNN architecture to model the temporal dependency.

Graph Convolutional Networks (GCN) are variants of convolutional neural networks
that operate directly on graphs [19,54] defining the representation of each node by ag-
gregating features from the adjacent nodes. Graph convolutions play a central role in
many GNN-based traffic-forecasting applications [20,55–57]. For example, Ref. [58] pro-
posed the Spatio–Temporal Graph Convolutional Network model that introduces a graph
convolution operator using spectral techniques by computing graph signals with Fourier
transformations. In this study, researchers propose two spatio–temporal convolutional
blocks by integrating graph convolutions and gated temporal convolutions to accurately
predict traffic speed outperforming other baseline models. Moreover, Ref. [22] proposed
the Temporal Graph Convolutional Network that also uses graph convolutions and spectral
filters to acquire the spatial dependency while temporal dynamics are captured using
the gated recurrent unit. In this study [54] authors proposed Graph WaveNet, a GNN
model that captures spatial dependencies with graph convolutions and the construction of
an adaptive adjacency matrix that learns spatial patterns directly from the data. Another
technique that models spatial dependency initially proposed by [59], defines convolution
operations as a diffusion process for each node in the input graph. Towards this direction,
diffusion convolutional recurrent neural network (DCRNN) [60] manages to capture traffic
spatial information using random walks in the traffic graph, while temporal dependency is
modeled with an encoder-decoder RNN technique.

Besides the mentioned spatio–temporal convolutional models, there has been an in-
creased interest in attention-based models in traffic-forecasting problems. Attention mecha-
nisms are originally used in natural language processing, speech recognition, and computer
vision tasks. They are also applied on graph-structured data as initially suggested by [57] as
well as time-series problems [61]. The objective of the attention mechanism is to select the
information that influences the prediction task most. In traffic forecasting, this information
may be included in daily periodic or weekly periodic dependencies. For example, the
authors in [62] deployed the Attention-Based Spatial–Temporal Graph Convolutional Net-
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work (ASTGCN) that simultaneously employs spatio–temporal attention mechanisms and
spatial graph convolutions along with temporal convolutions for traffic flow forecasting.
Towards this direction, there are many attention-based GNNs considered in the literature
that accurately predict traffic states, being suitable for traffic datasets as they manage to
assign larger weights to more important nodes of the graph [63–66].

3. Background

This section presents the background knowledge on the two types of graph neural
network (GNN) algorithms that are employed in this work to forecast traffic flow, namely
Temporal Graph Convolutional Networks (TGCN) and Diffusion Convolutional Recur-
rent Neural Networks (DCRNN). All notations and symbols utilized in this study are
comprehensively listed in Table A1 of the Appendix A.

3.1. Temporal Graph Convolutional Network

In dynamic data produced by sensors, the Temporal Graph Convolutional Network
(TGCN) algorithm [22] uses graph convolutions to capture the topological structure of the
sensor network to acquire spatial embeddings of each node. Then the obtained time series
with the spatial features are used as input into the Gated Recurrent Unit (GRU), which
models the temporal features. The graph convolution encodes the topological structure
of the sensor network and defines the spatial features of a target node also obtaining the
attributes of the adjacent sensors. Following the spectral transformations of graph signals
as proposed by [22,58,67,68], two graph convolution layers are defined as:

f0(X, A) = Relu(W0(D−1/2 ÂD−1/2)X), (1)

f1(X, A) = σ(W1(D−1/2 ÂD−1/2) f0), (2)

where X is the feature matrix with the obtained traffic flows, A is the adjacency matrix,
W0, W1 are the learnable weight matrices in the first and second layers, D is the degree
matrix, Â = A + IN is the self-connection matrix, and σ(), Relu() represent the non-linear
activation functions.

The output of the spatial information is fed into a GRU network [22]. The gated unit
captures temporal dependency by initially calculating the reset gate rt and update gate ut,
which are then fed in a memory cell ct. The final output of the unified spatio–temporal
block ht at time t takes as input the hidden traffic state at time t− 1 updating the current
information with the previous time step, along with the current traffic information:

ht = ut ∗ ht−1 + (1− ut) ∗ ct (3)

3.2. Diffusion Convolutional Recurrent Neural Network

The Diffusion Convolutional Recurrent Neural Network (DCRNN) algorithm [60]
uses a different graph convolution approach to model spatial dependencies. The model
captures spatial information using a diffusion process by generating random walks on
sensor graph G with a restart probability a ∈ [0, 1]. In summary, the diffusion convolution
over a graph signal x as presented by the authors of DCRNN is defined as follows:

f ∗ x =
K

∑
k=0

(θk,1(D−1
0 A)k + θk,2(D−1

I Aτ)k)x (4)

where k is the diffusion step, D−1
0 A, D−1

I Aτ denote the transition and reverse matrices of
the diffusion process, respectively, and θk are the parameters of the filter.

For the modeling of temporal dynamics, the framework also adapts the GRU archi-
tecture using an encoder-decoder method. Precisely, the historical traffic states are fed
into the encoder and the decoder is responsible for the final prediction of the model. Both
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encoder and decoder combine the diffusion convolutions along with the GRUs, while the
architecture of GRU is similar to the TGCN implementation.

4. Research Approach

The research approach of this work uses four steps, namely (1) data collection (Section 4.1);
(2) data pre-processing (Section 4.2); (3) forecasting model creation (Section 4.3); and (4) fore-
casting model evaluation (Section 4.4). Python was used throughout the entire approach.

4.1. Data Collection

In this step available traffic data from data.gov.gr (accessed on 27 March 2023) are
collected using the data.gov.gr (accessed on 27 March 2023) API. These data have been pro-
duced by sensors that are positioned in the Attica region in Greece. In addition, the position
of the sensors is specified and mapped to latitude and longitude geographic coordinators.

4.2. Data Pre-Processing

This step aims to prepare the dataset for being used as an input for the creation of
the two GNN models. Specifically, observations coming from unreliable sensors as well
as anomalous observations are identified and removed. Towards this end, this step first
explores the InterQuartile Range (IQR) of the vehicles measured by each sensor. IQR
measures the spread of the middle half of the data by calculating the difference between the
first and third quartiles and can help identify abnormal behaviors of sensors (e.g., sensors
that repeatedly generate similar values). The first quartile (Q1), is the value in the data set
that holds 25% of the values below it, while the third quartile (Q3), is the value in the data
set that holds 25% of the values above it. IQR is then calculated as follows:

IQR = Q3 −Q1 (5)

Thereafter, the missing observations of the dataset are identified. Missing observations
are common in traffic data since they are dynamic data collected by sensors due to reasons
such as failures of sensors, network faults, and other issues. Missing observations from the
traffic data are identified and analyzed based on two dimensions; (i) the time dimension,
where missing observations per day are calculated, and (ii) the sensors, where the total
number of missing values per sensor is calculated. For the first case, the number of available
observations is found and then subtracted from the number of observations that should be
available for all sensors. For the second case, statistical analyses are employed to explore the
distribution of the sensors’ missing observations. Observations generated by sensors with
large quantities of missing observations are removed. Finally, in this step, the anomalies
per sensor are calculated. Specifically, we use the flow-speed correlation analysis to find
anomalies in the measurements of the data. This kind of analysis relies on the fact that the
number of vehicles counted by a sensor and their average speed are strongly correlated.
Specifically, considering that each sensor measures data that pass from one or more lanes,
the maximum number of vehicles that can pass in all lanes in one hour can be calculated
as [69]:

number_o f _vehicles =
average_speed ∗ 1000

average_vehicle_length +
average_speed

3.6

∗ number_o f _lanes (6)

where average_speed is the average speed provided by the sensors measured in km per
hour and average_vehicle_length is the average length of the different types of vehicles,
the fraction average_speed/3.6 represents the “safe driving distance” that should be kept
between vehicles and is based on the vehicle speed, and number_of_lanes is the number of
lanes in the road each sensor is positioned. The value of average_vehicle_length is set to 4.
When the number of vehicles measured by a sensor in an hour is higher than this value,
then the measurement is considered an anomaly and is removed from the dataset.

https://data.gov.gr/
https://data.gov.gr/
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4.3. Forecasting Model Creation

This work uses two types of widely used and open-source GNN algorithms to fore-
cast traffic flow, namely Temporal Graph Convolutional Network (TGCN) and Diffusion
Convolutional Recurrent Neural Network (DCRNN). The two forecasting GNN models are
created based on the preprocessed dataset of the previous step. Towards this end, the input
traffic flow data are normalized to the interval [0, 1] using the min-max scaling technique.
Moreover, the missing values are imputed using linear interpolation. In addition, 70% of
the data are used for training, 20% for testing, and 10% for validation. The training and
validation parts of the dataset were used to train and fine-tune the two GNN models, while
the test part was to evaluate the created models. For each model, an adjacency matrix of the
sensor graph is created based on the distances dij between the 406 sensors similar to most

related studies using thresholded Gaussian kernel. Aij = 1 if exp(−
d2

ij
σ2 ) >= ε, otherwise

Aij = 0. σ2, ε are thresholds that determine the distribution and sparsity of the matrix and
are set to 10 and 0.5, respectively. The proposed algorithms use 12 past observations to
forecast traffic flow in the next 3 (short-term prediction), 6 (middle-term prediction), and 9
(long-term prediction) time steps (hours). The created models were fine-tuned to determine
the optimal values of the hyperparameters.

4.4. Forecasting Model Evaluation

The performance of both the created forecasting models was measured using three
metrics, namely Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). These metrics are computed as follows:

RMSE =

√
1
n

n

∑
i=1

(yt − ŷt)2 (7)

MAE =
1
n

n

∑
i=1
|yt − ŷt| (8)

MAPE =
1
n

n

∑
i=1

|yt − ŷt|
yt

∗ 100 (9)

where yt denotes the real traffic flow and ŷt the corresponding predicted value.
Thereafter, the performance of the models was compared against the performance of

two baseline models, i.e., Historical Average (HA) and Autoregressive Integrated Moving
Average (ARIMA) that were created using the same dataset.

5. Data Collection

Data.gov.gr is the official Greek data portal for open-government data (OGD). The lat-
est intorsion of the data portal was released in 2020 and provides access to 49 datasets
published by the central government, local authorities, or other Greek public bodies classi-
fied in ten thematic areas including environment, economy, and transportation.

The major update and innovation of the latest version of the Greek OGD portal was
the introduction of an Application Programming Interface (API) that enables accessing
and retrieving the data through either a graphical interface or code. The API is freely
provided and can be employed to develop various products and services including data
intelligence applications. Acquiring a token is needed to use the API by completing a
registration process. This process requires providing personal information (i.e., name,
email, and organization) as well as the reason for using the API.

The introduction of the API enables the timely provision of dynamic data that are
frequently updated. The API can be used, for example, to retrieve datasets describing data
related to a variety of transportation systems (e.g., road traffic for the Attica region, ticket
validation of Attica’s Urban Rail Transport, and route information and passenger counts of
Greek shipping companies). The frequency of data update varies.

https://data.gov.gr/
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The traffic data for the Attica region in Greece were collected from traffic sensors,
which periodically transmit traffic information regarding the number of vehicles on specific
roads of Attica along with their speed. The data are hourly aggregated to avoid raising
privacy issues. Data are updated hourly with only one hour delay.

We used the API provided by data.gov.gr and collected 1,311,608 records for five
months, specifically, from 2 August 2022 to 17 December 2022 (138 days). Figure 1 presents
a snapshot of the traffic data. Each record includes (a) the unique identifier of the sen-
sor (“deviceid”) (e.g., “MS834”); (b) the road in which the sensor is located along with
(“road_name”); (c) a detailed text description of its position (“road_info”); (d) the date
and time of the measurement (“appprocesstime”); (e) the absolute number of the vehicles
detected by the sensor during the hour of measurement (“countedcars”); and (f) their
average speed in km per hour (“average_speed”). The exact position of the sensor is a text
description in Greek language and usually provides details including whether the sensor is
located on a main or side road, or on an exit or entrance ramp, the direction of the road (e.g.,
direction to center), and the distance to main roads (e.g., “200 m from Kifisias avenue”).

Figure 1. A snapshot of the traffic data from data.gov.gr.

6. Data Pre-Processing

The traffic data that were retrieved by the Greek open-data portal were produced by
428 sensors. We manually translated the text description of the position of the sensors
to latitude and longitude geographic coordinators to be able to present data in a map
visualization. Specific position details are missing for one sensor (i.e., the sensor with
identifier “MS339”) making it impossible to find its exact coordinates. The sensors are
positioned on 93 main roads of the region of Attica.

We then calculated the InterQuartile Range (IQR) of the counted vehicles measured by
each sensor to understand the spread of the values. The IQR for each sensor ranges from 0
to 2985.5, while the mean IQR is 826.46. There are eight sensors with IQR equal to 0, which
reveals an abnormal behavior since it means that the first and third percentiles are the same
and that all the measurements of these sensors are very similar.

Thereafter, we searched for observations that are missing from the traffic data based
on two dimensions; (i) the time, where we calculate the missing values per day; and
(ii) the sensors, where the missing values per sensor are calculated. Given all the sensor
measurements collected and that the traffic data are hourly aggregated, the total number
of observations that would have been made by the 428 sensors over the course of the
138 days would be 1,417,536. However, 105,928 observations (or 7.47%) are missing. This
number is significantly better than the 20.16% of missing values we discovered in our
earlier work that analyzed traffic data collected from data.gov.gr from November of 2020 to
June of 2022 [27]. Figure 2 presents the number of missing observations per day for the two
different time periods.

https://data.gov.gr/
https://data.gov.gr/
https://data.gov.gr/
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(a) (b)

Figure 2. Number of observations that are missing per day for: (a) 2 August 2022 to 17 December
2022; and (b) 5 November 2020 to 31 June 2022.

We also calculate the percentage of missing observations for each sensor from 2 August
2022 to 17 December 2022. The median percent of missing observations is 33.1% meaning
that half of the sensors have less than or equal percentages of missing observations to
the median, and half of the sensors have greater than or equal percentages of missing
observations to it. The 50% of the sensors have a percentage of missing observations in
the range 3–5% (interquartile range box). In addition, according to the whiskers of the
boxplot (bottom 25% and top 25% of the data values, excluding outliers), the percentage of
missing observations of each sensor may be as low as 3% and as high as 7%. Furthermore,
the absolute majority of the sensors (i.e., 85.5%) have less than 10% missing observations.
Finally, only five sensors have more than 90% of missing observations and 22 sensors have
more than 25% missing values. For the creation of the forecasting models we removed
these 22 sensors.

Furthermore, we calculate the number and percentages of anomalies per sensor based
on the flow-speed correlation analysis described in Section 3. In order to be able to calculate
the number of vehicles that can pass in all lanes, we manually found the number of lanes
that each sensor tracks and mapped them to the records. We discovered only 58 records
generated by 26 sensors that count more vehicles than the number calculated by the flow-
speed correlation analysis. This number is significantly lower compared to the 59.4% of
anomalies found in our earlier work. These anomalous measurements relate to only 18 days,
which is also a significant improvement related to the analysis of the traffic data from earlier
dates when anomalies were generated almost throughout the entire time period. We also
calculated the number of anomalies per sensor. This number ranges from 0 to 23 anomalies,
while the mean number of detected anomalies per sensor is 0.13 anomalies. In order to
create the forecasting model, anomalous observations were removed from the dataset.

7. Forecasting Traffic Flow

The creation and evaluation of the forecasting GNN models are based on the pre-
processed dataset of the previous step. Specifically, 1,354,416 observations generated by
406 sensors were used to create the Temporal Graph Convolutional Network (TGCN) and
Diffusion Convolutional Recurrent Neural Network (DCRNN) models and evaluate them
against two baseline models, i.e., Historical Average (HA) and Autoregressive Integrated
Moving Average (ARIMA).

Table 1 presents the results of the fine-tuning for both GNN models. More precisely,
the learning rate is set to 0.001 for both GNN algorithms as well as a batch size of 50.
The training process is deployed using the Adam optimizer for both algorithms. TGCN is
trained for 100 epochs and DCRNN for 200 epochs. For the TGCN algorithm the graph
convolution layer sizes are set to 64 and 10 units, respectively, while the two GRU layers
consist of 256 units. Regarding DCRNN both the encoder and decoder consist of two
recurrent layers with 64 units each. Following the paper definition, the maximum steps K
of random walks on the graph for the diffusion process is set to 3.
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Table 1. Optimal hyper-parameter values for the two forecasting models.

TGCN DCRNN

Learning rate 0.001 0.001

Batch size 50 50

Epochs 100 200

GCN layer sizes (1st/2nd layer) 64/10 -

GRU layer sizes (1st/2nd layer) 256/256 64/64

max steps of random walks - 3

The performance of the GNN-based algorithms is compared with the performance of
two baseline methods: Historical Average (HA) and Autoregressive Integrated Moving
Average (ARIMA). Table 2 shows the comparison of the performance of different algorithms
for three forecasting horizons. All the error metrics are calculated by computing the mean
error of each sensor and then averaging it over all 406 sensors. Thus, the evaluation
metrics presented in Table 2 represent the overall prediction performance of the proposed
algorithms considering the three error metrics among the three forecasting horizons.

Table 2. Performance comparison for GNN and baseline models on the Greek OGD dataset.

Forecasting Horizon Metric HA ARIMA TGCN DCRNN

3

RMSE 757.58 534.51 222.2 244.58

MAE 556.35 466.47 125.12 151.10

MAPE 7.06% 4.33% 3.98% 6.39%

6

RMSE 757.58 582.33 260.42 331.04

MAE 556.35 501.13 146.73 212.52

MAPE 7.06% 7.02% 3.96% 7.664%

9

RMSE 757.58 690.12 267.88 398.31

MAE 556.35 589.98 156.06 263.54

MAPE 7.06% 6.98% 4.01% 7.8%

Specifically, the two GNN algorithms that emphasize the modeling of spatial depen-
dence perform better in terms of prediction precision compared to the baselines. The results
show that the TGCN algorithm outperforms all the other methods regarding all the error
metrics for all prediction horizons. For the 3 time steps forecasting horizon, the RMSE error
of TGCN and DCRNN is decreased by 58.42% and 54.24% compared with ARIMA model,
respectively, and by 70.66% and 67.77% compared with HA. Although the error metrics
of all models are increased towards the 6 and 9 time steps horizons, GNN models main-
tain better prediction results compared with the baselines. To verify which GNN model
captures more effectively the spatial–temporal dependencies of traffic flow, we compare
the results of TGCN and DCRNN. According to Table 2, the TGCN model demonstrates
the best prediction performance among all prediction steps, being able to capture not only
short-term, but also long-term spatial–temporal dependencies of the traffic network. This
indicates that, for the specific case study, where the traffic flow measurements come from
an urban environment where sensors are located close to each other, the graph convolution
operation of TGCN captures the complex topology of the sensor network better than the
diffusion process of the DCRNN model. Since both models use a similar architecture to
model the temporal traffic information with gated recurrent units (GRUs), TGCN effectively
captures the spatial dependencies of traffic flows that are obtained from a dense, complex
sensor network.

To diagnose the behavior of the proposed models, we created two learning curves (per
model) that are calculated based on the metric by which the parameters of the model are
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optimized, in our case the loss function. To this end, a training learning curve, which is
calculated from the loss of the training dataset, and a validation curve, which is calculated
from the validation dataset were created. Figure 3 depicts the learning curves of the two
GNN models with the number of training epochs in x-axis and scaled MAE in y-axis.
TGCN algorithm achieves the lowest validation and training error suggesting superior
performance during the training process. Moreover, both validation and training losses
regarding the two models, decrease to a point of stability. In addition, Figures 4 and 5 show
visualization results of the two GNN algorithms for the 3 h forecasting horizon, for sensors
MS109 and MS985, between 16 December 2022 and 17 December 2022. It is observed that
TGCN predicts traffic flow slightly better than DCRNN, specifically in high peaks of traffic
flow. Therefore, TGCN is more likely to accurately predict abrupt changes in the traffic flow.

(a) (b)
Figure 3. Learning curves with training and validation error for: (a) Temporal Graph Convolutional
networks (TGCN), and (b) Diffusion Convolutional Recurrent Neural Network (DCRNN).

(a) (b)
Figure 4. Visualizations of prediction results for the forecasting horizon of 3 h for sensor MS109:
(a) Temporal Graph Convolutional networks (TGCN), and (b) Diffusion Convolutional Recurrent
Neural Network (DCRNN).

(a) (b)
Figure 5. Visualizations of prediction results for the forecasting horizon of 3 h for sensor MS985:
(a) Temporal Graph Convolutional networks (TGCN), and (b) Diffusion Convolutional Recurrent
Neural Network (DCRNN).
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8. Discussion

Traffic forecasting is a crucial component of modern intelligent transportation systems,
which aim to improve traffic management and public safety [39,70,71]. However, it remains a
challenging problem, as several traffic states are influenced by a multitude of complex factors,
such as the spatial dependence of intricate urban road networks and complex temporal
dynamics. In the literature, many studies have employed graph neural networks (GNNs)
which have achieved state-of-the-art performance in traffic forecasting due to their pow-
erful ability to extract spatial information from non-Euclidean structured data commonly
encountered in the field of mobility data. The complex spatial dependency of traffic networks
can be captured using graph convolutional aggregators on the input graph, while temporal
dynamics can be extracted through the integration of recurrent sequential models.

Accessing historical traffic data is essential for deploying models in traffic forecasting. How-
ever, obtaining such data can be challenging due to privacy concerns, transmission, and storage
restrictions. Most research studies on traffic forecasting using GNNs [19,20,22,58,60,62,65,66]
have used open traffic data that are already cleansed and preprocessed, including METR-
LA, a traffic speed dataset from the highway system of Los Angeles County containing
data from 207 sensors during 4 months in 2012 preprocessed by [60], and Performance
Measurement System (PeMS) Data (https://pems.dot.ca.gov/(accessed on 3 January 2023))
consisting of several subsets of sensor-generated data across metropolitan areas of Califor-
nia. Although these datasets are often used for benchmarking and comparing the prediction
performance of various models, it is important to note that they may not reflect current
traffic patterns. This is because traffic data are collected from a past period (e.g., in the case
of METR-LA from 2012) and a specific geographical area, such as a highway system, rather
than a densely populated urban environment, as typically found in cities.

In recent years, governments and the public sector have started to publish dynamic
open-government data (e.g., traffic, environmental, satellite, and meteorological data)
freely accessible and reusable on their portals [23–25]. This type of data can potentially
facilitate the implementation of innovative machine-learning applications [72,73], including
state-of-the-art algorithms in traffic forecasting. For instance, the Swiss OGD (https://
opentransportdata.swiss/en/ (accessed on 1 November 2022)) portal provides real-time
streaming traffic data that is updated every minute. The significance of dynamic open-
government data for the deployment of graph neural networks (GNNs) in traffic forecasting
cannot be overstated. First, these data sources are open and easily accessible through
Application Programming Interfaces (APIs), enabling researchers to retrieve the necessary
traffic information without undergoing procedures that include restricted authorization
protocols. Furthermore, these data sources are often updated in real time, providing up-to-
date traffic information for analysis and prediction. Second, the availability of such data
allows for the evaluation and experimentation of relevant GNN models that are currently
applied on commonly used benchmarking preprocessed datasets. Therefore, the use of
dynamic open-government data has the potential to enhance the accuracy and efficiency of
GNN-based traffic-forecasting models.

In this study, two well-known GNN variants, namely Temporal Graph Convolutional
Networks (TGCN) and Diffusion Convolutional Recurrent Neural Networks (DCRNN),
were used to forecast traffic flow. Specifically, the models were trained on the Greek OGD
dataset, and following related literature, 12 past observations, equivalent to 12 past hours,
were used to predict traffic flow in the next 3, 6, and 9 h. Before deploying the two models,
the OGD traffic dataset underwent pre-processing to address missing observations and
anomalies. As a result, sensors with more than 25% missing values and traffic observations
detected as anomalies through flow-speed correlation analysis were excluded from the
experiments. To model the network topology, a 406× 406 adjacency matrix was created
based on pairwise distances between traffic sensors.

Both GNN models achieved better prediction performance across all prediction hori-
zons and among all error metrics (RMSE, MAE, MAPE) compared with the two baseline
models. Overall, TGCN achieves the best prediction results compared with DCRNN and

https://pems.dot.ca.gov/
https://opentransportdata.swiss/en/
https://opentransportdata.swiss/en/


Information 2023, 14, 228 13 of 17

baselines. For this specific case study, TGCN captures spatial dependencies using graph
convolutions from spectral theory, outperforms the DCRNN model that on the other hand,
and captures spatial information using bidirectional random walks on the sensor graph
with a diffusion process. In summary, both GNN-based models manage to efficiently cap-
ture the topological structure of the sensor graph, as well as complex temporal dynamics
compared with traditional baselines that only handle time-related features (HA, ARIMA).

The traffic data used to forecast traffic flow in the region of Attica were retrieved by the
Greek data portal using the provided API. The data include traffic measurements for the
time period 2 August 2022 to 17 December 2022. The exploration of the data showed that
the major quality difficulties, including a lot of missing observations as well as anomalous
observations, found in the authors’ earlier research [27] have been resolved to a large extent.
As a result, these data can be used as a trusted source to make accurate predictions and,
thereafter, take informed decisions.

9. Conclusions

The findings of this study demonstrate that open-government data (OGD) is an in-
valuable resource that can be leveraged by researchers to develop and train more advanced
graph neural network (GNN) algorithms. However, the performance of GNNs is highly
dependent on the quality and quantity of the data on which they are trained. OGD provides
a unique opportunity for researchers to access vast amounts of data from various sources.
These data can be used to train GNN models to generalize across a broad range of traffic
datasets, resulting in more accurate predictions. Furthermore, the availability of OGD from
multiple countries and governments can enable the development of more comprehensive
models that can be used to forecast traffic patterns in different regions and under varying
conditions. Finally, most studies in the field of traffic forecasting use historical traffic data
on small intervals, typically 5 or 15 min. However, this study focuses on the case of the
Greek OGD traffic data, which stores traffic data in one-hour intervals. To this end, we plan
to conduct further research in dynamic data from other OGD portals that contain datasets
of higher quality and smaller aggregated time intervals. In any case, we believe that by
continuing to investigate the potential of OGD datasets, will advance the field of traffic
forecasting and contribute to the development of more accurate and comprehensive models
for predicting traffic patterns.
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ARIMA Autoregressive Integrated Moving Average
HA Historical Average
SVR Support Vector Regression
KNN K-Nearest Neighbor
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
LSTM Long Short Memory
CNN Convolutional Neural Network
GCN Graph Convolutional Network
TGCN Temporal Graph Convolutional Network
DCRNN Diffusion Convolutional Recurrent Neural Network
ASTGCN Attention-based Spatial–Temporal Graph Convolutional Network
IQR InterQuartile Range
RMSE Root Mean Squared Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error

Appendix A

Table A1. Table of notations and symbols used in this paper.

Notation Description

G A graph

V The set of nodes of a graph V = {v1, v2, . . . , vn}
E The set of edges of a graph E = {(vi, vj)|vi, vj ∈ V}
A The adjacency matrix of a graph

Â, IN Self-connection adjacency matrix and Identity matrix

D The degree matrix

X The feature matrix consisting of historical traffic flows

f0, f1 First and second graph convolutional layers

W0, W1 Weight matrices of first and second layers

σ A non-linear activation function

ReLu The Rectified Linear Unit for an input x: ReLu(x) = max(0, x)

ht, ht−1 The output layer of a recurrent unit at time t, t− 1

rt, ut The reset and update gates of a GRU at time t

ct The memory cell of a GRU at time t

f ∗ x A diffusion convolution f over a graph signal x

θk The parameters of a diffusion convolutional layer

DI , DO Input and output degree matrices of the DCRNN model

IQR the discrepancy between the 75th and 25th percentiles of the data Q3 −Q1
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