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Abstract. This work deals with redesigning business process models,
e.g., in BPMN, based on cost-based optimization techniques that were
initially proposed for data analytics workflows. More specifically, it dis-
cusses execution cost and cycle time improvements through treating busi-
ness processes in the same way as data-centric workflows. The presented
solutions are cost-based, i.e., they employ quantitative metadata and
cost models. The advantage of this approach is that business processes
can benefit from recent advances in data-intensive workflow optimization
similarly to the manner they nowadays benefit from additional data an-
alytics areas, e.g., in the area of process mining. Concrete use cases are
presented that are capable of demonstrating that even in small, more con-
servative cases, the benefits are significant. The contribution of this work
is to show how to automatically optimize the model structure of a given
process in terms of the ordering of tasks and how to perform resource al-
location under contradicting objectives. Finally, the work identifies open
issues in developing end-to-end business process redesign solutions with
regards to the case studies considered.

1 Introduction

Modern Business Processes (BPs) constitute a key part of businesses and their
modeling, execution and evolution are critical aspects in Business Process Man-
agement (BPM). The BPM is defined as a body of methods, techniques and tools
to discover, analyze, redesign, execute and monitor these business processes [17].
In such a context, a fundamental role of BPM is to adapt business functions to
the requirements of each business’s customer, allocate efficiently the business re-
sources, target at both improving the quality of services delivered while keeping
the cost low, keep the processes as simple and flexible as possible, and so on. In
order to fulfill these demanding and often contradicting business requirements,
the behavior of business processes is closely monitored after their deployment, so



as to gain insights that were unknown at design time. Such information can be
used for adapting the process’s design to improve if not optimize its efficiency.

The optimization of the BPs, as considered in this work, refers to (incremen-
tal) BP redesign, which is an essential part of BPM lifecycle and a necessary
action to ensure the best schedule, coordination and execution of business ac-
tivities [23]. We assume that it is trivial to design an initial BP model, which
is then frequently refined to optimize certain metrics and/or adapt to changing
conditions. The re-ordering of the BPs’s tasks and re-allocation of the available
resources are key examples of BP optimization actions. Nevertheless, up to date,
these optimization actions are applied mostly manually based on the experience
of the business users and the help of BPMN software tools [3, 4, 2, 1], which do not
support fully-automated optimization solutions and require human interaction.
Consequently, there is a demanding need to introduce automated optimization
solutions, where automation covers not only the monitoring of the process and
the identification of an issue but also the modification of the process model
structure, such as changing the order in which tasks are placed in the model
and executed. The aim of this work is to introduce techniques for automated
BP optimization inspired by a set of well-investigated algorithms proposed for
data-centric workflow optimization [30,27,26]. This is aligned to several recent
attempts to further blend advanced data analytics with business processes [44].
More specifically, in this work, it is demonstrated how to automatically optimize
the task ordering, thus modifying the model structure of a given process, and
how to perform resource allocation under contradicting objectives.

BP redesign is a well investigated area; nevertheless, it is mostly based on
heuristics (see Appendix in [17] for a complete list) with a lack of automated
optimization solutions [52] that can be directly run on initial model structures.
BP redesign covers both evolutionary and revolutionary approaches (see Ch. 8
in [17]); our work fits better the evolutionary paradigm, where we restructure an
existing process model or we perform resource allocation in an informed manner.
Cost-based optimization solutions for BPs have been explored but they are in-
complete from the algorithmic point of view and inferior to those in the area of
optimization of data-centric workflows [42,29]. An example that we particularly
deal with in this work concerns ordering knock-out tasks, i.e., tasks that may
lead to immediate process termination; in this context, to minimize total cost,
the underpinnings of the works in [5] (regarding BPs) and [26] (regarding work-
flows for data analytics) are the same; however, the latter goes one step beyond
and provides a more complete algorithmic solution in that it takes into account
a broader range of workflows containing additional tasks apart from knock-out
ones and arbitrary dependency constraints between them, as is the norm.

Before delving into details, it is important to distinguish between the mean-
ing of the term “data flow” in the different communities. In the broader data-
management community, data flows denote data-centric workflows, e.g., as sup-
ported by modern tools, such as Apache Spark [55]. However, in business pro-
cesses, data flow is used as complementary to control flow: the former empha-
sizes on the artifacts, such as documents, required to perform a task, whereas



the latter indicates when tasks and events should occur [17]. Our work advo-
cates leveraging advances in data-centric workflows to optimize the control flow
of BPs; optimizing the data flow in BPs. e.g., as in [25], is a complementary area
to our proposal.

The optimization of BPs may consider multiple critical objectives, such as
the minimization of the economic and time cost ensuring that the quality of
service is high. Other examples of optimization objectives are the response time
and the resource utilization. Similarly, the means to improve on these metrics
vary: from dropping unnecessary tasks to reordering tasks and modifying the
resource allocation. In this work, we will focus on automated BP optimization
considering multi-criteria improvement, such as the minimization of execution
cost and cycle time of BPs using a principled approach to investigating alterna-
tive task orderings and task allocation solutions. The contribution of this work is
to present complete solutions and anticipated benefits to the problem of reorder-
ing knock-out tasks and modifying the allocated resources to business processes,
and finally, understanding better the issues involved in coupling BP redesign
and data-centric workflow optimization more tightly.

The structure of the manuscript is described as follows. We present the re-
lated work of optimizing BPMN processes in Section 2. We describe motivational
examples in order to highlight the need for adopting cost-based optimization so-
lutions in Section 3. The metadata definition and the necessary background for
applying the optimization algorithms, along with the optimization metrics are
presented in Section 4. The next section shows how knock-out processes can be
treated in a principled manner and provides insights into the expected benefits
in a real scenario; in addition, we provide an approach to bi-objective optimiza-
tion using another real scenario. Software implementation issues are treated in
Section 6 along with a detailed discussion of open issues, whereas the following
section concludes this work.

2 Related Work

Several optimization techniques to support BP redesign have been proposed. For
example, the authors in [17] summarize all the heuristics in order to refine an
existing process or eliminate redundant tasks by merging or removing processes
(without presenting concrete algorithms). Similarly, good practices, such as using
as few elements in the model as possible and employing models as structured as
possible avoiding OR routing elements appear in [34]. Similarly, the work in [18]
advocates following high-level business process improvement patterns. Another
redesign approach is to exploit queue theory to emulate human or machines that
execute tasks [15] with a view to driving decisions regarding task re-ordering,
resource allocation and task implementation. Contrary to the use cases we con-
sider, the focus of the work in [15] is on how to merge different tasks into groups
that can be handled by the same team of actors. Additionally, there are proposals
considering variant optimization objectives, such as the techniques in [5], where
a set of heuristics is introduced for optimizing the metrics of resource utiliza-



tion, maximal throughput and execution (cycle) time. These heuristics consider
changing the relative ordering of tasks, enforcing parallel execution and task
merging; essentially, they constitute building blocks for developing automated
algorithms rather than proposing full algorithms. Finally, another interesting
approach to redesigning BPs is the re-configuration of the BP models that com-
prise several variants, e.g. so that different tokens in the same BPMN flow may
follow different paths as proposed in [32].

Regarding data-centric workflows, a lot of effort is towards finding the best
sequential order of flow tasks [27,26] to minimize the sum of the costs of these
tasks. Another important optimization mechanism examined in the state-of-the-
art is the selection of the best execution option of a process, choosing between
multiple human and/or physical resources/alternatives [30]. Additionally, there
are proposals that optimize different single objectives than the sum of the costs,
such as the improvement of the sum of the task costs of the critical flow execu-
tion path [8] or the task ordering to maximize the utilization of each execution
processor [16]. All these proposals aim to optimize a single criterion, but there
are also proposals that target multi-objective data flow optimization, such as
the algorithms in [46,47] that consider the sum of the task costs along with the
reliability, in the form of fault tolerance.

In addition, there are several recent proposals on data analytics-driven solu-
tions for BPM problems. Examples include process mining and discovery, e.g.,
[7,10,9,56], and querying-based [40] process enhancements. Process mining in
particular is both orthogonal and complementary to our research. More specifi-
cally, process mining may be used to extract the necessary statistical metadata,
e.g., [6](Ch. 8.4) and precedence constraints, e.g., [48,41] to be presented in the
next sections, but this direction is not covered in this work.

A significant part of recent research in BPs targets variability between pro-
cess models aiming at the same high-level objectives [45,54]. For example, the
work in [45] is motivated from the fact that the same goal in different munic-
ipalities is performed using different equivalent processes and, to manage such
variability, it introduces the configurable process trees. This methodology allows
a specific set of process models to be selected according to several criteria. The
main difference with our work is that we explore process model alternatives that
are not known a-priori where the search space may be exponential, e.g. when
examining the ordering of knock-out tasks for which any ordering is valid. In
such a context, proposals like [14] deal with the problem of extracting alterna-
tive models, whereas the issue of assessing the quality of different process model
configurations [13] and quantifying the differences between process models [11]
have also been explored. Finally, our work relates to declarative process models
(38,37, 33]; e.g., our task ordering solution can be seen as a promising means to
derive executable model structures out of such declarative models.

3 Targeted Use Cases

This section presents the use cases we primarily target.
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Fig. 2. Task decomposition and re-ordering examples in a business process in BPMN
in Figure 1.

3.1 Loan Application

In Figure 1, we show a BP example of a typical bank loan application processing.
This BP consists of seven tasks, namely and two start/end events. These tasks
include three checks ( Verify Applicants in Black List, Borrowing Capacity, Credit
Bureau) and a final verification phase. The checks, according to the outcome of
which the loan application proceeds or is rejected, are typical examples of knock-
out tasks in the sense that if the application does not pass them, the process
terminates.



Task preceding Task succeeding

Include Initial Personal Information|Verify Applicants in Black List, Import Personal

or Load Customer Info from Third Parties, Borrowing Capacity,

Credit Bureau, Verify Applicant

Import Personal Information from|Borrowing Capacity, Credit Bureau

Third Parties

Verify Applicants in Black List, Bor-|Verify Application

rowing Capacity, Credit Bureau
Table 1. The dependency constraints of the BPMN scenario of Figure 2.

Assume that the second knock-out task, i.e., the one referring to the borrow-
ing capacity, is much more selective than the first one, i.e., the one referring to the
black list; in such a case, it is beneficial to swap the first two checks. The inter-
esting part is that, in order to run the second check, another task, namely Import
Personal Information from Third Parties, is required to be moved upstream as
well. Let us further assume that in this scenario, the checks are automated and
each one takes less than 1 minute to complete, whereas an employee requires
25 minutes per customer in order to fill all the necessary forms with the per-
sonal details of a customer (Include Personal Information). This implies that
the complete BP execution delays, until this task is completed while, in case
of application rejection, not all the info is needed. Therefore, one can reduce
the cycle time through (i) decomposing the complex task of Include Personal
Information to two simpler tasks, only the first of which is required to run the
subsequent three checks; (ii) moving the non-necessary part of the detailed ap-
plication information either after all knock-out tasks or in parallel with them; an
example is shown in Figure 2. Such re-ordering and/or decomposition optimiza-
tion actions can yield improvements regarding both the resource consumption
and the process cycle time.

A main question that arises is as to whether we can be sure that the semantics
of the process have not been modified and re-ordering tasks does not affect the
rationale of the process. To ensure these requirements, we need to respect the
precedence (or dependency) constraints between tasks. These constraints for the
running example are shown in Table 1, and they should be interpreted as follows:
in any path from a source event to an end event that contains tasks in the same
row of the table, the tasks in the left column should be placed beforehand the
ones in the right column. In other words, in each row, the tasks in the right cell
depend on the output of the tasks in the left cell. Therefore, we use the terms
dependency and precedence constraints interchangeably in this work.

The contents of Table 1 can be represented as a graph with an edge starting
from a task in the left cell pointing to a task in the right cell in the same row.
The full list of the precedence constraints is derived from the transitive closure
in such a graph. These constraints can be derived manually with the help of
process analysts and domain experts; automated extraction, even in data-centric
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Fig. 3. Another business process model example that is amenable to optimizations.

workflows, is still not a mature area [42].3 In this case study, we assume that the
process designer also provides the constraints; issues related to constraints are
further discussed in Section 6.

3.2 Reimbursement Request

An additional motivational example is presented in Figure 3, where we show
a BP example of an Employee Expense Reimbursement Request process®. This
BP consists of six tasks that are required to validate, analyse, approve and
pay an expense statement submitted by an employee of a business. Despite
its simplicity and the fact that there are no knock-out tasks, this process is
also amenable to optimizations regarding the cycle time. For example, if the
bottleneck is the review from a supervisor for amounts larger than $200, then
more resources can be allocated to this task leading to a trade-off regarding cycle
time and resource consumption (and monetary cost). In addition, we can move
the supervisor review in parallel with the account existence check to save time.
The goal is to employ automated solutions that explore all such alternatives.

4 Definitions and Optimization Objectives

We consider a BP to be a sextuple P = (V,G, E, A, I,0), where V is the non-
empty set of tasks, G is the set of gateways, E the set of edges connecting the
tasks and the gateways, A is the set of actors executing the tasks, I is the set of
input events, and O is the output events.

3 Note that these constraints refer to the process model structure; additional execution
constraints, e.g., two tasks share the same resource and thus cannot run simulta-
neously, affect the cost models that quantify the optimization objectives (see also
Section 4.2).

% taken from https://www.businessprocessincubator.com/



We restrict ourselves to a subset of BPMN elements, comprising simple,
loop, multiple instance, compensation and adhoc tasks, (event) subprocesses,
AND/OR/XOR-splits, and start, end and wait timer events (wait timer events
are considered as an annotation to edges). For all these elements, a mapping
to a DAG (directed acyclic graph) is possible [19], even when cycles and loops
exist in the model. Working with a subset of BPMN elements is common, e.g.,
as in [43,22], to reduce the complexity of the proposed techniques. We consider
both well-structured processes [24], e.g., derived through the process in [39] and
unstructured ones. Re-sequencing is inherently more suitable for unstructured
BPs containing knock-out tasks; because knock-out tasks are followed by splits,
a branch of which can lead to immediate termination. On the other hand, par-
allelizing blocks of tasks and choosing their implementations benefits more from
structured processes in our cases. Finally, note that elements, such as BPMN
data objects, need not appear in the BPMN diagrams.

4.1 Processes as Annotated DAGs

We map processes P to a DAG P’ = (V/,E’), where V! O V and E' =
(v, v%), vi,v; € V' (B is neither a subset nor a superset of F). P’ is annotated
and more specifically, in our techniques in the next subsections, we require two
quantitative metadata types for each vertex in P’ in addition to the precedence

constraints:

— Cost (¢;) per input token defines the cost of a task v, v, € V', i =1...|V’|
to process a token. The cost can be either in time or in actual monetary cost
units.

— Selectivity (sel;) defines the (average) ratio of the output to the input tokens
of v}. In many cases, the selectivity is 1, but lower selectivity values denote
knock-out processes and/or are used to define the fraction of token flow after
non-parallel gateways.

For the mapping purposes, we introduce the term dummy tasks [19]. These
tasks represent artificial tasks that are characterized with appropriate statistical
metadata to represent the flow of a BP. Finally, note that the edges in E’ denote
token flow exclusively.

Figures 4 and 5 show the corresponding DAG representations of each of the
scenarios in Figures 1 and 3, respectively following the methodology in [19].
In the figures, we use example metadata. For instance, in Figure 4, the three
checks have selectivity values 0.6, 0.8 and 0.5, respectively, whereas only 70%
of the application that pass through these checks are finally approved. For the
Reimbursement Request case study, the Analyze Request task has selectivity > 1,
to account for the fact that a request may contain more than one separate claims.

4.2 Optimizations objectives

Cost-based optimization heavily relies on amortized metrics across several pro-
cess instantiations. It is also helpful to define the input (inp;) of a task. More
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specifically, inp; defines the size input of the v in number of tokens. If v} re-

ceives input only from v;-, then inp; = inp; * sel;. In the generic case, inp;
Z(v‘ VYEE inp; *x sel;. In any case, inp; depends on the product of the selectiv-
3

ities of the preceding tasks in the same path/branch in P’.

We consider the following two optimization objectives, which are common in

BPs [17] (Ch. 7):

— Monetary Cost/Resource Consumption is defined by the human and machine
costs. The human cost reflects the human resource consumption required to
complete a BP execution, while the machine cost reflects the other resources
that are necessary for the BP execution. This type of cost, given a set of
tasks V' with known cost and selectivity values, is defined as follows:

v’
Cost = Z C; ¥ inp;

i=1

When ¢; is in time units, the formula above computes the total time resources
are occupied. If the cost is in monetary cost units, the formula computes the

expenses associated with such resource usage.



— Cycle time represents the average time between the start of a process execu-
tion and its completion time. Generally, we define the cycle time as the sum
of the costs of the tasks that belong to the critical path of a BP. The critical
path is a path from a source to an end that takes the longest to complete.
Taking the sum of the costs covers a wide range of cases, e.g., a model in
the form of a chain, where each task is activated upon the receipt of a token,
i.e., there are no waiting times or the (amortized) waiting times are included
in task costs. If all tasks are executed by the same resource, then we need to
sum the costs of all tasks, not only those in the critical path, to reflect the
fact that tasks cannot be executed simultaneously.

5 Optimization Solutions

In this section, we provide algorithmic details and evaluation results regarding
the two main problems we target in this work, namely reordering tasks in process
models that contain knock-out tasks and treating bi-objective solutions regarding
resource allocation in a principled manner.

5.1 Reordering knock-out tasks

First, we deal with reordering DAGs corresponding to BPs that contain knock-
out tasks, i.e., tasks with selectivity not always set to 1 capitalizing on the
state-of-art in data-centric workflow optimization, as the latter is presented in
[42,29] . Given the existence of efficient techniques for optimizing chains of tasks
in data-centric workflows, the idea is to extract source-to-end linear segments
(i.e., paths) corresponding to branches with knock-out tasks and then, optimize
the extracted paths using existing techniques. In other words, given also that the
problem is NP-hard [29], we follow a divide-and-conquer approach dealing with
smaller parts of the DAG in each step to strike an acceptable balance between
optimization overhead and solution optimality.

The important issue is that other types of tasks, i.e., non-selective ones, can

exist as well. Let the rank value of a task be 1_0736“ It is well-known that ranking

knock-out tasks according to their rank values yields an optimal solution in terms
of the sum of the costs [5], but such an ordering is not always feasible due to
precedence constraints. Therefore, more complete algorithms that build upon
this principle have been developed with the proposals in [26] claiming to be the
most advanced solutions to date. In addition, although the whole ordering can
be done in several manners in polynomial time, for isolated paths with not a
high number of tasks, exhaustive solutions are applicable in practice due to the
efficient handling of the precedence constraints, as thoroughly discussed in [27].
A strong point of this approach is that the final ordering relies on the statistical
metadata and precedence constraints rather than any initial designer decisions.
More specifically, for a given linear segment, the initial ordering plays no role.



Algorithm 1 ReorderingBPs

1: Extract the largest source-to-end linear segment (path) from the DAG containing
tasks with selectivity lower than 1.
if path size is shorter than (15 tasks) OR (shorter than 30 and DoF < 0.1) then
execute Algorithm 2
else
execute Algorithm 3
end if
remove all tasks in the selected path from the DAG and if there still exist tasks
with selectivity <1 go to Step 1

Algorithm 2 TopSort (exact algorithm taken from [27])

Require: 1. A set of n tasks, T={t1, ..., tn}.
2. A directed acyclic graph PC of precedence constraints.
3. A function computeCost (the one in Section 4.2 can be used)
Ensure: An ordering of the tasks P representing the optimal plan.
1: P={t1, to, ..., tn} {P is initialized with a valid topological ordering of PC.}
2: i1
3: minCost < computeCost(P)
4: while i < n {n is the total number of tasks} do
5: k < location of ¢; in P
6: kl+k+1
7:  if P(k1) task has prerequisite ¢; then
8: // Rotation stage

9: Rotate the elements of P from positions i to k
10: cost < computeCost(P)

11: i— i+1

12:  else

13: // Swapping stage

14: Swap the k and k1 elements of P
15: cost <— computeCost(P)

16: i1

17:  end if

18:  if cost < minCost then

19: bestP < P

20: minCost < cost

21:  end if

22: end while

23: P < bestP

Solution Details The solution is outlined in Algorithm 1. This algorithm is a
hybrid one and, as shown in line 2, defines the specific algorithm to be applied
based on the properties of the path extracted. If the number of tasks in the
extracted path is less than 15 or it is less than thirty with low task re-ordering
flexibility, then the exact algorithm in Algorithm 2 is applied; otherwise we resort
to a fast yet approximate solution (Algorithm 3). Later, we present experiments
to explain the choice of these parameters. The flexibility in the ordering of the



Algorithm 3 RO-IIT (approximate algorithm taken from [26])

Require: A set of n tasks, T={t1, ..., tn}
A directed acyclic graph PC of precedence constraints
Ensure: A directed acyclic graph P representing the optimal plan

1: Find paths in PC sharing source and sink vertices

2: Extract the innermost and most upstream set of paths with common sink and
sources

3: PC < merge all such paths in a common path according to their rank value

4: Go to Step 1 until there are no other such paths in the modified PC

5: G + Apply KBZ algorithm [31] given the modified precedence constraints

6: repeat

7:  {k is the maximum subplan size considered}

8: for i<—1:k do

9: for s« 1:n-i do

10: for t<s+i:n do

11: consider moving subplan of size i starting from the s task after the t*"

task in G

12: end for

13: end for

14:  end for

15: until no changes applied

16: P+ G

tasks is quantified with the help of the DoF' (Degree-of-Freedom) metric. For a
path with n tasks, when there is only a single alternative for task ordering, the
corresponding transitive closure of the graph representing the precedence con-

straints has nfruipcedges = n(n—1) edges. Let npcedges be the edges in the tran-

2

sitive closure of the precedence constraint graph. Then, DoF =1 — nfn‘:%
wllPCedges

Values closer to 1 denote maximum flexibility, e.g., as in the ad-hoc BPMN sub-

processes, while values closer to 0 denote existence of few ordering alternatives.

Algorithm 2 presents the TopSort algorithm from [27] and is based on the
solution from [51], which finds all the possible topological sortings given a partial
ordering of a finite set. The algorithm is, by the problem definition, exponential
in the worst case due to the size of the output (i.e., to enumerate all orderings),
but, as will be shown, it is particularly useful in cases where the longest path
of tasks does not comprise many tasks or there are highly restrictive precedence
constraints. For the remaining cases, the authors advocate using Algorithm 3
from [26], termed as ROIII This algorithm first renders the DAG applicable to
a well-known optimization solution [31,21] for database queries since the 80s,
namely the so-called KBZ algorithm that was initially proposed for join ordering.
This is done through manipulating the precedence constraints graph (lines 1-4)
but comes at the expense of missing optimization opportunities. To ameliorate
the latter drawback, the algorithm performs a heuristic post-processing step
(lines 6-16). Overall, its complexity is O(n?) and for small k values in Algorithm
3, it becomes quadratic [26].
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To explain the switch condition in line 2 of Algorithm 1, the scalability of
the exact and approximate algorithms need to be examined. In the experiments,
a i7-4770 CPU at 3.4GHz with 16GB of RAM was used. As shown in Figure 6,
the optimization overhead of TopSort grows significantly when the number of
tasks exceeds 15, unless the DoF' is kept low (< 0.1) where the tasks can be up
to 30 and the optimization overhead is kept under 1 minute. For TopSort, the
DoF value is important because it defines how many plans need to be checked.
On the other hand, ROIII is more insensitive to the DoF value and even for 100
tasks, it runs in under a second (see Figure 7).

Example Benefits In order to assess the potential benefits of such re-ordering,
we run the following experiment. The purpose of this experiment is to show that
even in more conservative cases, the benefits are significant. More specifically, we
consider two simple processes with just two and three knock-out tasks, respec-
tively. For each task, the cost and the selectivity varies uniformly in the range
[0.1, 1], which means that the costlier (resp. most selective) case differs from the
less expensive (resp. less selective) by an order of magnitude; there are also start
and end tasks with cost equal to the lowest of the knock-out ones (i.e., 0.1). The
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Fig. 8. Histograms regarding how many times the unoptimized process is slower than
the optimized one when the process comprises solely two (top) and three (bottom)
knock-out tasks.
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the optimized one when the process comprises four knock-out tasks with precedence
constraints.

results are shown in Figure 8, where for each range of improvement values, we
can see the probability of occurrence. When there are only two knock-out tasks,
in 12% of the cases, the unoptimized plan has higher cost and cycle time by
50% and more (up to 3.9 times), as denoted by the cumulative frequency of the
four rightmost bars in Figure 8(top). When there are three knock-out tasks, the
non-optimized processes are inferior by more than 50% in 27.5% of the cases;
the highest improvement observed is 6.79 times; see the four rightmost bars in
Figure 8(bottom).

Next, we slightly modify the setting above as follows: we increase the number
of tasks to four, but between 2 random pairs we enforce precedence constraints.
The resulting histogram is shown in Figure 9. In this scenario, in 25% of the
cases, the unnecessary overhead is higher than 50%. In the worst case, it is 5.68
times higher.

The benefits over a random initial ordering can grow arbitrarily large, if we
consider more knock-out tasks within a process, with larger differences between
the extremum cost and selectivity values.

Application to the Loan Application We apply the proposed technique to
the load application scenario, where there are three knock-out tasks along with
several other ones. We allow the costs and the selectivities of the tasks to differ
by an order of magnitude at most (ranges [1, 10] and [0.1, 1], respectively) and
we run 10000 random process instances. Figure 10 shows the speed-ups when the
non-knock-out tasks have the minimum and the maximum costs. In the former
case, the optimized plan is less expensive by up to 3.86 times and the benefits
exceed 20% in more than 40% of the cases.
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5.2 Dealing with optimization trade-offs

In the previous task re-ordering example, we essentially manipulate the set E of
the BP edges. Next, we shift our attention to the properties of actors A, where we
assume that the mapping of tasks to actors is already given through a function
f, st. f(V) — A. We are motivated by the fact that cycle time and cost are
often contradictory objectives. For example, consider the scenario in Figure 3,
where we assume that all tasks have cost equal to 1 cost unit and take 1 time
unit to complete, apart from the review task that is 10 times costlier and more
time consuming, and is allocated to a different actor. Further assume that we
monitor the average performance across 100 input tokens (with 10 time units
time gap between two instances). All requests are above $200 and approved.
Figure 11 shows the trade-off between cost and cycle-time when we increase
the power of the bottleneck actor 2,3,4 and 5 times. When we double the power



of the resource, the cost doubles and the time spent drops to the half. The
results are derived using the BIMP simulator [2]. From the figure, we observe
that the two cost metrics are monotonically changing and cycle time reaches a
saturation point, so that allocating more powerful resources is meaningless. The
exact balance between cost and cycle time to be decided depends on the weight
of each optimization criterion. The above example is typical to several cases,
but there are also several cases where the trade-offs are more complex and the
solution space has less intuitive local and global optima, e.g., when the two cost
metrics are combined in a non-linear objective function.

Allocating resources to a graph of connected tasks, so that the allocation re-
garding a specific task impacts on the other tasks, is a problem that has appeared
in several flavors in data analytics, e.g., [36, 20, 30, 35], all of them corresponding
to NP-hard problems. This implies that formulating the problem in a form, such
as ILP, does not scale. Therefore, there are four main options remaining, using
the work in [36] as an example of investigating all of them:

1. Heuristics that operate directly on the formal problem formulation, e.g.,
through restricting the possible allocation solutions to attain scalability.

2. Greedy heuristics.

. Heuristics that are based on local search methods.

4. Other heuristics, mostly, nature-inspired ones [12].

w

The works in [36, 20, 30, 35], although they deal with different problem fla-
vors, agree in that there is no one-size-fits-all, but in most cases the two main
observations are: (i) greedy heuristics are very fast but they miss good trade-
off between conflicting objectives; and (ii) local search methods are the most
effective in striking good balance between such objectives. More importantly,
local search methods are easy to develop and effective, provided that they start
exploring the search point quite close to an acceptable final solution.

In summary, a high-level approach to handling the generic BP case can be
as follows. We first compute the minimum cost and we define, through a user-
defined threshold €, the degradation in the cost that the BP designer can tolerate.
Given the cost constraint, we search for the best cycle time. The exact optimal-
ity search policy is left for the user: in principle all brute force, greedy and more
stochastic solutions apply. In cases where the initial solution, e.g., derived by
rules or a polynomial algorithm or through optimizing one objective as above, is
adequately satisfactory and it is reasonable to assume that a better solution can
be produced through fine-tuning, methodologies that focus on the near neighbor-
hood, such as iterated local search, are preferable. In cases where a vast search
space should be covered efficiently, we should also employ methodologies, such
as genetic algorithms.

6 Discussion

In this section, we discuss software development and open issues.



6.1 Development issues

For understanding the trade-offs when modifying the actor properties as dis-
cussed in Section 5.2, existing tools, such as the BIMP simulator [2], are ade-
quate. However, automated re-ordering of tasks is a functionality that does not
exist in modern tools for free. As a side-product of this manuscript, we have
developed a software prototype that extends the Camunda BP management
software [4] but can also support other BPM tools.

The software prototype consists of two main parts. The first part is a BPMN
parser, which extracts the vertices that represent the tasks of the process, and the
edges from the input BPMN file. To this end, we process the XML representation
of the process model, which has the following form:

<bpmn:startEvent id="StartEvent_1">
<bpmn:outgoing>SequenceFlow_11y212g</bpmn:outgoing>

</bpmn:startEvent>

<bpmn:task id="A" name="Task A">
<bpmn:incoming>SequenceFlow_11y212g</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_02dhphd</bpmn:outgoing>

</bpmn:task>

<bpmn:endEvent id="EndEvent_1imlwp9j">
<bpmn:incoming>SequenceFlow_1cm7151</bpmn:incoming>

</bpmn: endEvent>

<bpmn:sequenceFlow id="SequenceFlow_11y212g"
sourceRef="StartEvent_1" targetRef="A" />

In the above example, a start event is followed by a task with id A. Essentially,
the Camunda parser searches for bpmn: startEvent, bpmn:endEvent, bpmn:task
and bpmn:sequenceFlow XML elements.

The second part takes as input the output of the first part and addition-
ally the metadata regarding the corresponding BP, namely, task selectivity, cost
of execution and precedence constraints, which are assumed to be known. Fi-
nally, the process is optimized according to the algorithm presented and is out-
put as a BPMN XML file, where the bpmn:sequenceFlow, bpmn:incoming and
bpmn: outgoing elements are defined according to the optimized process model.

The prototype mentioned above is capable of performing automated opti-
mization, provided that the required metadata exist. Following up on the dis-
cussion in Section 2, to date, there is not a clear solution to the issue of their
automated extraction. In order to solve this issue, we advocate an approach that
relies on BP event log analysis and/or declarative process modeling, as in [38,
37,33].

A set of BP event log analysis techniques that aim to extract BP metadata
have been proposed. For example, in [6], the replay method is presented, where,
after the process model extraction from the logs is complete, every event log
case is attempted to be “replayed” (i.e. re-executed) using each of the extracted



models. As a result, the fitness of each of the extracted models is calculated. Ad-
ditionally, this method can be used to collect various type of statistics regarding
the execution of the process. These include task duration, which is related to
execution cost, and routing probabilities (e.g. in OR gateways) which is related
to selectivity. Regarding precedence constraints, the focus is shifted towards be-
havioral relations that exist between tasks [48,41]. In both approaches, a set of
relations (i.e. patterns) are extracted from the event logs; these patterns contain
the precedence constraints that exist between the tasks of the process. The com-
plete investigation of the issue of automated metadata extraction capitalizing on
existing process mining solutions is complementary to this work and is left as a
future extension. Finally, the systematic manual specification of the constraints
has already been proposed in [38, 37]. The drawback is that the burden is shifted
to the process designer to specify such constraints.

6.2 Open issues

In the previous sections, we provided concrete examples of application of opti-
mization techniques initially proposed for data-centric workflows to BPs along
with insights into performance benefits. However, there are several open issues
in providing end-to-end solutions. We elaborate on these issues below:

— Even the better investigated type of data-centric workflow optimization,
namely task re-ordering, requires extensions to cover generic BP scenar-
ios. For example, in the model in Figure 3, an optimization might move
the expensive supervisor check task in parallel with the check for account
existence to decrease cycle time. The current state-of-the-art in algorithms
for minimizing response time in data analytic workflows do not account for
such model structure modifications in an automated manner [28]; therefore
further research is required in this direction.

— In data-centric dataflows, the equivalent of a token is a data record and,
typically, we are interested in the performance when processing a large num-
ber of such records. The main difference to BPs is that all input records are
available at the beginning of the workflow execution; by contrast, in BPs,
the tokens arrive according to several types of probability distributions. In
addition, in data-centric workflows, it is important to measure the time of
processing for the whole input dataset, whereas in BPs, the cycle time refers
to the time of processing a single input token taking into consideration any
waiting times. The cost models in data-centric workflows [29] need to be
extended to better cover these aspects, e.g., nowadays they are inadequate
to cover all metrics in the BIMP simulator [2].

— In the optimization algorithms presented in Section 5.1, we split BP graphs
into branches. For developing more holistic solutions, we need further con-
straint types apart from precedence ones, e.g., to specify that two tasks
cannot belong to the same branch. Then, algorithms that can handle such
constraints need to be developed.



— The presented solutions rely on the existence of statistical metadata as well;
thus extending the current techniques for process monitoring to support
metadata extraction is required for rendering the proposed solutions practi-
cal as discussed in Section 6. Orthogonally, flexibility is a key objective in
BPs (see Ch. 8 in [17]); in terms of optimization techniques, flexibility can
be manifested in developing techniques that are robust to small changes in
the metadata values. Developing solutions that optimize also for flexibility is
an interesting direction for future work that can also benefit from advances
in the data management community [53].

— The optimization solutions presented are automated but this does not imply
that they can enact automated optimizations in the actual running business
processes in an organization. For example, the algorithm may advocate dou-
bling the capacity of a specific resource type. However, they do not specify
whether this can be achieved by modifying the duties of personnel, hiring
new staff, upgrading some software system and so on.

— The mapping process from BPMN to DAGs in Section 4.1 has not been ex-
plored thoroughly and validated in arbitrary scenarios. More work is needed
in order not only to map BP models to DAGs but also to map the opti-
mized DAG back to a BP model. This needs to be coupled with mechanisms
for eligibility assessment of BP models as to whether it is possible and/or
meaningful to perform the mapping (see [49] for an early porposal on these
issues).

— This methodology can be easily adapted to other process modelling lan-
guages and approaches, such as refined process trees [50], where each block
can be mapped to a vertex, and Event-driven Process Chains. In the future,
we plan to investigate this issue in depth.

7 Conclusions

In this work, we aim to introduce the benefits from transferring big data tech-
nologies to business process optimization, in line with the broader vision in [44].
Process mining already plays a significant role in business process management;
the key idea behind this work is that, apart from process mining, advanced data
management solutions can offer many additional benefits when transferred to
business process scenarios. We specifically focus on optimizing aspects such as
total cost and cycle time, for which the counterpart techniques in data-centric
workflows seem more mature. Data-centric workflows traditionally emphasize
on improvements in large flows processing huge amounts of data; however, here
we aim to show that they are useful even in small real-life processes as well,
yielding improvements up to several times, especially when there are knock-out
tasks with flexible ordering. We present complete algorithmic solutions for re-
ordering tasks and systematically exploring the search space of possible solutions
under two conflicting objectives, whereas we also describe software implementa-
tion aspects of our proposal. For devising end-to-end solutions, we discuss issues
remaining open, which range from new algorithms to further work on modeling
and process monitoring to collect the necessary metadata.
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