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ABSTRACT Social engineering is widely recognized as the key to successful cyber-attacks. Chat-based
social engineering (CSE) attacks are attracting increasing attention because of recent changes in the digital
work environment. Sophisticated CSE attacks target human personality traits, and persuasion is regarded
as the catalyst to successful CSE attacks. To date, research in social engineering has mostly focused on
phishing attacks, neglecting the importance of chat-based software. This paper describes the design and
implementation of a persuasion classifier that utilizes machine learning and natural language processing
techniques. For this purpose, a convolutional neural network was trained on a chat-based social engineering
corpus (CSE Corpus), specifically annotated for recognizing Cialdini’s persuasion principles. The proposed
persuasion classifier network, named CSE-PUC, can determine whether a sentence carries a persuasive
payload by producing a probability distribution over the sentence classes as a persuasion container. The
present study is expected to contribute to our understanding of utilizing existing machine learning models
and integrating context-aware information into real-life cyber security threats. The experimental application
results reported in this work confirm that the approach taken can recognize persuasion methods and is thus
able to protect an interlocutor from being victimized.

INDEX TERMS Cyber-security, machine learning, natural language processing, chat-based social engineer-
ing, attack detection.

I. INTRODUCTION

In recent years, there has been a significant increase in
the use of electronic communication tools in small-medium
enterprise environments. This rising trend can largely be
attributed to the continuous development of novel commu-
nication technologies and unforeseen challenges faced by
digital work environments during the COVID-19 pandemic.
Consequently, a corresponding increase in the available
attack surface was realized for social engineers. Social engi-
neering is a complex phenomenon combining technology,
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psychology, and linguistics. Attackers treat human personal-
ity traits as vulnerabilities and use language as their weapon
to deceive, persuade, and finally manipulate their victims as
they wish. Human weaknesses and limitations in the context
of personality traits constitute vulnerabilities which social
engineers can exploit using a variety of methods.

Persuasion is a well-known method used by social engi-
neers and the latest research regarding persuasion as an influ-
ence tactic [1], [2], confirms and emphasizes persuasion’s
role as a social engineering attack enabler. ISACA [3] defines
enablers as the “factors that, individually and collectively,
influence whether something will work™. In [4], persuasion
was identified as one of the six most critical factors that
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can lead to a successful chat-based social engineering (CSE)
attack. Thus, in any given chat, it is of utmost importance
to detect and recognize persuasion attempts at an early stage
to deter a consequent attack and prevent sensitive data from
being compromised.

Cialdini’s latest work [5] adds a seventh persuasion princi-
ple called Unity to his famous taxonomy. Overall, the seven
persuasion principles are reciprocity, commitment, social
proof, liking, authority, scarcity, and unity. These principles
distract people from thinking deliberately and analytically
because of the amount of disinformation they inject into a nor-
mal communication flow [6]. Therefore, from a cybersecurity
perspective, it is critical to identify if a sentence in a natural
communication setting contains a degree of disinformation.
We define persuasive payload (pp) as every piece of informa-
tion that purposely contains content which aims to deceive a
human by altering his/her opinion or misleading him/her to
act erroneously. Furthermore, we define every sentence that
carries persuasive payload as a pp-container, which is to say,
every sentence that carries information which corresponds to
one of the seven persuasion principles defined by Cialdini
will be considered a pp-container.

The main objective of this study is to guide cybersecurity
defense mechanisms in detecting early stage CSE attacks
by determining if sentences in the chat-based conversa-
tion contain persuasive payload. The timely recognition of
pp-containers during a chat will raise awareness of the social
engineering cues which permeate chat-based conversations.
To achieve our goal, we utilized machine learning and natural
language processing (NLP) techniques, namely convolutional
neural networks (CNN) and word embeddings.

In this work, the focus is on classifying sentences as
pp-containers or not, treating all persuasion principles as
equally important. Therefore, persuasion recognition can be
understood as a sentence classification task that attempts to
recognize the existence of any type of persuasion payload,
that is, whether the sentence is a pp-container or not.

While most studies have focused on email-based phishing
attacks, this study investigates chat-based social engineering
attacks. A diverse group of vulnerabilities are targeted in
a CSE attack, ranging from technical misconfigurations to
human psychological characteristics. However, it is more
efficient to isolate the enablers of a successful CSE attack
and to investigate the methods of detection and defense sep-
arately. As mentioned in [4], persuasion is only one of the
various enablers, and it is critical to be able to detect it in
the early stage and obtain information about it. Collectively,
our knowledge about persuasion coupled with our knowledge
about other enablers will guide our decisions regarding the
response to the CSE attack. Persuasion is a crucial factor,
but alone is not an adequate criterion to conclude whether
a CSE attack is occurring. However, if persuasion methods
are detected in a cyber-security context using an appropri-
ate dataset related to digital work environments, then the
expected outcome will be rather useful. The present study is
expected to contribute to our understanding of the application
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of well-known machine learning methods to CSE attack
recognition.

The remainder of this paper is organized as follows.
Section 2 describes the related work in this field.
Section 3 details related background information. Section 4
describes the design and implementation of the proposed
CSE-PUC. Section 5 presents the experimental results and
evaluation. Section 6 summarizes our findings and discusses
the limitations of our study. Section 7 concludes the study and
presents recommendations for future work.

Il. RELATED WORK

As stated in the Introduction, although CSE attacks are
increasingly attracting attention from malicious users, there is
limited interest in investigating the attack techniques used and
the enablers that lead to successful social engineering attacks
through chat-based conversations. Current research seems to
focus on phishing attacks through email. Nevertheless, the
detection approaches considered are worth mentioning and
presenting.

In [7], the authors explored nine different machine learning
models trained on three different datasets. They extracted
threat features that are compared against twenty-seven threat
detectors to identify general social engineering attacks that do
not focus on a specific technique. The results are promising,
but the lack of focus eliminates the possibility of detecting
persuasion methods in chat-based conversations.

The authors in [8] used a modern approach to classify
social engineering attacks based on the technique and the
influence tactic that was employed. Furthermore, the authors
mapped several types of attacks to various human vulner-
abilities. We utilize the “Persuasion” and ‘“Attribute and
Behavior” categories, as presented in this work.

Lumen [9] is a multi-task and multilevel learning-based
framework that exposes not only persuasion cues but also
framing, objectivity/subjectivity, guilt/blame, and the use of
emphasis. The authors utilized a custom dataset to train the
learner by combining traditional natural language processing
tools such as linguistic inquiry and word count (LIWC), topic
modeling, and sentiment analysis, which feed on a random
forest classifier. Lumen presented satisfactory performance
compared to Labeled-LDA and Long Short-Term Memory
(LSTM). However, this solution lacks the ability to take
advantage of modern word representation techniques and the
flexibility of CNNs.

Duerr et al. [10] conducted nine exploratory case studies to
investigate the challenges faced by writers trying to increase
their persuasiveness and the complementary effect that arti-
ficial intelligence (AI) can have through natural language
processing techniques. Their analysis showed that humans
and Al could complement each other, as Al increases persua-
siveness through the automated creation of logical coherence
and conciseness. This is however a theoretical approach with
no evidence of its application in real-life situations.

Dimitrov et al. [11] described the results and participating
systems in the detection of persuasion techniques in text
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and image tasks. Twenty-two persuasion techniques were
investigated, of which 20 were applicable to both text and
image communication media. The participating teams uti-
lized a plethora of detection and analysis techniques and
were presented with F1-Micro and F1-Macro metrics. The
results presented are of average performance when compared
with our approach, and the proposed architectures are more
complex.

Wang [12] investigated conversational agents (chatbots)
intended to change people’s opinions. Working on an anno-
tated dataset created from dialogues between humans, they
predicted ten persuasion strategies and combined their find-
ings with the demographic and psychological background
of the interlocutors. Using a hybrid region-based convolu-
tional network (RCNN) model with three types of features—
sentence embedding, context embedding, and sentence-level
features—they achieved good results in predicting persua-
sion strategies. The proposed solution is inefficient for CSE
attacks because the persuasion methods used in CSE attacks
are limited to authority and commitment.

In [13], the authors presented a study on persuasion tactics
used in social network sites with the express purpose of forc-
ing users to reveal sensitive data and consequently become
victims of social engineering attacks. They focus on Al as
a means to raise awareness of the presence of a nudge to
use, since all persuasive tactics target people’s automatic and
subconscious processing systems. This approach focuses on
awareness and does not detect persuasion methods that can
lead to CSE attacks.

Chen [14] investigated a state-of-the-art natural lan-
guage processing model, transformer-based coupled with
Conditional Random Field (CRF). When comparing this
architecture with several baseline systems, the model’s limi-
tations for persuasion strategy recognition become apparent.
They proved the failure of the CRF component to capture
persuasive label dependencies and that of the transformer part
to capture sequential information in persuasive dialogues.
The author concluded that neither machine learning nor deep
learning algorithms can solve a problem without accounting
for the problem context.

Yasin et al [15] performed a literature review on
social engineering attacks, focusing on the persuasion
techniques used by social engineers. They utilized the-
matic and game-based analysis techniques to expose human
factors, principles, psychological factors, human vulnera-
bilities/weaknesses, and compliance principles as means of
persuasion tactics. Nineteen persuasion principles have been
explained and mapped to several case studies. The authors
investigated different persuasion tactics in a different context
than CSE attacks, and the results were inefficient for an
early-stage recognition cyber defense mechanism.

Yang et al. [16] proposed a neural network architecture
that quantified persuasiveness and identified persuasive
strategies. The proposed learner outperformed several
baseline learners, and offered increased interpretability.
A semi-supervised neural network composed of a sentence
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encoder and a document encoder was trained using a custom
dataset, and five persuasion strategies were identified. The
proposed model showed an improvement in accuracy when
compared with several baseline learners. The solution put
forward presents comparable performance results to our
approach, but with a growing complexity in architecture.

Polatidis et al. [17] proposed and demonstrated a two-stage
deep learner based on natural language processing techniques
to detect social engineering attacks. This model identifies the
principles of persuasion based on Cialdini’s work. Using a
semi-synthetic dataset, they presented their approach’s effec-
tiveness by showing highly accurate results.

Dutta [18] modeled persuasive interactions between users
on an online chat platform using an LSTM neural network
architecture. They focused on identifying a chain of argu-
ments that can lead to persuasion by utilizing an attention
mechanism. Furthermore, their study proved that the attention
mechanism can also focus on argumentative sentences in
comments during the persuasion learning task. Although a
promising solution, this approach requires a larger sequence
of sentences to draw conclusions that are less efficient for
real-time applications, such as chat-based conversations.

Hidey [19] modeled the sequence of arguments in social
media discussions using a neural network architecture. The
model learns the document using a long short-term mem-
ory network with an attention mechanism over sentences.
An effort was made to model knowledge, dialogue, and the
sequence of reasoning to predict persuasiveness. Although
LSTMs can capture long-term dependencies, CNNs can inde-
pendently assign weights to the words in each sentence,
which is more efficient for short conversations.

Jan-Willem et al. [20] In an extensive study, [20] explored
the persuasion principles used for successful social engineer-
ing attacks. They analyze seventy-four scenarios found in
books written by social engineers. They break down each
attack into specific steps and after dissecting them, they
conclude that authority is the most common persuasion prin-
ciple used. Their work is built on Cialdini’s work and the
corresponding persuasion principles. The authors confirm our
findings that Authority is the most used persuasion method by
social engineers.

Iyer et al. [21] presented a multiclass classifier trained
using an unsupervised domain-independent model to detect
the persuasion principles. They utilize sentence structure to
detect persuasion tactics and an argument extractor to extract
critical arguments in the text. Their system achieved satis-
factory results in detecting reasoning, deontic/moral appeal,
outcome, and empathy types of persuasion. The authors used
a different persuasion classification method, which is inap-
propriate for CSE attack detection.

Older works worth mentioning as precursors to the inter-
disciplinary research field of psychology and cyber security
are Matthew Edwards [22], Anand et al. [23], Bullée et al.
[24], Levine [25], Ortiz [26], Putri [27], Weirich and
Sasse [28], and Young et al. [29]. In these studies, tradi-
tional machine learning techniques were used along with
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TABLE 1. Attributes of social engineering attacks.

Attack Attribute Value
Actor Human, Software
Approach Physical, Technical

Method Social, Socio-technical

Route Direct, Indirect

Technique Dumpster Diving, Shoulder surfing,
Phishing, Baiting, Reverse social
engineering, Water holing, tailgating,
impersonation, misleading, grooming,
pretexting, profile cloning, Quid Pro Quo,
Diversion theft

Email, telephone, chat, website, popup,
smshing, malware

Distribution method

feature extraction and selection techniques. Combinations of
machine learning algorithms and features were presented,
laying the foundation for current research.

lll. BACKGROUND
A. SOCIAL ENGINEERING ATTACKS

In [30], social engineering is defined as ‘“‘a deceptive process
in which crackers ‘engineer’ or design a social situation to
trick others into allowing them access to an otherwise closed
network, or into believing a reality that does not exist”.
Furthermore, the European Union Agency for Cybersecu-
rity (ENISA) states that social engineering “‘refers to all
techniques aimed at talking a target into revealing specific
information or performing a specific action for illegitimate
reasons” [31]. Nevertheless, owing to the complexity of
this phenomenon, several taxonomies of social engineering
attacks have been proposed [32], [33], [34], [35], [36], [37].

In the most recent literature review [37] and [32], the
authors classified social engineering attacks into 15 distinct
categories based on the technique they employed, while in
[35], the attacks were classified based on the target assets.
Li et al [38] adopted a different approach, using an ontology
in the context of social engineering, and utilizing it as a
starting point for their proposed taxonomy. Summarizing the
existing taxonomies, we identified the attack attributes that
are most relevant in the context of CSE attacks. Each attack
attribute can assume two or more values based on the nature
of the attack. The attributes that were chosen are ‘actor’,
‘approach’, ‘method’, ‘route’, ‘technique’, and the ‘distribu-
tion medium’ used to manipulate victims. Table 1 presents
the attack attributes, along with the different values that they
can be assigned.

Our study focuses (shown in bold in Table 1) on human
actors who take a technical approach using a direct sociotech-
nical method to perform a misleading technique through chat-
based conversation.

B. CIALDINI'S PERSUASION PRINCIPLES

Persuasion as a process has been an interdisciplinary field
of study for many years owing to the universality of its
applications. There are exceptional works that have set the
theoretical background, such as Cialdini’s [5], [39], [40].
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Cialdini, a well-known author, presents persuasive psycho-
logical principles with a remarkable ability to direct human
actions. Additionally, to the six known principles of authority,
reciprocity, liking, social proof, scarcity, and commitment,
the author adds one more principle in his latest work: Unity.
The latter work builds on his previous seminal works and acts
as an entry point for most interdisciplinary scientific works
on persuasion. Overall, the seven persuasion principles are as
follows:

- Reciprocation: A strong urge based on the rule of social
interaction to reciprocate by giving something back to
someone who gave us something first.

- Commitment and Consistency: We feel obliged to carry out
the promise we have made so as not to feel untrustworthy.

- Social Proof: humans tend to believe what others do or
think is right.

- Liking: we tend to like people who like us.

- Authority: Under certain circumstances, people are likely
to be highly responsive to assertions of authority.

- Scarcity: We are highly responsive to indications that some-
thing we may want is in short supply.

- Unity: a perception that we share a common identity, that
we are all part of “us.”

After conducting a quantitative analysis to examine the
existing persuasion principles in our CSE corpus [41],
we concluded that authority and commitment were the most
common persuasion principles used by social engineers.
Nevertheless, in this study, all persuasion principles were
considered to be equally important.

C. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks [42] are feed-forward net-
works with an architecture inspired by the human visual
cortex, and they were initially used for image recognition.
They were named after a mathematical operation called
convolution, which was being applied. These specialized
network architectures can take arbitrarily sized data inputs
and identify local patterns in a dataset that are sensitive to
the word order; however, they do not consider where these
patterns are located in the data. When CNNs are applied to
images, the neural network architecture uses a 2-D convolu-
tion. In Fig.1, a CNN is illustrated, where we can identify
its two main functional parts: the feature extractor and the
classifier. The feature extractor part contains convolution
and pooling layers, where the most relevant features for the
task are automatically selected, saving us from the manual
labor of extracting features, as in traditional machine learning
algorithms. The classifier part contains fully connected and
prediction layers, where the actual classification is performed
using an activation function.

Four main operations are taking place in the layers of the
aforementioned functional parts, and they are the following:
- Convolution: A linear operation of element-wise matrix

multiplication and addition between a predefined part of

the input data and a predefined matrix, called a filter, that
captures the local dependencies underlying the original
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FIGURE 1. A CNN comprises two functional parts: The feature extractor
part contains the convolution and pooling layers, and the classifier part
contains the fully connected and prediction layers.

input data. This operation is executed on the convolution
layer.

- Non-Linearity: A nonlinear operation performed by a func-
tion that enables the network architecture to represent
real-world phenomena by capturing complex patterns that
linear functions cannot capture. Almost all real-world phe-
nomena are nonlinear. This operation is also executed on
the convolution layer, and the final output is a matrix called
a feature map that encodes the most notable features.

- Pooling: A subsampling operation that reduces the dimen-
sionality of each resulting feature map while retaining
the most valuable information. Usually, one can use
max-pooling or average-pooling, that is, in 1-max-pooling,
the most significant data element is selected from the fea-
ture map within a predefined window.

- Classification: A classification operation is performed
using a fully connected layer that uses an activation func-
tion in the prediction layer. The outputs of the convolutional
and pooling layers represent high-level features of the
input data. In the last output layer, called prediction, these
high-level features are used to classify the input data into
various classes based on the training dataset. If SoftMax is
used as the activation function, the output is a probability
distribution over the classes.

In Fig.1, we see only one set of convolution and pooling
layers; however, a CNN architecture can contain multiple sets
in a row, where the second convolution layer performs con-
volution on the output of the previous pooling layer. Utilizing
multiple convolution layers means that we use multiple filters
on different input data, which results in the production of a
richer feature map. In general, as we add more convolution
steps, our network will be able to learn and recognize more
intricate features.

While CNNs for image recognition typically use 2-D
convolutions, in the context of natural language processing
(NLP), the operation of convolution is 1-D, which means
that a 1-dimensional array represents the text. Utilizing the
ability of CNNs to identify local patterns in data, one can
locate indicative patterns (phrases or n-grams) in larger text
blocks such as sentences or documents. In the NLP context,
a sentence is represented as a matrix, and each row of the
matrix is associated with a language token, that is, a word
[43]. Using a similar representation, a CNN can learn to iden-
tify the local patterns during the training phase. Several CNN
architectures [44] have been used successfully for a variety
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of natural language processing tasks (text classification [45],
sentence classification [46], and sentiment analysis [47].

IV. THE PROPOSED CSE-PUC

A. DESCRIPTION

Cialdini [5] discussed the principles of influence and con-
cluded that there are two types of influence: compliance and
persuasion. The difference between them lies in the fact that
in compliance, a direct request is used to force a change
in someone’s behavior while in ‘persuasion,” we are send-
ing a message to force someone to change his/her behav-
ior because of the message reception. Additionally, in [8],
the authors further elaborate on influence methodologies,
where they present the following categories: social influence,
persuasion, attitude and behavior, trust and deception, lan-
guage, and reasoning, countering social engineering-based
cyberattacks, and machine learning-based countermeasures.
Moreover, they classified the persuasion method into distinct
types of persuasion: similarity, distraction, curiosity, and per-
suasion using authority. A similar classification is performed
for the proposed attitude and behavior category, where com-
mitment influences the attitudes and behaviors of someone.
The aforementioned classification is adapted in our work, and
thus we propose a way of identifying the ‘Persuasion using
authority’ and ‘Commitment’ methods.

The proposed CSE-PUC is a task-specific neural network
architecture composed of a CNN and a Multilayer Perceptron
(MLP). The task of the classifier is to decide whether a sen-
tence carries a persuasive payload by producing a probability
distribution over the sentence classes, thus deciding whether
the sentence is a pp-container. The CNN was used as a
feature extractor in the first layer of the CSE-PUC, and it was
integrated at a later stage with the rest of the architecture. The
full CSE-PUC network was trained end-to-end, producing the
end result of the prediction task.

As mentioned in the Introduction, predicting that a written
sentence carries a persuasive payload can be cast into a sen-
tence classification task that identifies specific patterns in the
sentence. These patterns are composed of specific sequences
of ordered sets of tokens (i.e., words in the sentence). Thus,
identifying a persuasive payload in a sentence means identify-
ing informative local features that may be repeated, regardless
of where they are placed in the sentence. Let us consider
the following sentence that is part of our CSE Corpus [41]:
“I need that information to report back to my boss.”. We can
easily conclude that some of the words are highly informative
of a persuasive payload existence (i.e., the word boss denotes
a possible use of the persuasion principle of authority), which
holds true regardless of the position of this word in the
sentence.

We aim to create a deep learning network architecture, the
CSE-PUC, which we will feed with sentences to identify such
informative cues. CNNs with convolutional and pooling lay-
ers are used to identify such local cues [48], where they have
been used to identify indicative phrases for specific tasks.
Furthermore, it is not important where this pattern may appear
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FIGURE 2. Convolution was applied over a sentence with a window of
size k = 3 and an output of dimension ¢ = 6.

in a sentence. The main point of interest is only the existence
of a specific sequence of tokens of varying lengths that
indicates a particular cue. A convolutional neural network
identifies indicative local patterns (linguistic structures) and
combines them to produce a fixed-size vector representation
of these structures. This fixed-size vector represents the local
patterns that are most informative for the prediction task at
hand, which in our case is persuasion payload recognition.

When using a CNN architecture for a natural language task
such as sentence classification, we initially apply a nonlinear
function at the convolution layer of the CNN, which is learned
over each k-sized window of tokens sliding in the sentence.
This nonlinear function is called a filter and transforms the
k-sized window of tokens into a scalar value. We can even
apply multiple filters, that is, £ number of filters, and instead
of a scalar, we can obtain a vector equal in dimensions to
the number of filters applied. Next, in the pooling layer
of the CNN, the pooling operation combines the resulting
vectors from the different k-sized windows into a single
£-dimensional vector by taking the maximum (max pooling)
value observed in each of the £ dimensions over the different
k-sized windows. Each filter identifies a different feature
from the input data window and the pooling operation selects
the most important ones. The output of the ¢-dimensional
vector is then fed into the following parts of the overall net-
work architecture. The parameters, which are the values of the
filters applied, are tuned by back-propagating the gradients
from the network loss during the training phase. In Fig.2 we
can see an example of a convolution with a sliding window
of size k = 3, and 6-dimensional output £ = 6 applied to
the following sentence *“I need that info to report back to my
boss.”

B. DATASET

The CSE-PUC architecture was trained using the CSE corpus
which was created by collecting realized and fictional social
engineering attack dialogues from social engineering dark
websites (forums, tutorials, etc.), social engineering books,
and several logs. The corpus was enriched using the word-
embedding technique by adding sentences with synonymous
or similar words based on a pre-defined ranking.

After a pre-processing pipeline composed of noise removal
(stopwords, empty lines, etc.), tokenization, and standardiza-
tion, the CSE corpus was created having the characteristics
presented in Table 2.

The CSE corpus was explicitly labeled for the pp-container
prediction task. Each of the 3880 sentences was labeled
as a pp-container based on the criterion of whether any of
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TABLE 2. CSE corpus id.

Corpus name CSE Corpus

Collection Methods Web scraping, pattern-matching

text extraction

Corpus size (N) 56 text dialogues/3380
sentences
Vocabulary size (V) 4500 terms

chat-based dialogues
June 2018-December 2020
June 2021

Content
Collection date
Creation date

pp-container = neutral

FIGURE 3. The modified CSE corpus was annotated for the pp-container
classification task, and the outcome was a well-balanced corpus
composed of 51,1% pp-container sentences and 48,9% neutral sentences.

Cialdini’s persuasion characteristics exist in the sentence or
not. After the annotation task, the final dataset was well
balanced, as depicted in Fig.3 where 51,1% of the sentences
were pp-containers and 48,9% were not (denoted in the figure
as neutral).

The distribution of the number of words in the sentences in
each class is shown in Fig.4. We can observe that most social
engineers utilize short sentences to unleash their attack, and
they use more words to become friendly before their actual
attack.

C. OPERATION

The CSE-PUC takes as input the sentences exchanged
between the interlocutors of the chat-based conversation.
The words are represented using word vector embeddings,
which are either trained by us (own trained) or by others
(pre-trained). When there is a lack of a sizeable supervised
training set, a common method to improve the performance of
the deep learning algorithm is the word embeddings initializa-
tion using pre-trained vectors obtained from an unsupervised
neural language model. During our tests, we used the publicly
available fastText word vectors [49] trained on 630 billion
tokens on the Common Crawl. The vectors have a dimension-
ality of 300 and were trained using a continuous bag-of-words
architecture [50]. All words in the CSE corpus vocabulary
that were not present in the set of pre-trained words were
initialized randomly with the same dimension and variance.
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FIGURE 4. Distribution of words per sentence class in the CSE Corpus.

The operation of our CSE-PUC can be explained easily
using a toy example. Let us assume that we have a corpus
composed of just two sentences (taken from the CSE Corpus):
“I need your username” and ‘‘Please read me your pass-
word.” This corpus has a vocabulary (set of different words)
of size v = §, the length of the largest sentence was n = 3,
and there are two sentences in the corpus; thus, b = 2. All
sentences should have the same length to be fed as inputs
to the CNN. Therefore, the first sentence is padded until it
reaches a length of five. Each word in a sentence is repre-
sented by word embedding (e.g., one-hot and fastText). For
ease of visualization in this example, we assume a one-hot
representation. The word embeddings are shown in Figure 5.

If we assume that we are processing only one sentence
(the first), then it is evident that we are dealing with an n % v
matrix, which in our example is 5 x 8. In contrast, if we
process a batch, or, as in our case, the whole corpus of size
b = 2, then we can represent the sentences in the corpus with
a2 x5 x 8tensor.

The convolution filter will have a size of m * v, where
in our example m=2, to process two words simultaneously.
Convolving the n * v input with the m x k filter provides a
feature map of 1 * n dimensions. If multiple filters q are used,
we obtain a q * n matrix, as shown in Fig.6.

The convolution operation plays a vital role in preserving
the spatial information of the sentences. With q different
layers with different filter sizes, the network learns to extract
ratings with different size phrases, leading to improved per-
formance. Subsequently, the max-pooling operation subsam-
ples the outputs produced by the previously discussed parallel
convolution layers. Therefore, from the q * n feature map, a
g * 1 vector was produced by concatenating the maximum
elements of each convolution layer (Fig.7).

The end-to-end CSE-PUC neural network architecture is
shown in Fig.8.

D. ARCHITECTURE

Our CSE-PUC network is trained end-to-end. As mentioned
earlier, we use a CNN as a feature extractor that produces
a sequence of vectors that is later fed into the following
parts of the network to conclude with a prediction. Every
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FIGURE 5. One-hot word vector representation of a corpus composed of
only two sentences; thus, b = 2. The vocabulary was of size v = —8, and
the largest sentence was of size n = 5.
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FIGURE 6. 1-D Convolution of a n*v input with a m*k filter. A number of q
filters outputs a q*n matrix.

interesting pattern in each sentence that is informative for the
pp-container classification task is captured by our CSE-PUC.

We use a convolutional neural network with one layer of
convolution trained on top of word vector embeddings created
by fastText (own trained and pre-trained). Our CSE corpus is
appropriately annotated with labels corresponding to the two
classes of sentences: pp-container and neutral. In the case of
pre-trained word embeddings, the CSE corpus was also used
for transfer learning on top of the pre-trained word vectors.
Our word vocabulary of size v contains words projected from
a 1 —of — v encoding to a reduced dimensionality vector
space via a hidden layer. As already mentioned, these reduced
dimensionality word vectors encode the semantic features of
vocabulary words.

Fig.9 illustrates the functional end-to-end architecture of
CSE-PUC network, where only two filters per window are
shown for ease of visualization. The labels above the layers
represent the operations performed in each layer.
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FIGURE 8. Abstract Persuasion classifier neural networks determine
whether a sentence is a pp-container or not.

The operations of the convolutional and pooling layers are
described in the following subsections.

1) CONVOLUTION
Suppose that we have a sequence of n words wy, =
w1, Wa, ..., wy, which constitute a sentence, and each word
w; is projected in a d-dimensional space, and thus is asso-
ciated with a d-dimensional word vector (word embedding)
Epw; = wi. To apply a 1-D convolution of width k, we slide a
k-width window over the sentence and apply the convolution
filter (also called a kernel) to each window over the sentence.
The convolution filter is a dot product with a weight vector u
followed by a nonlinear linear activation function, which in
our case is a rectified linear unit (ReLU) [51].

Therefore, the i-th window of the k words w;, wit1, ...,
witk results in the concatenated vector x; = [w;, Wit 1, ...,
Witk] € R¥*4 On each concatenated vector, the convolution
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FIGURE 9. Functional end-to-end architecture of the CSE-PUC, where the
labels above each layer represent the operations performed.

filter is applied, and the vector is transformed to a scalar value
ri = f (x; o u), where f is the nonlinear-linear activation func-
tion, r; € R, x; € R¥*4 and u € R**4. When multiple £ filters
are used, arranged in matrix U, then r; = f (xjo U + b),
where r; € RY, x; € RF*4 U e R¥* and b € R is the bias.
The vector summarizes the i-th window and captures various
kinds of informative information in each dimension.

2) POOLING

When the convolution operation is completed, the output
is q vectors p;., where p; € R®. Next, these vectors are
pooled (combined) to form a vector ¢ € R, representing the
entire sequence and capturing and encoding all informative
cues for our persuasive payload recognition task. We use
1-max-pooling, which takes the maximum value across each
dimension, which equally means that it selects the most
important feature. Vector ¢ is fed to a fully connected layer
that uses the SoftMax function to output a probability distri-
bution over the pp-container classes.

The loss for our network architecture is calculated for the
persuasive payload recognition task by back-propagating the
error all the way back through the pooling and convolution
layers, as well as the word embedding layer. During the
training, the convolution matrix U, the bias vector b, the fully
connected layer, and potentially the embedding matrix E such
that the vector c resulting from the convolution and pooling
process indeed encodes information relevant to the task at
hand.

Returning to our example sentence “I need that info to
report back to boss” and adapting to the inspiring work
of Goldberg [52], we illustrate in Fig.10 the convolution,
pooling, and max-pooling operations. In the illustration,
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there is a window of size three, and each word has been
transformed into a 2-dim embedding vector (not shown).
The word-embedding vectors are concatenated, resulting
in a 6-dimensional window representation. Each of the
eight windows was transferred through a 6 x 3 filter
(linear transformation MUL followed by ReLU), resulting
in eight 3-dimensional filtered representations. Finally, the
max-pooling operation is applied, which takes the maxi-
mum over each dimension (feature), resulting in the final
3-dimensional pooled vector.

E. MODEL TRAINING
Parameters like the number of filters, filter sizes, the archi-
tecture of the network, etc., have all been fixed before Step 1.
They did not change during the training. A summary of the
training process follows, while Table 3 presents the same
process in pseudocode:

- STEP 1: All filter values and weights were initialized
using fastText word vector representations (either own
trained on the CSE corpus or pre-trained).

- STEP 2: The network takes a training sentence as input,
then the forward propagation step is executed where the
convolution operation, ReLU, and pooling operations
take place in the fully connected layer and outputs the
probabilities over the classes. Let us suppose that the
output probabilities for the sentence “I need that info to
report back to my boss” are at the end of the first epoch
[0.9, 0.1]. For the first training example, the weights are
randomly initialized; thus, the output probabilities are
also random.

- STEP 3: Calculate the total error at the prediction layer

1
Total Error = Z 2 (target probability
— output probability)2 1)

- STEP 4: Use A back-propagation algorithm was used to
calculate the gradients of the error regarding all weights
in the network. Then, gradient descent is used to update
all the weights and filter values to minimize the output
error.

— The weights are adjusted in proportion to their con-
tribution to the total error.
— The values of the filter matrix get updated.

- STEP 5: Repeat steps 2-4 with all sentences in the
training set.

When a new (unseen) sentence reaches the CSE-PUC
network as input, the network goes through the forward prop-
agation step and outputs a probability for each class (for a
new sentence, the probabilities over the classes are calculated
using the weights that have been optimized to classify all
previous training examples correctly).

The above steps train the CSE-PUC network, which means
that by the end of the training process, all weights and filter
values of the network will be optimized and ready to classify
sentences from the training set.

VOLUME 10, 2022

max

W (11}

P my bos!
epciahat - 900080 {MUL + RelU —— @ @ ®)
need that infe - oeeese - (UL ol —H—@0®)
Matimei: . 000008 - MUL+Rel] 1 —@0@)
- 000000 {MUL+ ReLl) — [T @ 9@
- 000000 S MUL + Rell] — T (@@ @)
report btk 10 - eee6ee - ©00)
—— ee®e®e0® {muL kn.i:, H—@8®)
- 000000 JMuL + et — (@9 @)

FIGURE 10. Illustration of convolution, pooling, and max-pooling
operations using a window of size three. Each word vector representation
is of size 6, and after the max-pooling operation a 3-dimensional vector is
produced.

The training process of the example input sentence “I
need that information to report back to my boss” from a
higher-level perspective is illustrated in Fig.11.

V. RESULTS

PyTorch [53] was used to implement the CSE-PUC archi-
tecture. This python library is dedicated to facilitating rapid
research on deep learning models by easing the implemen-
tation of innovative neural network architectures. AllenNLP
[54], a Pytorch-based NLP library designed to support
researchers who want to build novel natural language models,
is also used. Pytorch Lightning [55] and wandb [56] com-
pleted our toolset to manipulate the training pipelines and
Bayesian hyper-parameter sweep.

The critical difference between the different variations
of CSE-PUC architectures that were tested in the word
vector representation layer. Initially, we created our own
trained word vectors using the cutting-edge algorithm fast-
Text trained on the CSE corpus. fastText [57] is an algorithm
and a word-embedding library developed by Facebook that
uses information from linguistic units smaller than words to
train high-quality word embeddings. In addition, we utilized
fastText pre-trained word vectors, which were treated either
as fixed (they are not updated during training) or as updated
parameters of the CSE-PUC network. Finally, we used ran-
domly initialized word vectors in one test turn. Thus, the four
variations of our CSE-PUC were

- Own-trained CSE-PUC: word embeddings are created
using the CSE corpus and fastText

- Fixed pre-trained CSE-PUC: fastText pre-trained vec-
tors are used and remain fixed during the pp-container
CNN training.

- Updated pre-trained CSE-PUC: fastText pre-trained
vectors are used and updated during network training.

- Random CSE-PUC: where the word embeddings are
initialized using random numbers

A standard 80/10/10 split of the CSE corpus was made for the
training/development/test sets, and a five-fold validation was
conducted using the average scores across folds to compare
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TABLE 3. Algorithmic steps of CSE-PUC training.

TABLE 4. Units for magnetic properties.

Algorithm CSE-PUC

Require labeled SOURCE corpus, unlabeled TARGET corpus,
hyperparameters

Input dataset D € CSE Corpus, n words wy.,, = Wy, Wy, ..., Wy, ,
sentence Ep,,; = w;, concatenated vector of k words x; , weight vector
u, nonlinear-linear activation function £ ; € R,x; € R andu €
Rk*d.

Initialization CSE-PUC training hyperparameters initialization: batch
size, training epochs, learning rate, dropout rate, optimizer

Begin Training:

Step 1: CSE-PUC network hyperparameters initialization: filter size,
number of filters, weight values, padding, activation function, stride
length, pooling method,

Loop: for each sentence E in dataset D

Step 2: do forward propagation:
1-D Convolution operation, transform vector x; =
Wi Wit o Wigied € RE 01y = f(x; 0 w)
Pooling operation: output q vectors p;qwhere p; € R?

Step 3: Calculate Total Error
Total Error = ) é (target probability — output probability)?

Step 4:  Backpropagate the error and adjust the model parameters.
Calculate gradients of the error regarding all weights in
the network
Execute gradient descent:
Update all filter and weight values
End Loop

End Training

Qutput: Probabilities over the classes
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need o
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FIGURE 11. End-to-end training of the persuasion classifier for
recognizing whether a sentence is a pp-container.

the performance of the different model variations. The learn-
ing rate was 0.001, the training batch size was 16, and all
models were trained for ten epochs. Additionally, a dropout
0.1 probability was applied to reduce overfitting.

The four different learner implementations were also com-
pared against an SVM baseline model, which is a traditional
machine learning technique that is simple and flexible in
addressing a wide range of classification tasks.

The experimental results are presented in Table 4 and
illustrated in Fig.12 and 13. In the former figure, the x-axis
represents the number of epochs in training the variations in
the CSE-PUC network. The y-axis represents the accuracy
ratio of the CSE-PUC on the validation set. The CSE-PUC
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Model Accuracy Macro F1
SVM 70.4 % 57,2 %
Own-trained CSE-PUC 62.2 % 54.8 %
Fixed pre-trained CSE-PUC 66.4 % 57.3%
Updated pre-trained CSE-PUC 71.6 % 58.2 %
Random CSE-PUC 60.5 % 51.7%

with updated pre-trained word embeddings yielded the best
results among the four different CSE-PUC variations. It out-
performed the fixed pre-trained word embeddings, CSE-PUC
with own-trained embeddings, and CSE-PUC with randomly
initialized word embeddings by a clear margin, achieving an
accuracy of 71.6%. The fixed word embedding representation
gave the second maximum accuracy of 66.4%, while the
CSE-PUC with own-trained word embedding representation
attained an accuracy of 62.2%, and the CSE-PUC with ran-
domly initialized word embeddings had the lowest accuracy.
These experimental results confirm the significance of word
vectors learned from extensive unlabeled text data in captur-
ing syntactic and semantic information.

The minor improvement of the pp-container CSE model
against the pp-container random model can be attributed to
the insignificant influence of the context information, which
calls for further research regarding the extraction of context-
related features. Nevertheless, the competitive results of the
updated and fixed models are promising and can be used as
part of a multifactor CSE recognition system, such as that
proposed in our previous work [4].

These results also suggest that fastText pre-trained vectors
are suitable, ‘universal’ feature extractors, and can be uti-
lized across datasets and corpora. Finetuning the pre-trained
vectors for the pp-container classification task yielded satis-
factory improvements.

VI. DISCUSSION
The CSE-PUC architecture details and training choices are
presented in Table 5.

During our tests of the CSE-PUC, several different archi-
tectures were tested (e.g., multiple layers of convolution), but
no significant increase in performance was observed; thus, a
simpler architecture was selected. Our experiment acted as a
proof-of-concept for the eligibility of simple neural network
architectures as aid tools for cybersecurity defense mech-
anisms. The fast pace of research regarding deep learning
algorithms and natural language processing techniques offers
the opportunity for cybersecurity researchers to quickly adapt
and apply new innovative tools. What is usually missing is the
context awareness of the specific task at hand. In our case,
recognizing whether persuasion methods existed in a sen-
tence during a potential chat-based social engineering attack
was cast as a sentence classification problem. Moreover,
we had to tune the NLP and deep learning toolset to meet our
needs for this approach to work. We made the toolset aware of
the cybersecurity domain, specifically, the chat-based social
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FIGURE 12. Accuracy ratio of the validation set for four different CSE-PUC
variations regarding the method of word embedding initialization.
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FIGURE 13. Loss on the validation set for the updated pre-trained
CSE-PUC, own-trained CSE-PUC, fixed pre-trained CSE-PUC, and random
CSE-PUC models.

engineering attack recognition domain. The CSE corpus and
persuasion-oriented annotation played a critical role in this
awareness. The annotation transforms a corpus composed of
chat-based social engineering attacks into a corpus capable of
recognizing persuasion attempts while remaining in the realm
of CSE attacks.

Furthermore, the word-embedding layer of the overall
CSE-PUC architecture, which encodes the written sentences
of the interlocutors was trained over the CSE corpus. During
this process contextual knowledge from the digital battlefield
is injected in CSE-PUC. In addition, the use of pre-trained
word embeddings (fastText) yielded more efficient results
than CSE pre-trained or randomly initialized word embed-
dings. This was expected because the vast corpus (6004
billions of words) used for training was not easy to beat.
Nevertheless, the CSE-PUC variation that used word embed-
dings trained on CSE Corpus gave satisfactory results, and
future enrichment of the CSE corpus would be beneficial for
transfer learning.

The convolutional neural network as an encoder and a
feature extractor has already been tested, measured [46],
and trusted for text classification. The convolution operation
plays an essential role in preserving the spatial information
of a sentence. In the present study, we trained a convolutional
neural network with one convolution layer that uses multiple
filters and filter sizes to obtain multiple features. Different
filters were able to capture distinctive features from each
sentence. The CSE-PUC variations independently learned the
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TABLE 5. CSE-PUC architecture & training details.

Description Values
Batch size 16
Word Embeddings fastText
Word Embeddings size 300
Filter sizes 2,3,4,5
Number of filters 100,100,100,100
Stride length 1
Zero padding Yes
Activation function ReLU
Pooling method 1-max
Dropout rate 0.1
Training epochs 10

values of these filters on their own during the training process.
However, before the training process, we still need to specify
several hyperparameters, such as the number of filters and
filter size, as shown in Table 5.

All hyperparameters were chosen via a grid search of the
development set. As the number of filters increases, more fea-
tures are extracted, and the network’s recognition capability
improves for unseen sentences. However, to avoid overfitting,
constraints were applied to the 12 norms of the weight vectors
as a regularization technique by employing a dropout rate
of 0.1. Various dropout rates were tested, that is, when the
number of feature maps was increased, the dropout rate was
also increased to avoid overfitting effects. A rectified linear
unit (ReLU) was selected and used as the activation function
for the convolution layer, but tanh was another excellent
candidate with slightly worse performance results. Finally,
mini-batches of size 16 were fed to the CSE-PUC, and filter
sizes of 2, 3, 4, and 5 were used with 100 feature maps each.
During training, the Adadelta optimizer was selected.

Because of the small size of the training corpus, we wanted
to avoid the out-of-vocabulary (OOV) problem, which was
mitigated by the fastText algorithm, taking advantage of the
aging subword and alleviating the OOV problem.

It is common for a neural network to be trained for days or
even weeks but such a training duration would be a limitation
for a network like CSU-PUC. Thus, training efficiency and
speed are critical for an application like CSE attack recogni-
tion and choices must be made with care and after exhausting
grid search. A neural network’s complexity analysis is neces-
sary because the dimensionality of a neural network is a key
factor in its learning and performance ability. It is a design
decision that should be taken with care as it plays a vital role
in the computational cost. Although the computational cost
involves several computer resources such as central process-
ing unit speed, random access memory, etc. it usually refers
to the time required to complete a certain operation. Con-
cerning neural networks, the computational cost is a measure
of the number of computing resources used for training or
inference which leads us to know how much power or time
we need to train or use a neural network. There are several
ways to measure computational cost such as floating-point
operations (FLOPS) or multiply and accumulate operations
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(MAC:s). Considering the operation of a neural network, mea-
suring the multiplication of inputs and weights and adding
them is critical to conclude about their computational cost.
The convolutional layers that CSE-PUC uses are very effi-
cient for one-dimensional sequences analysis that we apply
for the recognition of CSE attacks. Furthermore, even for
larger text sequences, convolutional layers can be used as
a pre-processing step that extracts higher-level features that
later will consume further processing cycles. CSE-PUC has
one convolutional layer and according to [57] the complexity
is O(n*d xk xf) where n is the sequence length, d is the rep-
resentation dimension, k is the filter size and f is the number
of filters. The fact that CSE-PUC has only one convolutional
layer keeps complexity low and makes the model efficient for
implementation.

VII. CONCLUSION
Overall, our results suggest that satisfactory performance

levels can be achieved while keeping a simple model archi-
tecture and low computational costs. This approach broadens
our understanding of embracing machine learning models
to respond to real-life cyber threats and might help fellow
researchers adapt similar machine learning algorithms to
solve cybersecurity problems. Our research indicate that the
same approach can be used as a generic solution framework
within which we can cast cybersecurity problems related to
natural language into text classification problems. Following
a similar pattern, we can also try to recognize deception acts,
detect personality traits, or recognize speech acts by using
modern text-classification machine-learning techniques.
However, the present study examined only simple CNN
architectures. Therefore, further research should investigate
different architectures and word-representation techniques.
Although the problem of model interpretability remains, there
is work in progress in this direction, and in the meantime,
it is hard not to take advantage of the current trends in deep
learning. Chat-based social engineering attacks are a key area
to be explored further by utilizing recent developments in the
deep learning and natural language processing fields. We are
already working to integrate our findings and complete our
CSE attack recognition system, which utilizes multiple fac-
tors (recognizers), as it was first proposed in our initial work.
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