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Abstract— Traffic sign recognition and autonomous vehicles 

computing are a few of the innovative applications which are 

emerging in the domain of mobile edge computing. Distributed 

machine learning in the form of Federated Learning (FL) has been 

applied to mobile edge computing through a range of methodologies 

and techniques for intelligent feature classification approaches. The 

challenges that research on such FL methods is facing is twofold: 

identify an optimal distributed architecture and algorithm 

components to each side to meet the demand of heavy data 

processing, and enhance the algorithm components with heuristics 

that fit to the problem domain and optimize the key parameters of 

the algorithms. In this prospect, we present a Federated Learning 

implementation based on a neural network architecture with 

emphasis to traffic sign image recognition. Our benchmark was 

tested with two FL strategies seeking an optimal performance model 

and in reference to a corresponding data set. We present the results 

of this work while we define the scope of future improvements to 

our model. 
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I. INTRODUCTION 

Federated Learning emerged as client devices hardware 
characteristics evolved and there were able to perform much 
more complex computations.  Client devices become more 
powerful and last more most of the times does not execute 
only one task, e.g. act as a receiver, but they execute many 
parallel actions, e.g. mobile phones are able simultaneously to 
handle calls, receive messages and upload data. For this 
reason, client devices most of the times act as a multi-purpose 
device that are able to perform many actions. Furthermore, the 
evolution of networks enable all kind of devices to transmit 
much faster and more reliable huge amount of data, e.g. 5G. 

The models trained on the data existing on each client and 
only the updated parameters are sent to the central server. The 
central server aggregates the updated parameters sent by the 
clients and produces the final machine learning model. A 
complete ecosystem has been developed around containers 
enabling software engineers to develop more complex and 
advanced applications. Containers exist in the most services / 
solutions that are currently online either in on premises 
infrastructure or in the cloud. 

II. COLLABORATIVE APPROACH TO MACHINE LEARNING 

Federated learning is a relatively new, collaborative 

approach to machine learning that avoids the aggregation of  

all trained data at a certain point. This is particularly 

important since the data remains throughout the training on 

the devices that produce it [1]. Limiting unnecessary 

communication of data helps to protect the training data from 

various types of attacks (e.g., poisoned data by malicious 

clients, backdoor attacks, advanced persistent threat attacks, 

etc.) and reduces the risk of unwanted access to them [17]. 

A. Communication of data to protect the training data 

Through federal learning, the training of a machine 

learning model, such as a neural network, is taking advantage 

of many local datasets. Client devices are becoming more 

powerful and longer-lived, and in most cases not just one task, 

such as acting as a receiver, but performing many parallel 

operations, such as the phone can make calls, receive 

messages at the same time and upload data. Because of this, 

client devices mostly act as multipurpose devices that can 

perform many operations. This data remains permanently in 

local nodes and are not accessible outside of them. Instead of 

moving the data itself [2], certain local models are trained 

based on the corresponding local data sets and then transfer 

their parameters, which are then transferred only their weights 

and polarities. Through this process, a single and global model 

is finally concluded, which is trained without ever having 

access to the data itself. In summary, the copies of a central 

model are distributed to a number of distributed nodes, which 

train them based on their own local datasets and send the 

results to the central node in order to synthesise the general 

model.  

One of the most known algorithms used to train the model 

in Federated Learning is Federated Averaging algorithm. The 

model can be trained if we execute the following steps 

(Figure 1): 

 

1. Server selects 𝑛 clients from the pool 

2. Server sends to these clients the initial parameters 𝛩𝑡  
3. Each client receives initial parameters 𝛩𝑡  from the 

server 

4. Each client in order to produce an updated parameter 

𝛩′ runs some iterations of SGD (Stochastic Gradient 

Descent) 

5. Each client returns 𝛩′ − 𝛩𝑡  to the server 

6. Server calculates weighted average of the client 

updates as 𝛩𝑡+1 = 𝛩𝑡 − 𝑑𝑎𝑡𝑎 

 



 

Fig.  1. Federated Learning Proposal 

B. Data privacy and security challenge 

In order to achieve the protection of personal data, it is 

not enough to comply to an appropriate legislative 

framework. The design of the systems should address the 

requirement of processing personal data on the principles of 

privacy [3]. As far as machine learning systems are 

concerned, various methods have been proposed and 

developed to protect privacy. For example, [16] presents four 

privacy-preserving categories: encryption-based, 

perturbation-based, anonymization-based, and hybrid 

approaches. 

The encryption-based techniques include homomorphic 

encryption, secret sharing, and secure multi-party 

computation. The perturbation -based techniques (e.g., 

differential privacy, additive perturbation, multiplicative 

perturbation) add statistical noise to the original data, so that 

the reverse mapping of perturbed data to the original data to 

become almost impossible. 

Anonymization techniques (e.g., k-anonymity, l-

diversity, and t-closeness) are establishing group-based 

anonymization without sacrificing the utility of the produced 

data. 

C. Lenet-5 CNN model 

The main advantage of Convolutional Neural Networks 
(CNN) compared to other Neural Network models of 
federated learning is that it automatically detects important 
features without any human supervision [5]. They use special 
concatenation and grouping functions and perform parameter 
sharing making it computationally efficient and allowing it to 
work on any device. Indeed, experiments with a combined 
Lenet-5 for local training and FedAvg for the training of the 
global model [6] approach has been executed by the authors 
with a large database (GTSRB) of traffic sign images. The 
experiments validated the hypothesis that the Lenet CNN 
architecture provides higher quality on the local training 
model. 

Our objective is to deepen our research into the domain of 
edge computing. Thereby, experiments should be carried out 
using our proposed algorithm as part of a multi-layer 
architecture for client, regional and cloud aggregation. This is 
for handling edge computing constraints such as lack of 
resilience to mobile client communications [7], capacity 
restrictions and data privacy. Furthermore, the algorithm may 
be evolved to incorporate a client selection method so that a 
proportion of the connected clients may be contributing to 

local training at each communication round without reducing 
accuracy [8]. An approach that is currently our research by the 
authors is the aggregation of client data to an edge layer before 
transmitting them to the global model. Gradient Descent, and 
Adam Optimizer are some of alternative methods that could 
be used instead of the Lenet-5 CNN model. In a similar traffic 
sign classification problem using the GTSRB database, 
reports that Gradient Descent maintains a consistent training 
accuracy of 100% after 20 iterations[9], whereas the 
performance of Lenet-5 and Adam Optimizer is fluctuating. 
Also, although our Lenet-5 reaches 100% of training accuracy 
in less than 20 iterations, the accuracy of the model is 
fluctuating as well. Interestingly, Adam Optimizer performs 
better than the other algorithms with regards to testing 
accuracy. Therefore, a useful experiment would be the 
combination of the Lenet-5 CNN model with Adam optimizer 
[10] to reach the accuracy of Gradient Descent but in less 
iterations. This is based on the advantage of our model and 
Adam Optimizer of a non-static learning rate in comparison 
to Gradient Descent. 

The systems will autonomously perform predefined 

scaling actions and meet the pre-agreed performance 

requirements with the minimum resource requirement. The 

mechanisms and workflows used by the system to fulfil 

flexibility goals, as well as [11] any evaluation criteria and 

support any decision-making process vary from one system 

to another or from one application to another, even within the 

same system. 
 

D. Complexity of the proposed CNN model 

The computational complexity of the proposed Lenet-5 
algorithm takes into account the resources required and the 
convolutional steps taking place at each layer. As shown on 
table [12] the convolutional layers consist of a number of 
cores to reduce the dimensionality of the input images into a 
featue map. Then a mean sampling level method is executed 
to reduce the size of each feature map and an activation 
function to provide the output dimensions as input to the next 
layer. The algorithm goes through leveling plane methods of 
3 more layers (FC1, FC2, FC3) which convert the feature 
maps into vectors of elements. The number of neurons used 
per each layer is equal to the number of different categories to 
be identified. Finally, a Softmax activation function is used at 
the final layer to normalize the output of each neuron in the 
scale of (0,1). 

Layer Input 

dimensions 

No of 

weights 

Output 

dimensions 

Convolutional 1 (C1) 1x32x32 60 6x30x30 

Average sampling 1 (AP1) 6x30x30 0 6x15x15 

Convolutional 1 (C2) 6x15x15 880 16x13x13 

Average sampling 2 (AP2) 16x13x13 0 16x6x6 

Leveling (FL) 16x6x6 0 1x1x576 

Fully Interconnected 1 (FC1) 1x1x576 69240 1x1x120 

Fully Interconnected 2 (FC2) 1x1x120 10164 1x1x84 

Fully Interconnected 3 (FC3) 1x1x84 850 1x1x10 

 

III. FL ARCHITECTURE FOR AUTONOMOUS 

VEHICLE SERVICE.  

Traffic sign recognition is considered one of the 

fundamental techniques for autonomous vehicles. Colors are 



very important clues to identify traffic signs however 

research work has indicated that high accuracy or 

consideration of light variation requires advanced methods to 

process them, for example Deep Learning [13]. 

Convolutional neural networks are such a deep learning 

method which parses raw images, extracts and learns 

hierarchically high-level features. Inputs of CNNs are 

processed either as gray images or as three independent color 

channels and other transformations need to be applied to 

explore and encode all features of traffic signs. 

We propose a Federated Learning model based on a 5 

layers Lenet CNN algorithm to extract hierarchically high-

level features of traffic sign images. We take as case study 

the GTSRB data set. Experimental results illustrate that the 

proposed method can yield correct recognition results and 

achieve an efficient computing architecture which scales up 

by allocating optimally resources. 

The client model makes use of specialized classes to parse 

the raw input and extract its high level features which are then 

forwarded to the Lenet CNN model for training and 

validation. Specific parameters (e.g. number of clients, 

epochs, learning rate, classifier) are available for further 

tuning of the performance and scalability metrics of the 

client. The server implements the Federated Averaging 

algorithm for updating the global model and return to the 

clients the updated weights.  

Our initial experiments have been done using the pytorch 

framework. The FL client includes three parts: a) The Lenet 

CNN class which implements the CNN model, b) the GTSRB 

Client class which implements the parsing of the road signs 

and feeding into the CNN model, and c) the local client which 

implements the local training, validation functions and 

communication with the server. 

 

The GTSRB Client class uses as input the following 

training settings: 

• Data (default='data'): the folder where data is 

located 

• batch-size (default=64): the input batch size for 

training 

• Epochs (default=100): the number of epochs to train  

• Lr (default=0.0001): the learning rate 

• Seed (default=1): defines a random seed 

• log-interval (int, default=10): defines how many 

batches to wait before logging training status 

A function load_data in this class takes as input the 

aforementioned parameter settings to prepare the reading of 

the image data set. The function applies data transformations 

to augment the input images with a specific set of features 

(‘filters’) such as brightness, hue, saturation, rotation, hvflip, 

alignment. This is to filter any jitter occurring to the images 

due to horizontal lines of image frames which are randomly 

displaced due to the corruption of synchronization signals or 

electromagnetic interference during transmission. The 

function is invoked returning an object which holds in 

memory the set of data to be used for training.  

The server side implements the global training model on 

the received data enforcing a Federated Averaging strategy 

for updating the global weights on the trained data. 

 

 

 
 

Fig 2, Lenet CNN model (FL client) 

 

The Lenet CNN class includes two main functions: init 

and forward. As Fig 2 elaborates, the init function actually 

invokes the required objects to define the layers of the 

convolutional neural network. The Conv2d builds a 

convolutional layer of two dimensions and supports Tensor 

Float of 32 cores which are designed to achieve better 

performance on matmul and convolutions by rounding input 

data to have 10 bits of mantissa. The Linear applies a linear 

transformation to the incoming data and supports Tensor 

Float of 32 cores as well. The CrossEntropyLoss function is 

used as the error function. A prerequisite for its use is that the 

data set categories are mutually exclusive. In the GTSRB this 

condition is met, since each image represents only one 

handwritten digit. 

  

class MyLeNet(input parameters): 

 def init():         

  conv1 = Conv2d (3, 6, 5) 

  conv2 = Conv2d (6, 16, 5) 

  fc1 = Linear (16 * 5 * 5, 120) 

  fc2 = Linear (120, 84)             

  ceriation = CrossEntropyLoss() 

 

 def forward(Tensor) -> Tensor:        

Tensor = conv1 (Tensor)             

Tensor = F.max_pool2d (Tensor, 2, 2)             

Tensor = relu (Tensor)             

Tensor = self.conv2 (Tensor)             

Tensor = max_pool2d (Tensor, 2, 2)             

Tensor = relu (Tensor)             

Tensor = view (-1, 16 * 5 * 5)             

Tensor = fc1 (Tensor)             

Tensor = fc2 (Tensor)             

return Tensor 

 

The forward function takes as input the defined CNN 

model (a Tensor object) forwarding the output of one layer as 

input to another layer. The Max_pool2d applies a two 

dimensional max pooling over an input signal composed of 

several input planes. The ReLU function applies the rectified 



linear unit function element-wise. The View function returns 

a new tensor with the same data as the input tensor but of a 

different shape. The fc1 and fc2 functions return a new tensor 

with the same data as the input tensor but of a different size. 

 

A. Federated Algorithm strategies 

Different heuristics apply depending on the server model 

and client of each proposed algorithm. We are implementing 

a Federated Averaging strategy for the global model. The 

strategy considers a sample of 10% of available clients for the 

next communication round, while we are setting a minimum 

number of clients to be sampled for the next round (default is 

2) and a minimum number of clients that need to be 

connected to the server before a training round can start 

(default 2). As Fig 3 illustrates, we define the fitness 

configuration with a default batch size and learning rate. 

 

# Define configuration parameters of the strategy 

def fit_config(): configuration object 

   set parameter learning_rate: 0.001 in configuration 

   set parameter batch_size: 0.001 in configuration 

   return configuration 

 

# Define the Federated Learning Strategy 

strategy =FedAvg (fraction_fit=0.1, min_fit_clients=2, 

min_available_clients=2, on_fit_config_fn= 

Configuration) 

 

#Start the server with the configured strategy 

start server (IP address: port, no of communication 

rounds:20, strategy=strategy) 

 

As alternative option, we have considered the 

implementation of the Lenet CNN model at client side in 

combination with a Federated Averaging with Momentum 

(FedAvgM) strategy at server side [18]. We inherit the 

assumption of the FedAvgM strategy that it may handle more 

efficiently convergence issues if the data distribution is non 

independent identically distributed (non-IID) [18]. Our 

assumption is that this approach may handle more efficiently 

convergence issues if the data distribution is non independent 

identically distributed (non-IID). We are evaluating the 

hypothesis of whether the momentum factor on top of the 

Lenet CNN model of local client updates is improving 

performance in terms of accelerating the training and 

dampening the oscillations [18].  

In addition to the parameters used in FedAvg strategy, 

FedAvgM, as an enhancement of FedAvg, includes the 

following parameters and functions: 

 

• fraction_eval : Fraction of clients used during validation. 

Defaults to 0.1. 

• min_eval_clients : Minimum number of clients used 

during validation. Defaults to 2. 

• eval_fn : Optional function used for validation.  

• on_fit_config_fn : Function used to configure training.  

• on_evaluate_config_fn : Function used to configure 

validation. 

• accept_failures : Whether or not accept rounds containing 

failures. 

• server_learning_rate: Server-side learning rate used in 

server-side optimization. 

• server_momentum: Server-side momentum factor used 

for FedAvgM. 

IV. PERFORMANCE EVALUATION 

Given the preparation of the GTSRB data set, we have 

proceeded to benchmark the performance of the Lenet CNN- 

FedAvg model in comparison to the Lenet CNN- FedAvgM 

strategy. For the purpose of our investigation on the domain 

of traffic sign recognition, our benchmark was setup to a 

server of the following resources: 

• Processor: Intel Xeon CPU E5504  @ 2.00GHz, 1995 

Mhz, 4 Core(s), 4 Logical Processor(s) 

• RAM: 32GB  

 

The table below explains the performance of the two 

strategies in terms of time and accuracy. 

  
Comm 

Rounds 

Duration 

(secs) 

Accuracy 

FedAvg 20 31868 88,00% 

FedAvg 40 47569 81,96% 

FedAvg 60 71867 59,22% 

FedAvg 80 145642 88,00% 

FedAvg 100 189257 87,98% 

 

FedAvg and FedAvgM have run under client batch size B 

= 32, local epoch counts E ∈ {5}, and 2 clients participating 

in every single round, respectively for a total of {20, 40, 60, 

80, 100} communication rounds. The following figures 

explain the performance of the two strategies in terms of time 

and accuracy. 

 

 
Fig 3. Experiment results: algorithm performance (time) 

In Fig. 3, it is validated that the time is strongly dependent 

to the number of communication rounds (C) and number of 

epochs. As the number of epochs remains the same, the more 

the communication rounds the more it takes to produce the 

final outcome. For the majority of the communication rounds, 

FedAvg requires less time (in seconds) than FedAvgM 

whereas it maintains a constant peak of increase in duration. 

On the other hand, we notice that the effect of learning with 



non-identical data and with server momentum is apparent for 

C=100. FedAvgM requires much less time than FedAvg to 

reach an optimal learning model. 

The table below explains the performance of the two 

strategies in terms of time and accuracy. 

 

 Comm 

Rounds 

Duration 

(secs) 

Accuracy 

FedAvgM 20 38078 86,00% 

FedAvgM 40 71881 83,71% 

FedAvgM 60 111491 74,39% 

FedAvgM 80 149712 50,13% 

FedAvgM 100 125643 86,00% 

 

Although the test accuracy of both FedAvg and FedAvgM 

maintains performance which is mostly above 80%, both do 

not stay constant along the line of the communication rounds. 

The performance of both algorithms fall rapidly below 80% 

when C={60, 80} and start to improve and converge when 

C=100. Overall, FedAvg stays relatively higher than 

FedAvgM, thereby the effect of learning with non-identical 

data and with server momentum is not apparent in this 

benchmark (Fig. 4). Further improvements to both strategies 

will be required. 

 

 
Fig. 4. Experiment results: algorithm performance 

(accuracy) 

V. CONCLUSIONS 

Our proposed federated learning approach decouples 
clients from training a local model and with the 
communication with the server. The only responsibility of the 
client is to create a container, send both data and initial 
parameters to it and destroy container upon creation of final 
model from the server. Even if the data are huge, if we are 
working on image processing, due to the evolutions of 
networks (e.g. 5G) this won’t be a problem. So, we can use as 
client general purposes devices, like mobile phones, that will 
have various sensors and move all the processing to the cloud. 

Our proposal will be evaluated against a predefined set of 
scenarios. This evaluation will help us to identify the value of 
our proposal, to find any weaknesses might exist and further 
develop it. These scenarios will include a predefined number 
of client devices and a set of expected results. The evaluation 
part is very crucial in our approach and it will use predefined 
metrics to evaluate the proposal we make. 
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