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Abstract

Purpose – The purpose of this paper is to create an automatic interpretation of the results of the method of
multiple correspondence analysis (MCA) for categorical variables, so that the nonexpert user can immediately
and safely interpret the results, which concern, as the authors know, the categories of variables that strongly
interact and determine the trends of the subject under investigation.
Design/methodology/approach – This study is a novel theoretical approach to interpreting the results of
the MCAmethod. The classical interpretation of MCA results is based on three indicators: the projection (F) of
the category points of the variables in factorial axes, the point contribution to axis creation (CTR) and the
correlation (COR) of a point with an axis. The synthetic use of the aforementioned indicators is arduous,
particularly for nonexpert users, and frequently results inmisinterpretations. The current study has achieved a
synthesis of the aforementioned indicators, so that the interpretation of the results is based on a new indicator,
as correspondingly on an index, the well-known method principal component analysis (PCA) for continuous
variables is based.
Findings – Two (2) concepts were proposed in the new theoretical approach. The interpretative axis
corresponding to the classical factorial axis and the interpretative plane corresponding to the factorial plane
that as it will be seen offer clear and safe interpretative results in MCA.
Research limitations/implications – It is obvious that in the development of the proposed automatic
interpretation of theMCA results, the authors do not have in the interpretative axes the actual projections of the
points as is the case in the original factorial axes, but this is not of interest to the simple user who is only
interested in being able to distinguish the categories of variables that determine the interpretation of the most
pronounced trends of the phenomenon being examined.
Practical implications –The results of this research can have positive implications for the dissemination of
MCA as a method and its use as an integrated exploratory data analysis approach.
Originality/value – Interpreting the MCA results presents difficulties for the nonexpert user and sometimes
lead to misinterpretations. The interpretative difficulty persists in the MCA’s other interpretative proposals.
The proposedmethod of interpreting the MCA results clearly and accurately allows for the interpretation of its
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results and thus contributes to the dissemination of the MCA as an integrated method of categorical data
analysis and exploration.

Keywords Data mining, Data visualization, Machine learning, Multiple correspondence analysis, Dimension

reduction, Categorical data

Paper type Research paper

1. Introduction
Dimension reduction methods seek to reduce the number of dimensions [1, 2] in the variable
space whilst also preserving the most important structure or relationships between the
variables, i.e. without significant loss of information (capturing the essential information) [3].
They have also the advantage of handling and visualizing the results of complex andmassive
amounts of data [4–7]. Principal Component Aanalysis (PCA) is a popular method for
performing dimension reduction [8] of a set of continuous variables, an effective approach to
capture characteristics [9], with the aim of identifying those variables that contribute most to
the creation of new, composite variables unlike in feature selection [10], known as principal
components or dominant factorial axes. This is achieved via the diagonalization of a
symmetric correlation or covariance matrix [11]. To identify which of the original variables
contribute most to the creation of each principal component, the coordinates of the projection
[1] of the variable points on each factorial axis can only be used, that express the correlation
coefficients of each variable with factorial axis These coordinates express the coefficients of
correlation of each variable with the axis.

In this paper we focus on Multiple Correspondence Analysis (MCA), a generalization
of PCA for categorical data and a generalization of simple correspondence analysis [12],
that is widely used in various scientific fields such as marketing, psychology, health,
economics, management and others [13]. The goal of MCA is to describe the associations
between the categories of two or more nominal variables in a low-dimensional space
containing these categories. Whilst interpreting the results of MCA, users have to
identify which column categories have a major contribution to the definition of the
factorial axes. MCA has been used as a first step for reducing predictors in classification
problems [2], or for receiving new coordinates for performing Hierarchical Clustering on
Principal Components [14] or even as a method for meta analyzing literature findings in
marketing [15, 16]. Proper interpretation of the MCA results by nonexpert users can
often become a difficult task, and consequently it might lead to misinterpretations [17].
The purpose of this paper is to provide nonexpert users with an “automatic” and clear
interpretation of the most important points of MCA’s results, via an alternative
visualization scheme, based on the construction of the so-called interpretive axes and the
corresponding interpretive factorial planes. These proposals come to shrink the existing
research gap providing originality to the study. This eliminates the requirement for the
user to examine and evaluate the tabular MCA output, as well as looking for numbers
and statistics for which additional calculations are frequently required. The proposed
scheme is similar to the one used in the context of PCA and users familiar with PCA can
easily comprehend this one as well. The novelty of this study is the discovery of a
geometrical locus of points on the so-called interpretive plane that improves current
alternative approaches on interpreting the most important points of a factorial plane.
The paper is organized as follows. Section 2 presents the basic concepts for MCA. Section
3 reviews corresponding literature, discuss about research gap and alternatives
addressing the problem. The interpretive axis and the interpretive plane for visualizing
MCA results are introduced in Section 4. Section 5 demonstrates the proposed approach
on a real data set and compares results. Section 6 includes conclusions, discussion,
limitations and implications regarding this research.
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2. Basic MCA concepts
Let X, a n3 s data matrix, where n objects or individuals are characterized by s nominal
variables, Xk. Given that each variable, Xk, in the original data matrix has rk categories, the
data matrix is transformed into the so-called indicator or 0-1 matrix, Z. Each object in Z
receives a value of 1 in a single category of each variable (presence) and the value of
0 (absence) in the other categories of the variable. The indicator matrix is of size n3 p,
where p ¼ Ps

k¼1rk [2] is the total number of categories of all s nominal variables. The sum
of each row in the indicator matrix is s, i.e. the total number of variables, while the sum of
each column (variable category) is generally different and determines the number of object
instances in each variable category. Τhe total sum of rows or columns is n$s. The values
(0 or 1) of each column (variable category) divided by their sum are known as column
profiles [12]. The set of column profiles is the cloud N(J) of category points [18]. The
category profiles are points of the vector space Rn (n the number of objects). Each sum of a
column j in Z is denoted as K.j and each sum of a row i as Ki., respectively. The sum of all
variable categories is thus equal to n$s. If we divide K.j by the total sum n$s., the result is
known as the mass or weight of category j and is denoted asmj. The column profile points
together with their mass constitute the cloud of column profiles and are the ones that carry
the information of the data. The center of gravity of the column points is also easily shown
to be the point n-tuple g, where g ¼ �

1
n
; 1

n
; � � � ; 1

n

�
. Another central concept of MCA is the

concept of inertia [12]. Let j be a category profile point of a variable with sum K.j. The
square of the distance d2

X2ðj; gÞ of the profile point j from the center of gravity

g ¼ �
1
n
; 1

n
; � � � ; 1

n

�
, is defined with the chi-square distance, χ2 (d2

X2) and is given by:

d2
X 2ðj; gÞ ¼ n

K$j
− 1, The inertia Ij of the point j with respect to the center of gravity g is

denoted as Ij ¼ ðmass of jÞ3 d
2
X2ðj; gÞand it can be easily shown that Ij ¼ 1

s
$
�
1−

K$j

n

�
. The

total inertia, I, of all p points of the category profiles is then I ¼ p
s
− 1 [12]. That is,

the inertia of the points depends both on the total number of variable categories, p, and the
total number of categorical variables, s, in contrast to PCA, where the corresponding
inertia is s, the number of continuous variables. At the core of MCA is the investigation of
the structure (form) of the cloud of points N(J), that is, the determination of the main
directions of inertia. These directions are perpendicular to one another and they are
passing through the center of the cloud g, and optimally describe the cloud N(J). These
axes, known as factorial axes are obtained via the decomposition of a special variance-
covariance matrix and are automatically sorted in descending order, according to their
associated eigenvalues, λ1 > λ2 > λ3 . . .. The inertia of a point j along a factorial axis, a, is
defined as the square of the Euclidean distance d2ðFa; gÞ, where Fa is the projection of
coefficient of point j on the factorial axis a. The sum of the inertias of all points along the
factorial axis a, also known as inertia along the axis or inertia interpreted by the axis, is
equal to the eigenvalue λa [19]. For example, the inertia along the first factorial axis or the
inertia interpreted by this axis, equals to the largest eigenvalue, λ1. In practice, we usually
interpret the first few and most important factorial axes, resulting in a loss of information.
The number of important factorial axes can be determined using criteria such as the scree
plot and the percentage of explained inertia (variance). The points of interpretive interest
on each axis are those which contribute most to the total inertia of the axis. The standard
MCA output includes: the standard visualization obtained from the projection of all the
points on the factorial axes and/or the factorial planes (e.g. the map created by the first and
second factorial axes). These plots, however, do not allow for a direct interpretation of the
most important points. Determining the most important points requires considering their
inertia along each axis. Based on the (M)CA (Correspondence Analysis) literature, one can
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rely on the following aids to interpretation [20, 21] in the form of numerical diagnostics: (a)
the coordinate (projection) of point j on a factorial axis a, Fa(j). (b) the COR or squared
correlationof point j on axis a, CORa(j).

The COR index expresses the amount of inertia of point j explained by axis a, that is:

CORaðjÞ ¼ m$d2ðFa;gÞ
m$d2ðj;gÞ ¼

�
dðFa;gÞ
dðj;gÞ

�2

¼ cos2 θ [22], (c) the CTR index. The total inertia along

an axis or equivalently the inertia interpreted by axis a is denoted by λa. This total inertia is
the sum of the inertias of all points in the direction of the axis a. The ratio of the inertia of the
point j in the direction of the axis a to the total inertia of the axis a is called contribution of the

point j and is denoted as CTRaðjÞ and is given by CTRaðjÞ ¼ m$F2
a ðjÞ

λa
[22]. Obviously, those

points with the highest values of the CTR indicator contribute more to the construction of the
axis. The contribution indicator shows the points that contribute to the construction of the
axis, so it is on these points that the possible interpretation of the axis is based. The combined
use of the aforementioned indicators is sufficient for interpretation but a nonexpert user
without this knowledge can easily be misled.

3. Literature review – alternative approaches of visualizing important points of
the MCA maps
The problem of interpreting the results of MCA with visualizations has been a subject of
interest and this can be highlighted from a number of published studies [23–26]. Special
interest presents the effort of interpreting the most important points on a factorial plane [2,
24–26]. Approaches addressing the issue of correct interpretation (importance [24] or
proximity of points [2]) of factorial maps vary from the usage of symbolic means and points’
colorization to mathematical transformations. Even though MCA has been implemented in
different software and programming languages (e.g SPSS, SPAD, Python etc.) in this study
we focus on R. In R there are packages that are developed to perform the MCA and visualize
its results and others that produce visualizations aiming to help users interpreting the results.
FactoMiner [14] is a package that can compute MCA’s results and offers the ability of
producing the classical factorial maps. Users can also colorize points according to their
contributions that shift the problem of distinguishing the most important points to another
variable information. CainterprTools [23] is an R package that uses additional optical means
(dotplots, scatter plots) in order to help users. However, the user has to resort in additional
graphical and numerical information that is not a good solution for nonexpert users. CA
package [27] includes research of [24, 25] regarding the asymmetrical biplots [26] and through
its functions user can pass parameters that transform the points by multiplying points’
standard coordinates with their corresponding masses. Consequently, points on
visualizations receive information of masses which in case of the factorial axis is adequate
for immediate extraction of the most important points. While in the factorial plane the points
retain and generalize their informative character, here surface one issue. From the moment
that the printed arrows (the ones which the ca package is using and connect a point with the
beginning of the axes) are not placed on the same axis their lengths must be measured in
order to be safe in interpreting themost important points of the plane. This is a drawback, and
it is being resolved through our proposed interpretive plane. We also like to underline the
findings of [2] where scholars have presented a solution to the problem of interpreting
proximity of points on the factorial maps through the defining of “tolerance distance”.

4. Methodology – proposal of interpretive axes and interpretive planes
In this section we introduce the notions of interpretive axis and interpretive plane. We
consider that each factorial axis corresponds to an interpretive axis that incorporates or
combines all the interpretive information of the coordinates, F, the COR index and the CTR
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index. This interpretive axis is defined as follows: The coordinate, eaðjÞ, of a point j on the
interpretive axis a, is given by eaðjÞ ¼ signðFaðjÞÞ∙λα∙CTRaðjÞ, where signðFaðjÞÞdenotes its
sign on factorial axis a. Here the product, λα∙CTRaðjÞ is the inertia of the point j in the
direction of the factorial axis a. Since eaðjÞ has the same sign as FaðjÞ, we have information
about the direction of each point on the axis. The next step is to define which points of the
interpretive axis are the most important which at the same time they will be the most
important for interpretation of the corresponding factorial axis. Important interpretive points
j should satisfy the following conditions:

1st condition: jeaðjÞj > λα
p
∙100, where λα is the inertia of axis a and p the total number of

categories, that is important points on the axis are initially considered to have an inertia
contribution above the average inertia contribution in the direction of the axis. We multiply
by 100 since most software packages report the contributions in %. 2nd condition: Since we
consider that, for a nonexpert user, it is better for an important point to be included on a single
factorial axis, in a number of first factorial axes selected by the user (k) (e.g first k5 5 factorial
axes with the largest percentage of variance), we additionally require that:
CORaðjÞ ¼ maxðCORkðjÞÞ, where a is the candidate preferred axis and k denotes all the
selected axes in which point j satisfies the 1st condition. Conditions 1 and 2 are applied to the
1st factorial axis at first, then the 2nd etc. Second condition addresses cases such as for
example the case of a point that satisfies the 1st condition for both the 1st and 2nd factorial
axis and at the same time gives the largest value of its inertia on the 2nd factorial axis. At this
case this point should then be interpreted as important in the second factorial axis.
Consequently, points that satisfy both conditions with the explained sequence are considered
as the most important for interpretation of the factorial axis. Therefore, the interpretive axis
a, allows as to evaluate the points with the largest interpretive weight for a factorial axis,
based on the value of a single index, the interpretive coordinate eaðjÞ. We can now generalize
the notion of the interpretive axis to the interpretive plane and specifically at the first plane
which is usually of the greatest interest. The first interpretive plane is created by the first and
the second interpretive axes. Important interpretive points j on the first interpretive plane,
which are the most important points of the first factorial plane, should satisfy the following

conditions. 1st Condition: je1ðjÞj þ je2ðjÞj > ðλ1þλ2Þ
p

$100where λ1; λ2 are the inertias of axis 1
and 2, respectively. First condition is satisfied at least by all the points that have already
satisfied the corresponding condition 1 for both the first and second interpretive axes. 2nd
Condition:COR1ðjÞ þ COR2ðjÞ ¼ maxðCORkðjÞ þ CORlðjÞÞ, where k,l are the axes that create
a plane k x l, created by a combination of axes k,l from a (q)number first factorial axes selected
by the user, in which point j satisfies 1st condition. Points that satisfiy 1st and 2nd conditions
are considered as the most important of the first plane. Now, notice that all the points j on an
interpretive plane with je1ðjÞj þ je2ðjÞj ¼ c, with c a constant, lie at the perimeter of a square
KLMN centered at the origin, O, with its diagonals being on the interpretive axes and the
semi-diagonal (OK) equal to ðOKÞ ¼ c. This is shown in Figure 1.

Proof: consider the point j in position A which has coordinates ðe1ðjÞ; e2ðjÞÞ. So its
projection (position B) on the first interpretive axis is the distance from the beginningOwhich
is equal to je1ðjÞj. We then take the point M on the first interpretive axis (Figure 1) so that its
distance from the beginningO is c. It is now apparent that the length of the line segment BM is
equal to je2ðjÞj. Therefore, the triangle MBA is an isosceles right triangle. Therefore, point j is
generally on the perimeter of the square KLMN. It follows that point j0 that is on the square
K0L0M0N0 with (OK0)5 c 0> c, is more interpretive than point j on the first factorial plane. This
is shown in Figures 1 and 2. The squares in Figures 1 and 2 are important for the
interpretation. More specifically, the squares on the interpretive plane allow the user to
directly compare the contribution of the points. For example, points that belong to the same
square have the same contribution regardless of their coordinates. Consequently, points that
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are important for the interpretation of the first factorial plane are closer to the most distant
squares which are formed from the points of the first plane. This visualization of the
interpretive plane eliminates the need to resort to the values of COR and CTR or asymmetric
biplot with vector lengths.

5. Applications
In this section we illustrate the visualizations presented in previous section and compare
themwith existing alternatives using the “wg93” dataset that can be found on the ca package

Figure 1.
Defining most
important points of an
interpretive plane

Figure 2.
Most important points
of interpretive plane
with “the square” view
visualization
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[27]. More information on dataset can be found on chapter 2 of [12]. MCAwas performed with
FactoMineR package [14] while libraries “tidyverse” [28], “ggplot” [29–31], “ggrepel” [32],
“plotly” [33], “caintertools” [23], “factoextra” [34], “shiny” [35], “DT” [36], “this.path” [37],
“soc.ca” [38],“egg” [39] were used as well to produce content that can be found either on the
manuscript or on the supplementarymaterial. At the end of themanuscript there is a link that
connects with the supplementary material, which can reproduce all visualizations being
discussed at this paper and also data tables with numerical evidence for verification. At this
section we compare the proposed visualizations with the classical factorial maps while also
we compare proposed first interpretive plane with what we consider as the best alternative
among approaches that have been discussed on literature section. We encourage readers to
download and explore the supplementary material because it’s important for the
completeness of the paper.

In Figure 3 we observe that on first factorial axis, point A_5 is the most distant point from
the right side of the axis, withmaximumFvalue butwithout themaximumCTRvalue among
points of the right side (A_5, F: 1.64, CTR: 7.32, e: 2.11) while point B_5 that has the third
biggest F value from the right side is the one with the maximum CTR value (B_5,F: 1.10,CTR:
9.71, e: 2.80). The same occurs between points B_1 and C_1 on the left side of the axis. This can
mislead nonexpert user resulting to an erroneous interpretation of the most contributing
points of this axis and an erroneous overall characterization of the factorial axis. Our
proposed first interpretive axis, on the contrary, guarantees a successful interpretation of the
most important points of the first factorial axis.

In Figure 4 we observe the comparison between the classic first factorial plane and the
proposed first interpretive plane that implements the discovery of the geometrical locus of
points (squares). On the first factorial plane we observe that some of the most distant points
are the C_5 and B_1. Here, a user in order to make a successful interpretation must
manipulate MCA’s output and perform additional calculations in order to extract inertias of
each point for each of the two axes for the comparison of different points. Therefore, a
nonexpert user could easily be led to erroneous interpretations considering C_5 and B_1 as

Figure 3.
Comparison of first

factorial axis with first
interpretive axis
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Figure 4.
Comparison of first
factorial plane with
first interpretive plane
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the most important points of the factorial plane. On the other hand our proposed
visualization enables a fast and accurate evaluation of the most important points of the
factorial plane. As can be seen on first interpretive plane (Figure 4), points C_5(total inertia
on first factorial plane: 3.39) and B_1(total inertia on first factorial plane: 4.75) are less
important for example from points C_1(total inertia on first factorial plane: 5.71) and
B_5(total inertia on first factorial plane: 5.00) that are in fact the twomost important points of
the first plane. In our visualization point C_1 is located on the most distant square while also
point B_5 is located on the second most distant square and this observation “automatically”
gives correct interpretation. Similar comparisons can be observed by reader in other points
as well.

In Figure 5 we observe the first factorial planes and the one on the right incorporates the
asymmetrical biplot theory with the Greenacre’s transformation (contribution biplots). In this
transformation points in standard coordinates are multiplied by the square root of the
corresponding masses. However, this is a different transformation to ours but we
acknowledge that provides improvement over the basic factorial plane’s visualization and
the others that are discussed in literature section. This visualization comparing to ours, lacks
of the extremely important observation of the geometrical locus of points which eliminates
the need for any further calculation to reach to decision about the importance of a point. In
Figure 5 (right plot) now notice that points with similar arrows’ lengths need to be measured
(with some calculation) and then compared. For example points B_5 and B_1 has visually
similar arrows’ lengths, therefore is hard to tell which point is more contributing than the
other without the evidence from a numerical calculation about their lengths; on the contrary
our proposed interpretive plane that incorporates the squares as a geometrical locus of points
is a superior and improving approach than the one that is depicted in Figure 5. On our
proposed visualization (Figure 4 middle plot) the points B_5 and B_1 are easily compared to
each other since the B_5 stands in a more distant square than the B_1 so it’s more important
than B_1 in the first factorial plane. For a correct interpretation, our proposed visualization
requires no additional calculations but only observation.

6. Conclusions
This paper proposes a new visualization scheme through the introduction of the interpretive
coordinate, the interpretive axis and the interpretive plane which address the problem of
finding and interpreting themost important points on theMCA’s factorial maps by nonexpert
users. Several scholars through their work have indicated this research gap and provided
corresponding solutions. We presented and compared them with our proposal, and we
concluded that our interpretive plane with the squares is a quicker and overall better way to
find and interpret the most important points of a factorial plane. The originality/novelty of
our work is the discovery of the geometrical locus of points which provide immediate optical

Figure 5.
First factorial plane
(symmetric plot) and

first asymmetric biplot
with Greenacre’s

transformation using
the ca package
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identification of most important points. In short, the further a point is from the beginning of
the interpretive axis, the more important it becomes for the factorial axis, and also when a
point on the interpretive plane is at the perimeter of amore distant square, themore important
that point is to the factorial plane. This work can have practical implications through
disseminating the use ofMCA in awider audiencewhile it opens a newwindow for theoretical
research on the geometrical relations of the points in factorial maps. Interpretive coordinates
as a transformation outcome cannot be used for other analysis methods (e.g.hierarchical
clustering) so users must use original MCA coordinates and that can be considered as a
limitation. Future research involves more theoretical investigation on geometrical
relationships of the points on the factorial maps and providing Information Technology
(IT) tools which will help to educate users about this new visualization scheme.
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