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Abstract

We undertake Monte Carlo simulation experiments to examine the effect of

changing the frequency of observations and the data span on the Phillips, Shi, and

Yu (2015) Generalised Supremum ADF (GSADF) test for explosive behaviour via

Monte Carlo simulations. We find that when a series is characterised by multiple

bubbles (periodically collapsing), decreasing the frequency of observations is asso-

ciated with profound power losses for the test. We illustrate the effects of temporal

aggregation by examining two real house price data bases, namely the S&P Case-

Shiller real house prices and the international real house price indices available at

the Federal Reserve Bank of Dallas.

JEL Classification: C15, C22

Keywords: Exuberant/explosive behaviour; bubbles; Monte Carlo; house prices.

∗We are grateful to an anonymous reviewer for useful comments. E-mail addresses: je-
sus.otero@urosario.edu.co (J. Otero); tpanag@uom.gr (T. Panagiotidis); papapgeorge@uom.edu.gr (G. Pa-
papanagiotou).



1 Introduction

There is no doubt that real estate is the most important financial asset that individuals

can acquire during their lifetimes, as it represents a major share in their wealth. The

latter justifies the interest in following the dynamic path of real estate prices. There is

an additional focus on the periods of time when they reach levels well beyond those that

can be justified by their fundamentals, compromising the affordability of the asset. These

episodes are typically reported as bubbles if the price in question is measured in relation

to an economic fundamental, or viewed as evidence of exuberant/explosive behaviour

otherwise (see e.g. Hu and Oxley, 2018). Authors such as Goodhart and Hofmann (2007)

identify several channels through which real estate prices may affect economic activity,

with the former generally leading developments in the latter. Thus, for example, Shiller

(2008), Brunnermeier (2009), and Martin (2010) argue that the real estate bubble in the

U.S. in the early 2000 was a major contributing factor in the economic and financial

crisis that occurred some years later. However, a real estate bubble can be avoided by

sound policy actions. Hence, detecting explosive behaviour in house prices is of prime

importance. This is reflected in the vast literature focusing on the detection of bubbles

in house prices, which includes Capozza et al. (2004), Quigley et al. (2006), Lai and

Van Order (2010, 2017), Gomez-Gonzalez et al. (2018), Gomez-Gonzalez and Sanin-

Restrepo (2018), Bourassa et al. (2019), and Fabozzi and Xiao (2019), among others.

The econometrics literature offers alternative methods to identify explosive behaviour

in time series. To this day, the Supremum Augmented Dickey-Fuller (SADF) test put

forward by Phillips, Wu, and Yu (2011), henceforth PWY, and its subsequent generalised

version, denoted GSADF, developed by Phillips, Shi, and Yu (2015), henceforth PSY,

have become the most commonly applied testing approaches, with the latter version being

the most effective bubble detecting procedure. Indeed, extensive Monte Carlo simulation

experiments carried out by PSY indicate that their testing approach, based on recursive

flexible regressions of the right-tailed ADF test, provides consistent date-stamping in real

time for the start and end dates of multiples bubbles; see, for instance, Phillips et al.

(2014) for empirical guidelines regarding the implementation of the tests in practice.

The popularity of the approach advocated by PSY is best reflected in its numerous

applications. Studies of the presence of explosive behaviour include applications not only

to real estate prices, but also to financial time series, such as exchange rates and stock
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prices; see Phillips and Shi (2020) for a list of recent applications.1

This paper is related to the econometric literature that examines the implications of

aggregation over individuals and over time. In the context of the tests for explosive be-

haviour that we referred to above, Pavlidis et al. (2019) study the effect aggregation over

individuals has on the likelihood of detecting periods of exuberance. These authors find

that aggregation over individuals leads to power loss in both the SADF and the GSADF

tests, with the effect being much more prominent in the case of the former. While these

authors have already studied the effect of aggregation over individuals, the effects of tem-

poral aggregation remain unknown. Temporal aggregation is relevant because advances

in the collection, organisation, storage and retrieval of data lead to the availability of

more significant amounts of information. As a result of this, policymakers and academics

need to decide carefully the type of data (e.g., monthly, quarterly, annual) that they want

to use in their analyses. This paper aims to fill this gap. Thus, the paper falls within the

literature that studies the effects of temporal aggregation on the time-series properties

of variables (see e.g. Shiller and Perron, 1985; Hooker, 1993; Lahiri and Mamingi, 1995;

Ng, 1995; Haug, 2002). To this end, we perform an extensive set of Monte Carlo simu-

lations to study the effects of changing the frequency of observations and the data span

on the power of the GSADF test proposed by PSY. The simulation exercises allow for

models that contain one, two, and multiple bubbles. These models have been employed

extensively in the real estate literature.

The results presented in this paper offer valuable insights for practitioners and pol-

icymakers involved in analysing economic and financial data. Indeed, one of the most

significant issues in applied econometric work is finding appropriate data. Statistical

agencies and central banks tend to collect and publish data on a low frequency (e.g., a

quarterly basis) without any information on the data generating process of the variable

of interest which, in a sense, is understandable given the limited financial resources avail-

able to these institutions. However, nowadays, there are instances in which economic and

financial data are aggregated over time for modelling purposes, despite being available

at higher frequencies. Ahmad and Paya (2020) indicate that this poses the question of

whether the chosen frequency is appropriate to characterise the “true” data generating

process

1At the time of writing, a Google Scholar search of the PSY paper yields more than 700 citations.
These include Phillips and Shi (2019), who present additional theoretical results which show that the
PSY testing strategy is also capable of detecting episodes of financial collapse and price meltdowns.
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The paper proceeds as follows. Section 2 briefly discusses the existing methodologies

on bubble identification. Section 3 outlines the design of the Monte Carlo simulation

experiments. Section 4 summarises the results. Section 5 validates the results from the

simulations through the examination of the existence of exuberant/explosive behaviour

in house prices using data sampled at different frequencies. The last section concludes.

2 Unit root tests for explosive behaviour: An overview

The identification of rational bubbles derives from the definition of exuberance in terms of

explosive autoregressive behaviour. Following this definition and the work of Lucas (1978)

and using dividend and stock price data Shiller (1981), Blanchard and Watson (1982)

and West (1988) relate the existence of bubbles with an inconsistency in the efficient

market hypothesis. Nelson and Plosser (1982) however, support that apparent evidence

for bubbles can be reinterpreted in terms of market fundamentals that are unobserved by

the researcher.

Diba and Grossman (1988) and Hamilton and Whiteman (1985) recommend another

method of testing for rational bubbles by investigating the stationarity properties of asset

prices and observable fundamentals. Using standard unit root tests applied to real U.S.

Standard and Poor’s Composite Stock Price Index data over the period 1871-1986, Diba

and Grossman (1988) test levels and differences of stock prices for non-stationarity, finding

support in the data for non-stationarity in levels but stationarity in differences. Since

differences of an explosive process still manifest explosive characteristics, these findings

appear to reject the presence of a market bubble in the data. Although the results

were less definitive, further tests by Diba and Grossman (1988) provide confirmation of

cointegration between stock prices and dividends over the same period, supporting the

conclusion that prices do not diverge from long-run fundamentals and thereby giving

additional evidence against bubble behaviour.

Evans (1991) shows through simulation methods that non-recursive unit root tests

have low power and frequently cannot reject the the null of no explosive behaviour even

when present in the data. Nonlinear dynamics, such as those displayed by mildly ex-

plosive processes, may lead the standard right-tailed ADF test to findings of spurious

stationarity. Intuitively, this is the case because increases followed by downward cor-

rections make the process appear mean-reverting and stationary in finite samples even

when it is inherently not. An extensive literature review on the aforementioned proposed
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econometric methodologies can be found in Flood and Hodrick (1990) and Gürkaynak

(2008).

PWY propose a test based on the supremum t-statistic from a recursive estimation

of the ADF test using a forward expanding sample. Drawing on the notation employed

by Phillips et al. (2015), the idea is to estimate the augmented Dickey and Fuller (1979)

(ADF) regression with intercept:

∆xt = αr1,r2 + βr1,r2xt−1 +
k∑

i=1

δir1,r24xt−i + εt, (1)

where ∆ is the first difference operator, xt is the variable under consideration at time t, k

is the number of lags of ∆xt included to allow for serial correlation in the residuals, and

r1 and r2 denote the starting and ending observations used for estimation, respectively.

With T denoting the number of observations in the sample, r1 and r2 are expressed as

fractions of T such that r2 = r1 +rw, where rw is the window size of the regression, which

is also expressed as a fraction of T . Eq. (1) is estimated using Tw = bTrwc observations,

where b·c denotes the floor function which yields the integer part of the argument. The

error term is εt. Under the null hypothesis there is a unit root, H0 : βr1,r2 = 0, while the

alternative the variable xt exhibits explosive behaviour, that is H1 : βr1,r2 > 0. To test the

null hypothesis the required ADF t-statistic associated to βr1,r2 = 0 in Eq. (1) is denoted

ADFr2r1 . In this setting, PWY propose a statistic based on the supremum t-statistic that

results from a forward recursive estimation of Eq. (1):

SADF(r0) = sup
r2∈[r0,1]

ADFr20 , (2)

where the window size, rw, expands from the smallest sample window width r0, which

provides the first t-statistic of the recursion, to the last observation that is available.

Homm and Breitung (2011) show that compared to others procedures the PWY ap-

proach performs satisfactorily. However, in the presence of multiple bubbles in the sam-

ple, the PWY test suffers power losses due to complex nonlinear structure involved in the

multiple breaks that produce the bubble phenomena. To address this, PSY generalise the

PWY testing approach, and in doing so produce a test which is not affected by multiple

bubbles. The result is the generalised supremum ADF (GSADF) test which, as implied

by its name, requires the estimation of a much larger number of regressions where the

first observation used for estimation varies from 0 to r2 − r0, and the last observation
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varies from r0 to 1, that is:

GSADF(r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

ADFr2r1 . (3)

PSY recommend implementing the GSADF test by choosing a low value of k, say k = 0, 1,

and determining the minimum window size using the rule r0 = (0.01 + 1.8/
√
T ). To

perform inference, the right-tail SADF and GSADF statistics are tabulated using Monte

Carlo simulations; in what follows, we use the critical values provided by Vasilopoulos

et al. (2020) in the R package exuber.

One useful application of the testing approaches based on recursive and recursive

flexible windows estimation of Eq. (1) is that they can be used in real time to date-

stamp episodes of bubbles or exuberance if the unit-root null hypothesis is rejected.

To see how this works, let us assume that there is interest in establishing whether a

particular observation, say r2, belongs to a phase of explosive behaviour. PSY recommend

to perform a supADF test on a sample sequence where the endpoint is fixed at the

observation of interest r2, and expands backwards to the starting point, r1, which varies

between 0 and (r2 − r0). In this context, the backward SADF statistic is defined as the

supremum of the resulting sequence of ADF statistics:

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADFr2r1 . (4)

Next, the BSADFr2(r0) statistic is compared against the corresponding critical values

of the SADF(r0) for br2T c observations.2

3 Design of the Monte Carlo simulations

We consider two datasets. In the first one, we generate time series of monthly data for 150

years. We then obtain sample sizes of 50, 100, and 150 years of monthly, quarterly, and

annual observations. In the second dataset, the generated time series contain daily data

for 10 years and calculate sample sizes of 5 and 10 years of daily, weekly and fortnightly

observations. In both cases, all samples contain at least one bubble. To convert to lower

frequency data, we use the method of systematic sampling and the method of averaging

with non-overlapping observations.

2Phillips et al. (2015) mention that this date-stamping procedure is more general than the earlier
suggestion in Phillips et al. (2011) in which r1 = 0 in (4), and so it is more effective at identifying
episodes of multiple bubbles.
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We first investigate whether temporal disaggregation causes size distortions (giving a

false positive result). Following Phillips, Shi, and Yu (2015), we use the data generating

process (DGP): xt = T−1 + xt−1 + εt, to examine how frequently the GSADF test due to

PSY rejects the null of a unit root in favour of an explosive alternative.

Next, we simulate four different DGPs to examine the effect of temporal disaggregation

on the power of the test. The first two (DGP1 and DGP2) are based on Blanchard (1979)

and Evans (1991) and contain multiple explosive incidents (periodically collapsing). The

other two (DGP3 and DGP4) are based on Phillips, Shi, and Yu (2015) and contain

one and two mildly explosive bubbles, respectively. For the process based on Blanchard

(1979), we construct a series consisting of two regimes which occur with probability π

and 1− π. In the first regime, the bubble grows exponentially,

xt =
1 + r

π
+ xt−1 + error (5)

whereas in the second regime, the bubble collapses to a white noise.

The next model, proposed by Evans (1991) follows the DGP:

xt =

{
(1 + r)xt−1ut, if xt−1 ≤ a

[δ + π−1(1 + r)θt(xt−1)− (1 + r)−1δ]ut, if xt−1 > a
(6)

where δ and a are positive parameters with 0 < δ < (1 + r)a, ut is an exogenous iid

positive random variable with Et−1ut = 1, and θt is an exogenous independently and

identically distributed Bernoulli process (independent of u) which takes the value 1 with

probability π and 0 with probability 1− π, where 0 < π ≤ 1. When xt−1 ≤ a the bubble

grows at an average rate of 1 + r. When xt−1 > a the bubble expands at an increased

rate of (1 + r)π−1. We set a = 1, δ = 0.5, τ = 0.05, π = 0.7 and r = 0.05.

Turning to the processes based on Phillips, Shi, and Yu (2015), we construct two

additional time series. The first one according to the DGP,

xt =





xt−1 + εt, if t ∈ [1, te)

δTxt−1 + εt, if t ∈ [τe, τf ]
t∑

k=τf+1

εk + x∗τf , if t ∈ (τf , T ]

(7)

where T is the sample size, εt
iid∼ (0, σ2), δT = 1 + cT−a with c > 0 and a ∈ (0, 1),

and x∗τf = xτe + x∗ with x∗ = Op(1). During the pre- and post- bubble periods, x is a

pure random walk process. During the bubble expansion period, B = [τe, τf ], is mildly

explosive process with expansion rate given by the autoregessive coefficient δT . We set
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c = 1, a = 0.6, T = 1800, τe = 240, and τf = 480 in the first case and T = 3650, τe = 560,

and τf = 1125 in the second.

The second model extends model 7 and uses the DGP:

xt =





xt−1 + εt, if t ∈ [1, τ1e)

δTxt−1 + εt, if t ∈ [τ1e, τ1f ] ∪ [τ2e, τ2f ]
t∑

k=τ1f+1

εk + x∗τ1f , if t ∈ (τ1f , τ2e)

t∑
l=τ2f+1

εk + x∗τ2f , if t ∈ (τ2f , T ]

(8)

After the collapse of the first bubble, xt resumes a martingale path until time τ2e− 1,

and a second episode of exuberance begins at τ2e. The expansion process lasts until τ2f

and collapses to a value of x∗2f . The process then continues on a martingale path until

the end of the sample period T . The expansion duration of the first bubble is assumed

to be longer than that of the second bubble. We set c = 1, a = 0.6. For the case of

monthly data for 150 years, we also set T = 1800, τ1e = 240, τ1f = 480, τ2e = 720,

and τ2f = 840. For the case of daily data for 10 years, we have T = 3650, τ1e = 300,

τ1f = 1500, τ2e = 1800, and τ2f = 2170. The plots in Figure 1 exemplify the type of

dynamic behaviour that arises when one simulates the four DGPs just described using

50 years of monthly data.

The power probabilities are based on size adjusted critical values at the 5% significance

level. The minimum window size r0 of the regression is calculated using the rule r0 =

0.1 + 1.8/
√
T and the lag order is set to 0. Phillips et al. (2015) find that size increases

with the lag length. The results are based on 10000 replications. All reported simulations

were programmed in R version 3.6.1 using the packages psymonitor (Phillips et al., 2019)

and exuber (Vasilopoulos et al., 2020). These scripts, available upon request, replicate

all simulations and the results of the empirical application.

4 Monte Carlo simulation results

This section presents the Monte Carlo results. Table 1 reports size probabilities for the

GSADF test. Overall, size is controlled reasonably well when using the data sampled

at the monthly and daily frequencies, and also when using the skip sampling method

of temporal aggregation. However, the averaging with non-overlapping method yields

greater size distortions.
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Table 2 summarises the main power probability results of our Monte Carlo experi-

ments. The values reported in this table denote the probability of detecting explosive

behaviour based on the GSADF test at the 5% significance level using size-corrected

critical values. Considering the models that contain multiple bubbles (periodically col-

lapsing), that is DGP1 and DGP2, we observe significant power losses as one moves from

high- to low-frequency sampled data. For example, using DGP2 and a sample size of

100 years, skip sampling temporal aggregation reduces the probability of correctly reject-

ing the unit root null hypothesis from 100% with monthly data to 95.5% with quarterly

data, and then to 7.1% with annual data; similarly, temporal aggregation through aver-

aging with non-overlapping observations yields power probabilities of 95.7% and 32% for

quarterly and annual data, respectively. These results highlight the importance of data

frequency for bubble testing as moving from high- to low-frequency data increases the

chance that a bubble will build and collapse between neighbouring observations.

Let us now consider the simulation results when applying the GSADF test to the two

DGPs considered by PSY. Regarding the process with a single bubble, DGP3, changing

the frequency has little effect on the test. Turning to the process which contains two

explosive incidents, DGP4, we observe power losses only when we decrease the sample

length to 50 years.3 At this point, one could wonder whether alternative methods for

identifying explosive dynamics perform better than PSY under the effect of temporal

aggregation. However, for a bubble detecting strategy to be successful, it must rely on

a recursive procedure, and recursive procedures suffer power losses from reducing the

frequency of observations. Thus, it is unlikely that the statistical power of alternative

methods based on recursive estimation is not adversely affected when using temporally

aggregated data.

5 Testing for exuberance in house prices

We illustrate the effects of temporal aggregation on the power of the GSADF test by

examining real house prices from two sources, the first one is the S&P Case-Shiller real

house price data from US cities, and the second one is the international real house price

data available at the Federal Reserve Bank of Dallas.4

3Qualitatively similar results (not reported here for brevity, but available from the authors upon
request) are obtained for the SADF test of PWY, although in this case the test is less powerful than the
GSADF test of PSY.

4The results in this section are based on the Stata command radf (see Otero and Baum, 2020).
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5.1 S&P Case-Shiller Home Price Indices

The S&P Case-Shiller Home Price Indices are repeat-sales house price indices for selected

cities in the United States. They are constructed on monthly basis, starting from January

1987. The time span covers the period between 1987m1 to 2020m6 and provides a total

of 402 observations. Using this sample, we construct quarterly and annual versions of the

data for ten cities. We then consider three sample sizes, 1987m1 to 2000m12, 1987m1 to

2010m12 and 1987m1 to 2020m6 of monthly, quarterly and annual data. Figure A.1 plots

the indices in ten selected cities for the largest sample. The figures support the view of

two incidents of explosive behaviour. The first one occurs during the period between 2000

and 2007 and the second starts around 2012 and lasts until today. Only in Denver, the

magnitude of the second incident is greater than the magnitude of the first one (Boston

and San Francisco are close cases as well).

Table 3 reports the results from the GSADF test on the ten indices from selected

US cities for all samples. Using the monthly and quarterly data for the shortest data

span, we are able detect exuberant behaviour at the 1% significance level for all cities

except Las Vegas. If we apply the test on annual data we are still able to reject the

null hypothesis for six out of the ten cities (five when the method of systematic sampling

is used). However, in several cases, we are able to do so only at the 5% significance

level. For the two longer sample periods, the test detects explosive behaviour at the 1%

significance level for all cities irrespective of the frequency of observations.

To illustrate these findings graphically, Figure 2 plots the recursive GSADF statistic

(black line) against the 95% critical value sequence (red line) for the city of Los Ange-

les, using all three data frequencies over shortest sample period (to save space we only

display the results for the aggregating method of averaging with non-overlapping obser-

vations). An explosive episode occurs when the statistic exceeds the critical value. For

the case of monthly data, the real time dating strategy identifies three episodes during

the periods 1989m2-1989m11, 1991m3-1996m7 and 1997m12-2000m12. Applying the test

on quarterly data results in the identification of only two episodes of shorter duration.

These episodes occur during the periods 1992q3-1994q3 and 1998q3-2000q4. Finally, the

GSADF strategy detects no episodes for the case of annual data.
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5.2 World Home Price Indices

As a second example, the Federal Reserve Bank of Dallas gathers home price index

series for 23 countries on a quarterly basis going back to the first quarter of 1975. The

reader interested on the methodological aspects of the database is referred to Mack and

Mart́ınez-Garćıa (2011). Here, we shall analyse the sample period between 1975q1 and

2019q4 for a total of T = 180 observations on each individual index. Since the data are

already available on a quarterly basis, in what follows we only aggregate the data series

to the annual frequency. Using quarterly and annual data we employ the test on three

different data spans, 1975q1 to 1999q4, 1975q1 to 2009q4 and 1975q1 to 2019q4. Plots

of the quarterly time series over the longest time period are displayed in Figure B.1. As

can be seen in the figures the evolution of house prices differs among the countries. Most

countries experienced soaring house prices in the early 2000s. However, in Germany,

Israel, Japan and South Korea this is not the case.

The results for the GSADF test are reported in Table 4. Using all available informa-

tion, we are able to detect explosive incidents at the 1% significance level in all countries

except South Korea and Spain. Changing the frequency to annual but keeping the data

span from 1975 to 2019 affects most of the examined countries. For example, the test iden-

tifies explosive behaviour only at the 5% significance level in Australia, Belgium and New

Zealand while it fails to identify such episodes in Canada, Denmark, France, Italy, South

Africa and Sweden. Decreasing the sample length but using quarterly observations does

not affect the performance of the test and we are still able to reject the null hypothesis

at the 1% significance level. These findings are in line with the simulation results where

we observed that decreasing the frequency observations affects the power of the GSADF

more than decreasing the data span. In Figure 3 we illustrate these findings by plotting

the recursive GSADF statistic (black line) against the 95% critical value sequence (red

line) for Canada, using quarterly and annual data over the shortest sample period (once

more we focus on the results obtained with the aggregation method of averaging with

non-overlapping observations). For the case of quarterly data, the test detects three three

episodes of exuberance. One episode from 1980q3 to 1981q4 and two consecutive episodes

from 1987q3 to 1987q4 and from 1988q2 to 1990q2. No such episodes are detected when

annual data are used.
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6 Concluding remarks

In this paper we examine the effect of temporal aggregation on the PSY test for explosive

behaviour. This test, which relies on recursive flexible regressions of the right-tailed ADF

test, is employed extensively on monitoring financial, commodity, and real estate mar-

kets for speculative bubbles and exuberant dynamics. We examine whether lowering the

frequency and/or decreasing the sample span affects the power of this testing strategy.

The analysis considers both simulated data and actual real house price data. The Monte

Carlo simulation results indicate that when a series is characterised by multiple bubbles

(periodically collapsing), decreasing the frequency of observations is associated with pro-

found power losses for the test. As for the evidence based on actual house prices, we

employ data from ten U.S. cities (S&P Case-Shiller Home Price Indices) and Home price

Index series from 23 countries (from the Federal Reserve Bank of Dallas). The examina-

tion of all data available revealed the presence of explosive behaviour for almost all U.S.

cities and countries included in the sample. The test also identified explosive incidents

in shorter sample periods. However, for shorter sample periods the lower frequency data

resulted in incapability of the test to detect exuberant behaviour in several instances.

Overall, the results indicate that temporal aggregation has a substantial effect on the

performance of PSY procedure. In addition, lowering the frequency of the data has a

greater effect than decreasing the total sample span, especially when the time-series under

examination is characterised by multiple bubbles (periodically collapsing). Although we

do not suggest an optimal data frequency, we consider that using monthly data for house

prices and higher frequency data for other asset prices is optimal. Our findings are rele-

vant to policy makers and central banks since the two procedures have been proven to be

the most successful methods for detecting exuberance in a wide variety of macroeconomic

and financial bubbles. We leave the examination of the effect of temporal aggregation

on the power of the PSY test in the presence of heteroskedasticity and leverage effect for

future work.
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Table 1: Size of the GSADF test

Monthly data Daily data

Number of years 50 100 150 5 10

Monthly data 0.045 0.047 0.047 Daily data 0.046 0.039
Quarterly skip 0.050 0.047 0.047 Weekly skip 0.036 0.066

Annual skip 0.041 0.054 0.063 Fortnightly skip 0.041 0.037
Quarterly average 0.195 0.208 0.230 Weekly average 0.180 0.312

Annual average 0.128 0.190 0.226 Fortnightly average 0.176 0.196

Notes: Skip refers to the systematic sampling method for aggregating data and average to
the averaging with non-overlapping observations method. For monthly (daily) observations
the initial sample consists of 50 (5) years. The minimum window size r0 of the regression is
calculated using the rule r0 = 0.1 + 1.8/

√
T .
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Table 2: Size-adjusted power of the GSADF test

Monthly data Daily data

Number of years 50 100 150 5 10

DGP1:
Monthly data 0.998 1.000 1.000 Daily data 1.000 1.000

Quarterly skip 0.894 0.959 0.975 Weekly skip 0.575 0.747
Annual skip 0.095 0.117 0.153 Fortnightly skip 0.105 0.145

Quarterly average 0.884 0.961 0.984 Weekly average 0.712 0.869
Annual average 0.236 0.339 0.416 Fortnightly average 0.368 0.525

DGP2:
Monthly data 0.999 1.000 1.000 Daily data 1.000 1.000

Quarterly skip 0.871 0.955 0.985 Weekly skip 0.577 0.766
Annual skip 0.044 0.071 0.106 Fortnightly skip 0.063 0.085

Quarterly average 0.858 0.957 0.983 Weekly average 0.735 0.864
Annual average 0.224 0.320 0.404 Fortnightly average 0.370 0.507

DGP3:
Monthly data 0.929 0.929 0.929 Daily data 0.986 0.986

Quarterly skip 0.933 0.932 0.934 Weekly skip 0.986 0.986
Annual skip 0.934 0.937 0.936 Fortnightly skip 0.986 0.985

Quarterly average 0.931 0.933 0.934 Weekly average 0.987 0.986
Annual average 0.935 0.934 0.931 Fortnightly average 0.986 0.985

DGP4:
Monthly data 0.730 0.957 0.958 Daily data 0.923 0.999

Quarterly skip 0.742 0.957 0.957 Weekly skip 0.925 0.999
Annual skip 0.734 0.957 0.955 Fortnightly skip 0.923 0.999

Quarterly average 0.743 0.957 0.958 Weekly average 0.921 0.999
Annual average 0.736 0.954 0.955 Fortnightly average 0.918 0.999

Notes: The data-generating processes are DGP1 and DGP2 for multiple (periodically
collapsing) bubbles as in Blanchard (1979) and Evans (1991), respectively; and DGP3
and DGP4 for one and two bubbles, respectively, as in Phillips, Shi, and Yu (2015).
Skip refers to the systematic sampling method for aggregating data and average to the
averaging with non-overlapping observations method. The table reports the probability
of rejecting the null of the GSADF test in favour of the (true) alternative of a mildly
explosive process at the 5% significance level using size-corrected critical values. For
monthly (daily) observations the initial sample consists of 50 (5) years.
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Table 3: GSADF test on S&P/Case-Shiller home price index in selected cities

Period City Monthly Quarterly data Annual data

data Avg. Skip Avg. Skip

1987m1–2000m12 Boston 12.036‡ 10.518‡ 8.216‡ 5.825‡ 6.860‡

Chicago 3.413‡ 4.153‡ 3.058‡ 3.961‡ 3.321†

Denver 10.494‡ 10.967‡ 7.109‡ 5.461‡ 4.818‡

Las Vegas 0.937 0.722 0.286 0.679 0.335
Los Angeles 5.642‡ 2.867‡ 2.595‡ 0.741 0.831
Miami 5.393‡ 4.321‡ 3.856‡ 0.205 0.989
New York 7.903‡ 6.633‡ 5.396‡ 2.150† 2.447†

San Diego 7.359‡ 4.605‡ 4.593‡ 1.175 1.778†

San Francisco 14.014‡ 8.381‡ 8.535‡ 3.480‡ 5.543‡

Washington DC 9.458‡ 8.503‡ 7.100‡ −0.134 0.094

1987m1–2010m12 Boston 12.493‡ 11.983‡ 8.216‡ 6.511‡ 6.405‡

Chicago 6.794‡ 7.544‡ 7.252‡ 6.696‡ 5.864‡

Denver 10.494‡ 9.983‡ 7.109‡ 3.588‡ 3.563‡

Las Vegas 26.238‡ 20.301‡ 14.535‡ 12.602‡ 13.805‡

Los Angeles 17.608‡ 12.788‡ 10.252‡ 6.171‡ 7.049‡

Miami 30.544‡ 26.383‡ 21.427‡ 14.063‡ 15.744‡

New York 12.762‡ 10.350‡ 8.623‡ 5.883‡ 5.632‡

San Diego 17.982‡ 12.747‡ 10.849‡ 6.686‡ 8.207‡

San Francisco 14.014‡ 8.867‡ 8.535‡ 3.254‡ 2.611‡

Washington DC 24.250‡ 18.976‡ 15.790‡ 10.952‡ 7.726‡

1987m1–2020m6 Boston 12.493‡ 11.983‡ 8.216‡ 5.335‡ 4.772‡

Chicago 6.794‡ 7.544‡ 7.252‡ 6.696‡ 5.864‡

Denver 10.494‡ 9.983‡ 7.109‡ 3.588‡ 3.563‡

Las Vegas 26.238‡ 20.301‡ 14.535‡ 11.081‡ 13.805‡

Los Angeles 17.608‡ 12.788‡ 10.252‡ 6.171‡ 7.049‡

Miami 30.544‡ 26.383‡ 21.427‡ 14.063‡ 15.744‡

New York 12.762‡ 10.350‡ 8.623‡ 5.883‡ 5.632‡

San Diego 17.982‡ 12.747‡ 10.849‡ 6.632‡ 7.894‡

San Francisco 14.014‡ 8.867‡ 8.535‡ 3.254‡ 2.406†

Washington DC 24.250‡ 18.976‡ 15.790‡ 9.239‡ 6.835‡

Note: Test regressions do not include lags of the dependent variable. Skip refers to the systematic sam-
pling method for aggregating data and avg to the averaging with non-overlapping observations method.
† and ‡ denote significance at the 5% and 1% levels, respectively. Inference based on critical values
obtained by Monte Carlo simulations with 2000 replications (see Vasilopoulos et al., 2020).
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Figure 1: Example simulation of the data-generating processes used to compute power

0

5

10

15

0 100 200 300 400 500 600

Observation

(a) DGP1: Blanchard (1979)

0

10

20

30

0 100 200 300 400 500 600

Observation

(b) DGP2: Evans (1991)

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

Observation

(c) DGP3: Phillips, Shi, and Yu (2015)

0

500

1000

1500

0 100 200 300 400 500 600

Observation

(d) DGP4: Phillips, Shi, and Yu (2015)

20



Figure 2: Date stamping real house price index in Los Angeles (1987m1 – 2000m12)
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Figure 3: Date stamping real house price index in Canada (1975q1 – 1999q4)
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A Appendix: S&P Case-Shiller data

The price indices of Chicago, Los Angeles and New York have been deflated by the
corresponding local CPI. For the other cities we used the CPI of the corresponding region
as follows: Boston (North East); Denver, Las Vegas, San Diego and San Francisco (West);
Miami and Washington DC (South).

Figure A.1: S&P Case-Shiller home real price indices (1987m1 – 2020m6)
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B Appendix: Federal Reserve Bank of Dallas data

Figure B.1: Real house price indexes in selected countries (1975q1 – 2019q4)
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(c) Canada
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(d) Croatia
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(e) Denmark
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(f) Finland
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(g) France
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(h) Germany
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(i) Ireland
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(j) Israel
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(k) Italy
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(l) Japan
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