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Abstract: The Byzantine religious tradition includes Greek Orthodox Church hymns, which signif-
icantly differ from other cultures’ religious music. Since the deep learning revolution, audio and
music signal processing are often approached as computer vision problems. This work trains from
scratch three different novel convolutional neural networks on a hymns dataset to perform hymns
classification for mobile applications. The audio data are first transformed into Mel-spectrograms and
then fed as input to the model. To study in more detail our models’ performance, two state-of-the-art
(SOTA) deep learning models were trained on the same dataset. Our approach outperforms the
SOTA models both in terms of accuracy and their characteristics. Additional statistical analysis was
conducted to validate the results obtained.

Keywords: audio deep learning; computer vision; convolutional neural networks; Greek Orthodox
Church hymns

1. Introduction

The heritage sectors of culture and religion require the extensive study of diverse
data, which has led to the consideration of machine learning (ML) and deep learning (DL)
methodologies as complementary to traditional signal processing techniques [1]. Recently,
the great success of DL approaches in several computer vision (CV) problems has led to
their application in audio signal processing problems too. More specifically, the audio data
are usually transformed into spectrograms (images) and then CV methods are employed [2].

Convolutional neural networks (CNNs) have been trained to extract useful infor-
mation from images such as paintings’ styles [3], music features [4], and optical music
classification [5]. CNNs’ success in image classification is attributed to their ability to apply
filters for feature extraction and exploit images’ grid topology [6]. As a result, such models
are often trained on audio and music signal processing problems [7].

However, ML and DL techniques face many challenges when they are designed
for mobile applications [8–10]. DL models require extensive computational power for
their training, and even after training, their weights occupy large portions of memory. To
overcome such challenges, DL approaches for mobile devices are designed to be lightweight
and are often trained either offline or in the cloud.

Audio signal processing applications, such as voice recognition, music genre classifica-
tion, sound identification, and cultural heritage music classification, form many of today’s
mobile applications that utilize ML/DL methodologies. Recognizing and classifying Greek
Orthodox Church hymns is a challenging task due to their vocal nature, lack of musical
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accompaniment, and differing climaxes from Western hymns. Furthermore, the Byzantine
chants are monodic, in free rhythm, and often try to illustrate the meaning of the words
melodically. The language used is Greek, while the measure of the music is often altered
to serve the poetic text so that it can be properly emphasized. Finally, the way the verse
is pronounced in particular ways, to precisely support the poetic text. Breathing in the
middle of a word or within a single meaning (e.g., between adjective and noun) is for-
bidden. Usually, breaths are only in commas and dots in the text. Such characteristics
are also met in other Eastern Orthodox Church hymns, such as the Russian Church, the
Ukrainian Church, the Serbian Church, etc. The authors have collected a corpus of 23 Greek
Orthodox Church hymns with 4820 performances in total. The audio samples are first
transformed into Mel-spectrograms, and then three different novel CNN architectures are
trained in a supervised learning framework for the task of Greek Orthodox Church hymns
identification, while five pre-trained DL models are tested on the same problem.

The main contributions of this research may be summarized as follows:

• Three novel DL models based on convolution operation are designed for Greek Or-
thodox Church hymns classification. A novel Visual Geometry Group (VGG) ap-
proach is presented, namely Micro VGG, which is custom-made for this problem and
outperforms the other custom architectures. Micro VGG is lightweight and its fast
convergence makes it suitable for mobile applications.

• Five state-of-the-art (SOTA) models are tested on the problem of Greek Orthodox Church
hymns classification. A comparison study between the different DL approaches is con-
ducted, both in terms of prediction accuracy and in terms of computational cost.

Our approach differs from conventional applications like Shazam in several ways.
First, Shazam identifies songs based on an audio fingerprint which is related to the acquired
spectrogram. Shazam identifies specific points in the spectrogram that correspond to peaks
indicating higher energy content. By focusing on these peak points, the algorithm effectively
minimizes the impact of background noise during audio identification. Shazam constructs
its fingerprint catalog using a hash table, wherein the frequency serves as the key. Instead
of marking only a single point in the spectrogram, Shazam marks a pair of points: the peak
intensity along with a secondary anchor point. As a result, its database key comprises
a hash of the frequencies of both points, rather than a single frequency. This approach
reduces the occurrence of hash collisions, thereby enhancing the performance of the hash
table [11]. However, one of the main drawbacks of Shazam is the fact that it is very sensitive
to which version of a track has been sampled, making the maximum number of false
predictions a parameter that needs to be tuned depending on the application [12]. On the
contrary, our method is based on knowledge retrieval. A DL model learns the features that
characterize each data sample. The proposed DL approaches are designed to be applied to
any audio dataset that contains music without instruments. Micro VGG can be trained on
small datasets to perform audio classification. Its architecture is based on the classical VGG
model. Thus, it can exploit its non-linear behavior to extract valuable features from the
acquired spectrograms. To the best of the authors’ knowledge, it is the first time that the
Greek Orthodox Church hymns classification problem is addressed using a DL framework.

1.1. Related Work

DL has found several applications in audio and music signal processing [13]. Although
DL has advanced audio technology, leading to commercial applications such as music
recommendation systems [14], its main success lies in music information retrieval (MIR)
and music generation (MG). MIR may be defined as the set of techniques that are used to
extract valuable information from audio data [2], while MG is formed by methods that
generate new audio content [15]. Music data classification and identification are formulated
as MIR problems; hence, our literature review will focus on this field.
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Several different CNN models have been utilized for music identification and audio
classification. The authors in [16] train a CNN model and a tensor deep stacking network
for sound classification. The CNN is trained on two datasets with environmental sound
data samples. The DL architecture is structured with two convolution layers and one fully
connected. Finally, the tensor deep stacking network is trained using two stacked blocks,
then with three stacked blocks, and finally with four stacked blocks. The work presented
in [7] employs an ensemble of learners for audio classification. More specifically, five
pre-trained CNN models, namely AlexNet [17], GoogleNet [18], VGGNet [19], ResNet [20],
and InceptionV3 [21], form an ensemble classifier that achieves better performance overall.
Two of the most successful CNNs for audio identification tasks are the VGGish and the
YAMNet models [22]. VGGish is a pre-trained CNN that is inspired by the VGG networks.
The model consists of a series of convolution and activation layers, optionally followed by
a max pooling layer. This network contains 17 layers in total. These two models, together
with GoogleNet, SqueezeNet [23], and ShuffleNet [24] are tested in a comparative study
that is provided in [25]. VGGish achieves the best classification accuracy.

DL relies heavily on large amounts of data; hence, publicly available datasets are
considered valuable. AudioSet [26] is an audio-event dataset widely used in audio classifi-
cation problems. More specifically, DL models are often pre-trained on AudioSet before
their application in a different problem, exploiting the transfer learning capabilities.

Audio ML/DL on mobile devices has recently emerged as a new research area. In [27],
ML algorithms are used for monitoring environmental sounds. The authors seek to find
whether it is feasible to create a measurement system for environmental sound monitor-
ing that runs on a handheld device and uses ML to provide meaningful readings. The
authors in [28] perform audio-visual speech and gesture recognition using CNN archi-
tectures that combine convolution and recurrent operations. A novel DL-based speech
enhancement method for dual microphone cell phones is presented in [29] utilizing a CNN
with a recurrent architecture. The proposed densely connected convolutional recurrent
network employs an encoder-decoder scheme to achieve both a good feature extraction
and sequential modeling of the available audio data.

Recently, DL has been employed for music genre recognition problems. A novel
CNN model for Persian music genre recognition, namely PMG-Net, is introduced in [30].
The authors created and made publicly available the PMG-Data dataset, which consists
of 500 music samples from different genres of Pop, Rap, Traditional, Rock, and Monody.
Furthermore, after the data pre-processing, the desired features are fed to PMG-Net. PMG-
Net is based on the VGG-16 architecture; however, it only consists of two equal-size filters
in two subsequent layers. The work presented in [31] provides a novel feature extraction
algorithm, also utilizing the tunable Q-wavelet transform. The extracted features are fed
into several ML classifiers.

1.2. Organization of the Article

The rest of this work is structured as follows: In Section 2, the data pre-processing
methods are presented along with the CNN architectures, while in Section 3 the experiments
and the results are discussed. Section 4 is devoted to the discussion of the results. Section 5
concludes this work by highlighting the most important remarks.

Notation and abbreviations: In this work, we use lowercase Latin letters for scalars,
matrices are denoted with capital bold letters, i.e., W, and vectors with lowercase bold
letters, i.e., x. The calligraphic capital letter is reserved for the mathematical operators,
i.e., P .
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2. Materials and Methods

This section discusses the data generation and processing procedures. Image process-
ing is required for the images to be in a suitable form for the neural networks’ training.
In addition, the different CNNs that are designed for the task of Greek Orthodox Church
hymns identification are presented in detail.

2.1. Data Generation

For this work, the dataset is composed of 23 distinct classes (hymns). The number
of samples per class is shown in Table 1. Every sample corresponds to a unique interpre-
tation of a Greek Orthodox Church hymn. To enhance the dataset’s diversity, some of
the hymns were recorded in a soundproof environment by a single chanter using profes-
sional recording equipment, while others were captured using a mobile phone in various
churches during divine services, including background noise from crowds and church
bells. During the recordings inside the churches, the mobile phone was placed in different
places each time to achieve diversity in the audio quality. This strategy was implemented to
aid the CNN model in learning distinct features, allowing it to recognize Greek Orthodox
Church hymns recorded in any location. The data samples recorded in situ form 50% of the
whole dataset. The equal split between the hymns recorded in a soundproof environment
and those that were captured during the divine service aims to mitigate the bias from
the dataset.

Table 1. Number of performances per class.

Class Samples Hymn Name (In the Greek Language)

Hymn1 210 Η ΠΑΡΘΕΝΟΣ ΣΗΜΕΡΟΝ

Hymn2 210 ΕΥΛΟΓΗΤΟΣ ΕΙ ΧΡΙΣΤΕ Ο ΘΕΟΣ

Hymn3 218 ΤΗΝ ΩΡΑΙΟΤΗΤΑ

Hymn4 174 ΤΟΝ ΣΤΑΥΡΟΝ ΣΟΥ ΠΡΟΣΚΥΝΟΥΜΕ

Hymn5 210 ΑΝΟΙΞΩ ΤΟ ΣΤΟΜΑΜΟΥ

Hymn6 210 ΦΩΣ ΙΛΑΡΟΝ

Hymn7 210 ΜΕΤΑ ΤΩΝ ΑΓΙΩΝ ΑΝΑΠΑΥΣΟΝ

Hymn8 210 ΧΡΙΣΤΟΣ ΑΝΕΣΤΗ

Hymn9 210 ΜΕΤΑ ΠΝΕΥΜΑΤΩΝ ΔΙΚΑΙΩΝ

Hymn10 222 ΕΙΣ ΤΗΝ ΚΑΤΑΠΑΥΣΙΝ ΣΟΥ ΚΥΡΙΕ

Hymn11 210 ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΧΡΙΣΤΙΑΝΩΝ

Hymn12 210 ΔΟΞΟΛΟΓΙΑ

Hymn13 210 ΑΝΑΣΤΑΣΕΩΣ ΗΜΕΡΑ

Hymn14 210 ΤΟΝ ΝΥΜΦΩΝΑ ΣΟΥ ΒΛΕΠΩ

Hymn15 210 ΤΟΥ ΔΕΙΠΝΟΥ ΣΟΥ ΤΟΥΜΥΣΤΙΚΟΥ

Hymn16 210 ΑΠΟΣΤΟΛΟΙ ΕΚ ΠΕΡΑΤΩΝ

Hymn17 210 ΘΕΟΣ ΚΥΡΙΟΣ

Hymn18 216 ΘΕΟΤΟΚΕ ΠΑΡΘΕΝΕ

Hymn19 213 ΠΑΣΑ ΠΝΟΗ

Hymn20 207 ΩΣ ΤΩΝ ΑΙΧΜΑΛΩΤΩΝ

Hymn21 210 ΜΕΓΑΝ ΕΥΡΑΤΟ

Hymn22 210 ΕΚ ΝΕΟΤΗΤΟΣΜΟΥ

Hymn23 210 ΜΕΤΑ ΠΝΕΥΜΑΤΩΝ ΔΙΚΑΙΩΝ

Regarding the statistical properties of our dataset, the minimum duration of a hymn is
20.4 s, while the maximum duration is 117 s. The average duration is 52.8 s and the standard
deviation is 17.9 s. For each separate class, these values are depicted in the Boxplots in
Figure 1.
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Figure 1. Boxplot for each hymn of our dataset.

2.2. Data Processing

To exploit the SOTA CV techniques, audio data should be transformed into images
through a suitable representation. Here, the image processing techniques that were em-
ployed are thoroughly discussed.

2.2.1. Mel-Spectrograms

To implement CV methodologies, each audio file is converted into a spectrogram. Since
the audio files feature human voices, Mel-spectrograms are utilized. A spectrogram can be
described as the result of the fast Fourier transform (FFT), an algorithm that computes the
discrete Fourier transform (DFT), applied on overlapping windowed segments of the audio
signal. It also highlights the passage from the time domain representation to the frequency
domain representation.

However, humans do not perceive sound on a linear scale. The Mel scale is preferred
because it closely approximates human perception and accurately represents the frequencies
that humans typically hear. It is an alternative scale of pitches resulting from human
listeners’ judgment that a pair of pitches are equally distant. A reference point is established
between the two scales by setting a perceptual pitch of 1000 Hz on the regular frequency
scale equal to 1000 Mels. Mel spectrograms can be obtained by transforming the regular
spectrograms into the Mel scale using the following formula:

m = 2595 log
(

1 +
ν

700

)
. (1)

ν denotes the frequency measured in Hertz.
For our purposes, the whole audio file is transformed into Mel-spectrogram. In

Figure 2, different examples of Mel spectrograms from our dataset are depicted. The
transformation of the audio samples to Mel-spectrograms is performed using a sample rate
equal to 22,050, 512 samples between successive frames (hop length) and a 2048 FFT in
window length.

For the acquired spectrograms, the mean value of each RGB channel is {0.4680, 0.4225,
0.4795} and the standard deviation is equal to {0.4449, 0.4624, 0.4298}.

2.2.2. Data Processing and Augmentation

The initial dataset consists of 23 classes and 4820 performances. Various data process-
ing augmentation techniques were employed to increase the number of inputs for the DL
models. More specifically, the images are resized in a 64× 64 format for computational cost
reduction purposes, while the pixel values are normalized.
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Figure 2. Examples of four different Mel-spectrograms from our private dataset.

There are many data augmentation techniques for CV problems, such as random
cropping, image rotation, image blurring with a Gaussian filter, etc. A recently introduced
data augmentation method is the TriviaAugment (TA) algorithm [32]. TA works as follows.
Let X be an image from our dataset and T be a set of augmentations. An augmentation is
mathematically defined as a function

f : D ×Z+ → A (2)

Here, D refers to the image dataset, A represents the set of the augmented images and
a discrete strength parameter is defined in Z+.

TA takes as input an image X and the set T . In the next step, TA samples uniformly at
random an augmentation mapping from T and applies it to the given image X , assigning
a strength value s and returns the augmented image. The whole procedure is depicted in
Algorithm 1.

Algorithm 1 TA algorithm

Dataset D with M images
while m ≤ M do

Pick an image X ∈ D
Sample augmentation f from T
Sample a strength value s
Return f (X , s)

end while

Another popular data augmentation technique that is employed in our work is the
MixUp augmentation [33]. Given two images from the available data selected randomly,
MixUp generates a weighted combination of them. Mathematically, this process is formu-
lated as follows: If (x1, y1) and (x2, y2) is the chosen image pair, the synthetic image is
generated as
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x̂ = wx1 + (1− w)x2

ŷ = wy1 + (1− w)y2
(3)

The weight coefficient w ∼Beta(a = 0.2) is independently sampled.
Finally, a third data augmentation method, namely SpecAugment [34] is utilized.

SpecAugment consists of three augmentation policies:

• Time warping: From a uniform distribution with range [−D, D], a starting point
d0 and a displacement coefficient d are sampled. A linear warping function D(t) is
defined, such that the point d0 is mapped to the point d0 + d. Time warping is defined
in such a way that the warped features at time t are related to the original features by
the following equation:

xwarp(D(t)) = xorig (4)

• Frequency masking: Given a uniform distribution with a range from 0 to F , a mask of
size f is randomly chosen. Then, a value f0 is chosen from the interval [0, f0 − f ] and
the consecutive log-Mel frequency channels [ f0, f0 + f ) are masked.

• Time masking: Given a uniform distribution with a range from 0 to T , a mask size τ
is randomly chosen. Then, a value τ0 is chosen from the interval [0, τ0 − τ] and the
consecutive time steps [τ0, τ0 + τ) are masked.

The SpecAugment policy consists of applying these three augmentation methods a
fixed number of times [34].

After applying these three data augmentation techniques to our dataset, the number
of samples increased to 19,280 images.

2.3. CNN Architectures

CNNs have achieved impressive results in many research areas, including CV, natural
language processing (NLP), audio signal processing, and object detection [35]. The building
blocks of CNN architectures are the following:

• Input layer: This layer accepts the input data in a form suitable for further processing.
Usually, the image data are transformed into multi-dimensional arrays with three
color channels.

• Convolution layer: Convolution layers are the building blocks of any CNN archi-
tecture. They perform the process of feature extraction. The main difference with a
fully connected layer is that convolutional layers are characterized by the neuron’s
receptive field. This receptive field indicates that every single unit receives input from
only a restricted area of the previous layer.

• Activation function: In the academic literature, the majority of the CNN architectures
use as an activation function; either a rectified linear unit (ReLU) function or some
kind of a variant. ReLU is mathematically defined as in [6]

g(v) = max(0, v). (5)

• Pooling layer: Their purpose is to reduce the size of the incoming data in a computa-
tionally efficient manner.

• Flattening: This layer transforms the data into a 1D vector.
• Output layer: This layer outputs the model’s prediction.

Many CNNs utilize several techniques to improve their performance. Dropout [36]
was introduced as a regularization technique. When Dropout is utilized, some layer outputs
are ignored (“dropped out”) in a random way, which results in a different layer behavior.
The main consequence of this method is that, in each step during training, a different
“view” of the configured layer takes place. In addition, the training process becomes noisy,
since individual nodes within a layer are forced to take on more or less responsibility for
the inputs.

Batch normalization [37] is another widely used method for accelerating and stabi-
lizing neural networks’ training. Batch normalization usually calculates during training
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the mean and standard deviation of each input variable to a layer per mini-batch and uses
these results to perform layer standardization. There is an ongoing discussion between
ML researchers about the way that batch normalization affects training, particularly if it
reduces internal covariance shift or smooths the objective function [38,39].

Weights Initialization

Weights initialization refers to the process of assigning values to the neural network’s
weights, thus defining a starting point. However, many works employed random initial-
ization, resulting in many problems such as vanishing or exploding gradients [40]. Other
initialization techniques include normal initialization, zero initialization, and random
uniform initialization. However, all of these methods are not capable to overcome the
aforementioned challenges.

Xavier initialization was introduced in [40] as a way to overcome the aforementioned
challenges. Xavier initialization does not focus on the randomization technique but on
the number of outputs in the following layer. The weights are initialized from a bounded
uniform distribution, such that

W ∼ U

[
−

√
6

mj + mj+1
,

√
6

mj + mj+1

]
(6)

mj represents the number of incoming network connections and mj+1 refers to the number
of outgoing network connections.

Xavier initialization mitigates the possibilities for exploding or vanishing gradients
since the weights are set neither too close to zero nor too close to 1. In this way, the
gradients do not vanish or explode too rapidly. In this paper, all the trained models utilize
Xavier initialization.

2.4. Performance Metrics

ML and DL algorithms are evaluated in terms of their performance and their gen-
eralization capabilities, using several different performance and statistical metrics. In a
supervised learning framework, the most common performance metrics for multi-class
classification are presented below [41–43]:

• Accuracy is defined as the fraction of correct predictions. It is expressed mathematically as

Accuracy =
1
M

M−1

∑
m=0
I(q̂n = qn) (7)

M is the number of test classes, q̂n denotes the ML model class predicted label, qn is
the true class label, and I(x) represents the indicator function.

• Precision expresses the ratio of correctly predicted positive classes to all predicted
positive classes and in multi-class classification problems is defined as

Precision =
∑L

l=1 TPl

∑L
l=1(TPl + FPl)

(8)

L refers to the number of classes, TPl is the number of true positive outcomes, and FPl
is the number of false positive outcomes for class label l.

• Recall expresses the ratio of correctly predicted positive classes to all existing positive
classes. In mathematical terms,

Recall =
∑L

l=1 TPl

∑L
l=1(TPl + FNl)

(9)

L is the number of classes, TPl is the number of true positive, and FNl is the number
of false negative for class label l, respectively.



Appl. Sci. 2023, 13, 8638 9 of 18

• F1-score aggregates Precision and Recall metrics under the concept of harmonic mean.
This is defined as

F1-score = 2× Precision× Recall
Precision + Recall

. (10)

F1-score can be viewed also as the weighted average between Precision and Recall.

2.5. Proposed Approaches

In this research work, Greek Orthodox Church hymns identification is tackled as a CV
problem. To find an optimal solution to this problem, three different CNNs are designed.
In Figure 3, the different architectures are depicted.

(a)

(b)

(c)

Figure 3. DL models architecture: (a) Shallow CNN, (b) Deep CNN, and (c) Micro VGG.
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Initially, a shallow CNN with only one convolution layer is designed; however, it
severely underperforms. The next design is a CNN architecture with four convolution
layers, dropout and batch normalization, and two fully-connected layers. Although it
performs well in terms of accuracy, it requires a significant amount of computational
resources. The third solution is a VGG-variant, namely Micro VGG, that outperforms the
other two models and is lightweight.

2.5.1. Shallow CNN

As a first approach, a shallow CNN with only one convolution layer followed by a
max-pooling layer and two fully-connected layers is designed. The convolution layer has
64 neurons, while the first fully connected has 128 neurons. After several experiments,
the best-performing instance of the model utilized the ReLU function. Dropout was used
as a mechanism to avoid overfitting. The neurons’ weights were initialized using the
Xavier technique.

2.5.2. Deep CNN

The second DL model that was trained to identify Greek Orthodox Church hymnsis
a custom CNN with four convolution layers, four max-pooling layers, and two fully-
connected layers. The first convolution layer has 64 neurons, and the following layers
have 128, 256, and 512 neurons, respectively. Again, the ReLU activation gave the best
performance along with dropout and batch normalization, while Xavier initialization was
also employed.

2.5.3. Micro VGG

The third model is a variant of VGG architecture. The VGG model was introduced
in ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014 [19,44] and since
then it has become one of the most successful DL models in CV. The first VGG consists of
16 layers [19]; however, this number is considered too big for a small dataset, since it would
allow the model to overfit rapidly. In our case, the Micro VGG consists only of two blocks
of convolution layers, with 64 neurons each and 3× 3 kernel. Xavier initialization is also
employed. Batch normalization is again employed. The last two layers are formed using
full-connection mechanisms.

In this paper, Micro VGG is considered a candidate solution since incorporates the
benefits of the VGG architecture and requires few computational resources. The utilization
of very small receptive fields and the existence of the 1× 1 convolution layer make the
model more discriminative by using more weights and allowing highly non-linear behavior.
Furthermore, the low-complexity model requires us to explore a VGG-like architecture with
few layers. In the literature, there are similar approaches for audio classification tasks [25];
hence, after some experiments, we concluded that Micro VGG fits our problem better.

3. Experiments and Results

This section presents the different experiments for the task of identifying Greek Or-
thodox Church hymns. First, the performance results of the three different CNN models
are discussed; then, the comparison with the SOTA pre-trained models is provided. This
section is concluded with an analysis of the results.

3.1. Dl Models

The model’s weights update is performed using an Adam (adaptive moment esti-
mation) algorithm [45]. The training process exploits the capabilities of an NVIDIA RTX
3080 GPU. Each base model is trained for 100 epochs with a mini-batch size of 4. The
learning rate is set to 10−4, since the experiments with different learning rate formats under-
performed. To study the generalization capability of our CNNs, five-fold cross-validation
is utilized. The dataset is split in such a way that the training set contains 70% of the initial
data, and the validation and the test sets consist of 15% of the initial dataset each. Since
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five-fold cross-validation is used, each training fold consists of 2892 images. Finally, the
same folds are used for all the experiments.

In Table 2, the computational cost of each custom model is presented. Each model is
studied regarding the space it occupies in terms of Megabytes, the number of parameters
that need to be updated after each training epoch, and finally the number of multiplications
and additions that need to be performed in a single forward pass. In Tables 3–5, the
performance of the proposed approaches is presented, while the training and validation
loss and accuracy are shown in Figures 4–9. As five-fold cross-validation is carried out, the
presented values are average values.

Table 2. Models’ computational cost for one forward pass.

Model Parameters Size
(MB)

Number of
Parameters

Number of
Operations

Shallow CNN 1.36 8,391,191 15.73 M
Deep CNN 2.3 68,660,631 6.42 G
Micro VGG 1.96 489,687 234.6 M

Table 3. Models’ performance: Accuracy.

Model Train Accuracy % Validation
Accuracy % Test Accuracy %

Shallow CNN 83.33 ± 1.24 83.52 ± 0.83 82.79
Deep CNN 95.99 ± 1.28 96.10 ± 0.89 94.01
Micro VGG 97.16 ± 1.19 97.14 ± 0.74 96.38

Table 4. Models’ performance: Statistical metrics.

Model Precision Recall F1-Score

Shallow CNN 0.83 0.82 0.83
Deep CNN 0.95 0.96 0.95
Micro VGG 0.97 0.97 0.97

Table 5. Models’ performance: Training and inference time.

Model Training Time (s) Inference Time (s)

Shallow CNN 1937.002 3.88
Deep CNN 3405.890 4.79
Micro VGG 2091.434 4.02

Figure 4. Shallow CNN performance: Accuracy.
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Figure 5. Shallow CNN performance: Loss.

Figure 6. Deep CNN performance: Accuracy.

Figure 7. Deep CNN performance: Loss.
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Figure 8. Micro VGG performance: Accuracy.

Figure 9. Micro VGG performance: Loss.

The results presented above show that Micro VGG outperforms the other approaches
in terms of performance, at a smaller computational cost.

3.2. Transfer Learning—Comparison with SOTA Models

Five different SOTA-pre-trained DL models for audio classification and one for image
classification are trained on the same task to further evaluate our models’ performance.
More specifically, VGGish, ResNet18 [20], MobileNetV3 [46], SqueezeNet [23], and Effi-
cientNet [47] are trained on the same dataset. As in the previous experiments, the Adam
optimizer is used, the learning rate is equal to 10−4, and the same GPU is used. Again,
five-fold cross-validation was used to study the generalization of the results.

The computational cost of each model is provided in Table 6, while the performance is
given in Tables 7–9. The five pre-trained models require large amounts of computational
resources, achieving results similar to Micro VGG. However, both ResNet18 and VGGish
are more prone to overfitting.
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Table 6. SOTA models’ computational cost for one forward pass.

Model Parameters Size
(MB)

Number of
Parameters

Number of
Operations

VGGish 220.48 55,119,447 28.45 G
ResNet18 44.75 11,188,311 148.07 M

MobileNetV3 6.14 1,542,765 240.93 M
SqueezeNet 4.37 734,295 17.26 M
EfficientNet 4.74 4,037,011 7 M

Table 7. Models’ performance.

Model Train Accuracy % Validation Accuracy % Test Accuracy %

VGGish 100 ± 0 98.03 ± 1.16 95.42
ResNet18 96.18 ± 1.21 97.27 ± 1.08 96.11

MobileNetV3 94.87 ± 1.22 98.18 ± 1.03 95.76
SqueezeNet 90.08 ± 1.26 91.04 ± 0.99 88.78
EfficientNet 95.99 ± 1.19 97.14 ± 0.91 96.13

Table 8. Models’ performance.

Model Precision Recall F1-Score

VGGish 0.94 0.94 0.94
ResNet18 0.97 0.98 0.97

MobileNetV3 0.96 0.95 0.95
SqueezeNet 0.89 0.89 0.89
EfficientNet 0.96 0.96 0.96

Table 9. Models’ performance: Training and inference time.

Model Training Time (s) Inference Time (s)

VGGish 3054.258 4.73
ResNet18 2811.133 4.11

MobileNetV3 7813.502 5.89
SqueezeNet 2821.533 4.23
EfficientNet 3018.431 4.67

4. Discussion

DL has emerged as a powerful tool in audio signal processing problems. In this
work, CV and DL approaches are explored for the task of Greek Orthodox Church hymns
identification for mobile applications. Due to the restrictions that are imposed by the
low complexity requirement, only lightweight DL models are considered. Three custom
CNNs and five SOTA DL models are applied to the task of Greek Orthodox Church
hymns identification. The first two custom CNNs employ a conventional structure with
both convolution layers and fully-connected layers, while the third one, Micro VGG, is
introduced as an improvement of the previous two, incorporating the VGG architecture at
a smaller scale. The five pre-trained CNNs are chosen because, in the academic literature,
they have been tested for similar problems to ours. The eight DL models are compared
both in terms of accuracy and their computational cost. From the analysis of the results, it
is evident that Micro VGG outperforms the other approaches in terms of performance, at a
smaller computational cost. Batch normalization has improved our model’s performance,
while a constant learning rate proved more adequate. Since Micro VGG is considered the
best candidate solution for our problem, its confusion matrix is provided in Figure 10. From
the heatmap that is represented in the confusion matrix, it is proven that Micro VGG is not
biased and classifies all the hymns uniformly.
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Figure 10. Micro VGG confusion matrix.

The findings of our work suggest that it is rather possible to make a mobile app that
can be used inside of a church for hymn identification and classification. Such a mobile app
will be useful for both tourists and church believers.

Although Micro VGG’s performance is rather satisfactory, our work has certain limita-
tions. First, the dataset is relatively small, affecting the model’s accuracy. Although data
augmentation methods are used, more samples per hymn could lead to better results. Fur-
thermore, CNNs are only a class of DL models. Other architectures that are often utilized
in audio processing are recurrent neural networks (RNNs) and attention-based models.
RNNs are designed for data with sequential structure, like audio, while attention-based
models like Transformers have achieved impressive results in fields like NLP and CV.
However, RNNs are trained on the audio data themselves so their application requires a
different experimental setup [2,48]. Despite their recent success, Transformers still achieve
SOTA performance only on large datasets and there are only a few attention-based models
that can be considered lightweight [49,50]. In future works, where the largest dataset will
be available, both of these DL approaches will be studied for Greek Orthodox Church
hymns recognition.

5. Conclusions

In this work, CV and DL methodologies are employed to address the problem of
Greek Orthodox Church hymns identification. The goal is to develop DL models suitable
for mobile applications. Three approaches are applied to our private dataset; however, a
VGG variant achieves the best results. The proposed Micro VGG can identify Greek Ortho-
dox Church hymns with more than 96% accuracy. In addition, Micro VGG outperforms
two SOTA models, namely ResNet18, VGGish, MobileNet, SqueezeNet, and EfficientNet,
requiring fewer resources. There are still many ways to improve our results, such as by
exploiting more data per class, exploring ensemble and federated learning techniques, and
utilizing few-shot learning approaches. More specifically, new data samples will be added
shortly, updating and expanding our dataset. DL efficiently exploits larger amounts of data;
thus, an expanded audio dataset will further improve our results. Ensemble learning is an
ML technique that combines multiple learners to construct a stronger one. Such methods
could improve overall accuracy. Considering that we desire to apply our method to mobile
devices, federated learning, which offers decentralized training, could also be exploited.
Finally, few-shot learning or meta-learning allows a learner to learn from other learning
algorithms and can be combined with ensemble learning approaches, while it can further
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mitigate computational costs from edge devices. In our future work, we will develop a
mobile app using these DL approaches.
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1D one-dimensional
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DFT discrete Fourier transform
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MG music generation
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SGD stochastic gradient descent
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