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Abstract: The Jaya optimization algorithm is a simple, fast, robust, and powerful population-based
stochastic metaheuristic that in recent years has been successfully applied in a variety of global
optimization problems in various application fields. The essential idea of the Jaya algorithm is that
the searching agents try to change their positions toward the best obtained solution by avoiding the
worst solution at every generation. The important difference between Jaya and other metaheuristics
is that Jaya does not require the tuning of its control, except for the maximum number of iterations
and population size parameters. However, like other metaheuristics, Jaya still has the dilemma of an
appropriate tradeoff between its exploration and exploitation abilities during the evolution process.
To enhance the convergence performance of the standard Jaya algorithm in the continuous domain,
chaotic Jaya (CJ) frameworks based on chaotic sequences are proposed in this paper. In order to obtain
the performance of the standard Jaya and CJ approaches, tests related to electromagnetic optimization
using two different benchmark problems are conducted. These are the Loney’s solenoid benchmark
and a brushless direct current (DC) motor benchmark. Both problems are realized to evaluate the
effectiveness and convergence rate. The simulation results and comparisons with the standard Jaya
algorithm demonstrated that the performance of the CJ approaches based on Chebyshev-type chaotic
mapping and logistic mapping can be competitive results in terms of both efficiency and solution
quality in electromagnetics optimization.

Keywords: chaotic maps; electromagnetic optimization; Jaya optimization algorithm; metaheuristics;
evolutionary computation

1. Introduction

The Jaya algorithm, which was introduced by Rao [1], is a simple, flexible, and
powerful population-based stochastic algorithm for handling problems with discontinuous
and non-differentiable objective functions and has been successfully applied to different
kinds of global optimization problems. The Jaya algorithm is an emerging metaheuristic
based on the concept that the candidate solution obtained for a given global optimization
problem should change its position toward the best solution by updating its values and
avoiding the worst solution in the current population. The major advantage of the Jaya
algorithm is that it does not require any control parameter settings. Thus, the algorithm
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may easily search to find the global or near-global solution of the optimization problem in
the continuous domain. It only needs the essential population size and stopping condition
(maximum number of iterations) for optimization. The other main characteristics of the Jaya
algorithm are its simple structure in terms of formulation and fast convergence behavior.

Despite its simplicity and efficiency features, the standard Jaya algorithm suffers
from some of the same shortcomings as other metaheuristic algorithms applied to global
optimization. The Jaya algorithm can present premature convergence to a local optimum
solution and has the possibility of being trapped into local optima solutions when dealing
with complex multimodal optimization problems due to weak exploration ability and
insufficient population diversity. In general, balancing between the exploration (diversifi-
cation) and exploitation (intensification) capabilities is a challenging task in metaheuristics
design during the global optimization process. To overcome these drawbacks, different
variants to improve the performance of the standard Jaya optimizer have been proposed in
the literature, such as self-adaptive Jaya [2], Jaya with Lévy flight [3], and shuffled Jaya [4].

To improve the global convergence ability of metaheuristics, chaotic sequences can be
useful. Chaos is a nonlinear phenomenon characterized by a lack of periodicity, random-
ness, and ergodicity. Moreover, chaotic maps are sensitive to the initial conditions. Given
the ergodicity and randomness of chaos, it can be an effective mechanism when employed
for exploratory and exploitative purposes to avoid premature convergence for local op-
tima during the searching process and enhance the convergence rate in metaheuristics in
global optimization. From the recent literature [5–8], there are methods of integration of
one-dimensional chaotic maps with optimizers.

The main contribution of our work is to introduce a modified version of Jaya using
chaos sequences generated by chaotic maps (evolution function) that are discrete-time
parametrized instead of uniformly distributed. Thus, by using the chaotic maps, we have
been able to strengthen the original Jaya features and obtain robust and globally optimal
solutions. The proposed chaotic Jaya (CJ) approaches combine exploitative local search
and explorative global search processes efficiently by utilization of a chaotic map, intro-
ducing more diversity to produce candidate solutions. The proposed CJ approaches can
lead to improving the acceleration capability toward the global solution in global opti-
mization problems. Numerical results to the Loney’s solenoid benchmark problem [9,10]
and a brushless direct current (DC) motor benchmark problem [11] are provided which
demonstrate the usage and efficiency of the proposed CJ approaches.

The rest of the paper is organized into the following sections. Section 2 briefly describes
the Loney’s solenoid, while Section 3 describes the brushless DC motor benchmark. After
that, Section 4 covers the background information on the Jaya algorithm and the proposed
CJ approaches. The performance of the Jaya approaches is evaluated on the optimization
benchmarks and is compared to other metaheuristics in Section 5. Finally, we give the
concluding remarks and the discussion for future works in Section 6.

2. Loney’s Solenoid Design

The Loney’s solenoid belongs to the domain of nonlinear benchmark problems. It
is considered a magnetostatic inverse problem. The solution of Loney’s solenoid design
problem with local search methods that use derivatives can be resource intensive. Thus,
the researchers, driven by this fact, are compelled to rely on metaheuristics for a solution.
Metaheuristic algorithms are useful to handle different and complex global optimization
problems, regardless of the nature of the problem itself.

The Loney’s solenoid benchmark problem is considered a testbed due to the rough
objective function surface, which is typical in several problems of the electromagnetic
optimization domain. This problem is numerically ill-conditioned. The problem’s objective
is to obtain the correcting coils’ dimensions. These design parameters are the position (l)
and the size (s) of two coils that generate a possibly uniform magnetic field on the segment
(−z0, z0). The current densities through the coils are assumed to be constant. Figure 1
shows the upper half-plane of the axial cross-section of the Loney’s solenoid.
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Figure 1. Upper half-plane of the axial cross-section of Loney’s solenoid.

As stated earlier, there are two design variables in Loney’s solenoid problem. These
are s and l. Therefore, this problem can be formulated as a global minimization problem.
The optimization goal is to minimize f (s,l), where f is the objective function and the box
constraints are given by 0 ≤ s ≤ 20 cm and 0 ≤ l ≤ 20 cm. The objective function to be
minimized is given by

f (s, l) =
Bmax − Bmin

B0
(1)

where B0 is the magnetic flux density at the center z0 = 0 of the solenoid and Bmax and
Bmin represent the upper and lower values, respectively, of the magnetic flux along the
considered segment.

3. Brushless DC Motor Benchmark

In this section, we present the brushless DC motor benchmark. This optimization
problem has five decision variables in the continuous domain, five fixed variables, and
six inequality constraints as described in [11]. There is a publicly available code in the
Matlab computational environment for computing the objective function [12]. The design
parameters and inequality constraints are mentioned in Tables 1 and 2, respectively. This
benchmark is composed of seventy-eight nonlinear equations. These equations are mathe-
matically modeled using five decision variables and six constraints for optimization in this
single-objective case study.

Table 1. Design parameters in the brushless DC motor benchmark.

Symbol Meaning Lower Value Upper Value

δ (A/m2) Conductor current density 2.0·106 5.0·106

Be (T) Air gap induction 0.50 0.76
Bcs (T) Stator back iron induction 0.6 1.6
Bd (T) Teeth magnetic induction 0.9 1.8
Ds (m) Bore (stator) diameter 0.15 0.33

Table 2. Inequality constraints gi, where i = 1, . . . , nc in the brushless DC motor benchmark.

Symbol Meaning Lower Value Upper Value

Mtot (kg) Total mass g1 Mtot − 15 ≤ 0

discr (Ds, δ, Bd, Be)
Determinant used for the

calculation of the slot height g2 −discr ≤ 0

Imax (A) Maximum current in the phases g3 125 − Imax ≤ 0
Ta (◦C) Motor temperature g4 Ta − 120 ≤ 0

Din (mm) Inner diameter g5 76 − Din ≤ 0
Dext (mm) Outer diameter g6 Dext − 340 ≤ 0
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The operational and technological features regarding the specific wheel motor are
modeled by the inequality constraints. The inequality constraints are handled by means of
a penalty term, which is subtracted from the objective function (maximization problem),
penalizing the function values outside the feasible region. The goal of the penalty function
is to convert the constrained optimization problem into an unconstrained problem by using
a penalty term in the case of constraint violation. In this case, the optimization problem
can be described by

max η = f (Ds, Be, δ, Bd, Bcs) − penalty (2)

penalty = nvc
nc

∑
i=1

max(0, gi)
2 (3)

where η is the motor efficiency, gi (i = 1, . . . ,nc) are the inequality constraints, max is the
maximum value of (0, gi)

2, and nvc denotes the number of constraint violations.

4. Description of the Jaya Algorithm

In this section, we briefly describe the fundamental principles of the standard Jaya
(Section 4.1) and chaotic Jaya models (chaotic Jaya) (Section 4.2).

4.1. The Standard (Classical) Jaya Algortihm

The Jaya algorithm [1] stems from the basic idea that any candidate solution in the
search space of the current population should simultaneously change its position to be
near the best solution and change its position away from the worst solution in the current
population during the evolutionary cycle.

The mathematical model of the Jaya algorithm is as follows. We consider f (x) the
objective function. Initially, some solutions xi,j,k, assuming that there are n design variables
(i = 1,2, . . . , n) and m candidate solutions (j = 1,2, . . . , m) in the iteration k (k = 1, . . . , G),
are randomly generated with uniform distribution in the search domain (design variables
bounds), where m is the population size of the solutions and G is the maximum iterations
(generations) of the evolutionary cycle. Each candidate solution corresponds to the solution
of the problem to be solved.

Similar to other population-based metaheuristics, the quality of these initial candidate
solutions is obtained by simply calculating the objective function value. In this case,
we obtain the best and the worst candidate solutions in the population of the candidate
solutions that have the best (minimum value in a minimization problem) and the worst
(maximum) value of f (x), respectively.

Then, these candidate solution vectors perform an iteration-by-iteration search until
the maximum number of iterations is achieved. Classical implementation of the Jaya
algorithm is simple and includes just one equation for generating new candidate solutions.
At any iteration k, a candidate solution xi,j,k of the current population uses the following
update rule [1,2]:

x′i,j,k = xi,j,k + ri,j,1

(
xi,j,best −

∣∣∣xi,j,k

∣∣∣)− ri,j,2

(
xi,j,worst −

∣∣∣xi,j,k

∣∣∣) (4)

where xi,j,best is the best candidate solution of the ith variable of the jth candidate solution,
xi,j,worst is the worst candidate solution, x′i,j,k is the updated value of xi,j,k, and ri,j,1 and ri,j,2

are two uniformly distributed random real numbers generated with uniform distribution
for the ith variable in the interval [0,1]. There are random numbers ri,j,1 and ri,j,2 influence
the search range of the algorithm as scaling factors to improve the exploration capacity of
the search space.

The term
(

xi,j,best −
∣∣∣xi,j,k

∣∣∣) represents the inclination of the candidate solution to

change its position to be near the best candidate solution, and the term
(

xi,j,worst −
∣∣∣xi,j,k

∣∣∣)
presents the inclination of the candidate solution to change its position away from the
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worst candidate solution. The newly found solution vector x′i,j,k may replace the old vector
only if it obtains a better objective function value.

This means that the quality of the newfound candidate solution is evaluated in terms
of the objective function value. If the new candidate solution is better than the original
candidate solution in terms of the objective function value, then the algorithm will replace
the old candidate solution with the new one. Otherwise, the old candidate solution remains
in the current population. The Jaya algorithm preserves the best candidate solutions at the
end of each iteration. In the next iteration, the new search will be based on this solution.

The steps of using the Jaya algorithm are summarized as follows [1–4]:

1. Initially, choose the parameters of the population size, the upper and lower limits
of the design variables, and the maximum number of generations or iterations G
(stopping criterion);

2. Randomly generate m initial candidate solutions (population) with the upper and
lower bounds of the variables using uniform distribution in the search domain.
Evaluate the initial candidate solutions with the objective function. Set the iteration
(generation) k to zero;

3. Obtain the best and the worst candidate solutions in the current population;
4. For each solution vector x, create a child solution x′ given by Equation (4), and validate

it by calculating the objective function value;
5. If the f (x′) value is greater than the f (x) value, then replace x with x′. Otherwise, the

solution x remains in the current population unaltered. Update the iteration, where
k = k + 1;

6. Go to steps 3–5 until the stopping criterion G is satisfied;
7. If finished, then output the best candidate solution.

One difference with the Jaya optimizer with a classical swarm intelligence approach,
called particle swarm optimization (PSO) [13,14], is that the best and worst solutions are
updated in each iteration in the Jaya algorithm, as opposed to PSO, where the global best
(gbest) and personal best (pbest) are updated whenever a better solution is found. In the
PSO design, the acceleration coefficients, known as the cognition and social coefficients,
are positive constants commonly used to modulate the magnitude of the steps when
the cognition speed of the particle (candidate solution) in the swarm is accelerated in
the direction of its pbest and gbest, respectively. However, PSO has two random values
generated with uniform distribution to weight the cognitive and social components. In
the standard Jaya algorithm, there are random values that influence the search range to
improve the exploration capacity of the search space.

4.2. The Proposed Chaotic Jaya (CJ) Optimizer

Chaos owns the features of being non-periodic and unpredictable. The implementation
of a chaotic map is easy. Moreover, random numbers from a chaotic map have an inherently
special ability to avoid stagnation in local optima. Thus, evolutionary algorithms enhanced
with chaotic sequences [5–8] have the ability to be a powerful alternative and maintain a
balance between the exploration (global search) and exploitation (local search) capabilities,
as well as prevent the stagnation situation and premature convergence of the population-
based metaheuristics.

Research in chaotic sequences, combined with metaheuristics, has made breakthroughs
in recent decades, which has caused them to receive attention and be successfully applied
in many evolutionary algorithms and swarm intelligence designs.

In this context, some research combining chaotic sequences with Jaya has been recently
proposed in the literature. Ravipudi and Neebha [15] proposed a chaotic Jaya method based
on a tent chaotic map for obtaining random numbers. The proposed chaotic Jaya method
was evaluated with success in three case studies of synthesis of linear antenna arrays.
Migallón et al. [16] analyzed the use of the 2D cross chaotic map in three parallel approaches
to improve the convergence of the Jaya optimizer. In this case, the parallel chaotic Jaya
approaches were tested and obtained good solutions to the pressure vessel problem and



Telecom 2021, 2 227

the welded beam problem, with these two cases involving constrained engineering design
problems. Jian and Weng [17] introduced a chaotic mutation strategy based on a logistic
map into the search strategy of the Jaya algorithm to improve the population diversity and
enhance and balance the exploration ability and the exploitation ability of the algorithm.
Premkumar et al. [18] presented an enhanced chaotic Jaya algorithm based on the sine map,
logistics map, and tent map to classify the parameters of various photovoltaic models.

In the proposed CJ approach, at any iteration k, a solution xi,j,k of the population is
updated as follows:

x′i,j,k = xi,j,k + ci,j,1

(
xi,j,best −

∣∣∣xi,j,k

∣∣∣)− ci,j,2

(
xi,j,worst −

∣∣∣xi,j,k

∣∣∣) (5)

where ci,j,1 and ci,j,2 are two signals generated by chaotic sequences in the interval [0,1] in-
stead of a uniform distribution, as presented in Equation (4), for the standard
Jaya algorithm.

We have introduced chaos into the Jaya algorithm by applying different chaotic maps
that come from mathematical definitions. In this paper, we apply ten different variants
of chaotic maps to chaotic Jaya. These are the Chebyshev, circle, Gauss, iterative, logistic,
piecewise, sine, singer, sinusoidal, and tent maps. We have selected a set of chaotic maps
that all have different behaviors. Additionally, we have selected 0.5 as the initial value for
all adopted chaotic maps.

5. Experimental Study and Discussion

In this section, we present the CJ results when applied to two previously presented
design cases. The bold font in the results indicates the best obtained solution.

5.1. Results for the Loney’s Solenoid

In the cases that follow, in all algorithm variants, we set the same population size (20)
and the same stopping criterion (which was set to 3000 objective function evaluations).

Table 3 illustrates the optimization results for Loney’s solenoid case of the Jaya and
CJ (1–10) approaches, where the numbers 1 through 10 in the CJ approaches represented
the chaotic map given by (1) Chebyshev, (2) circle, (3) Gauss, (4) iterative, (5) logistic, (6)
piecewise, (7) sine, (8) singer, (9) sinusoidal, and (10) tent mapping, respectively.

Table 3. Optimization results for the Loney’s solenoid in 50 runs considering the objective function
to be minimized, given by f (s, l). Data in bold font indicates the smaller values.

Optimizer Minimum (10−8)
(Best) Mean Maximum

(Worst)
Standard
Deviation

Jaya 3.4564 1.74·10−7 9.32·10−6 3.82·10−7

CJ (1) 2.4380 3.38·10−8 4.39·10−8 7.03·10−11

CJ (2) 3.1906 2.24·10−7 7.93·10−6 2.95·10−7

CJ (3) 7.7139 9.60·10−5 1.51·10−3 8.95·10−5

CJ (4) 3.0942 6.94·10−8 1.84·10−6 7.38·10−8

CJ (5) 2.0566 6.60·10−8 1.93·10−6 3.20·10−7

CJ (6) 3.0217 2.07·10−7 6.60·10−6 4.19·10−7

CJ (7) 2.1721 6.48·10−8 1.37·10−6 4.58·10−8

CJ (8) 2.2034 5.88·10−7 3.42·10−5 1.49·10−6

CJ (9) 3.8248 1.11·10−5 3.65·10−4 1.04·10−5

CJ (10) 3.9749 5.96·10−5 8.21·10−4 1.75·10−5

One may notice that there were three different basins of attraction of local minima in
the domain of f, with values of f (s,l) > 4·10−8 (high level region), 3·10−8 < f (s,l) < 4·10−8

(low level region), and f (s,l) < 3·10−8 (very low level region, the global minimum region).
As seen from Table 3, CJ (5) outperformed the other tested optimizers in terms of the

best objective function value f (s,l) in 50 runs. The best result (minimum) using CJ (5) is
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f (s,l) = 2.0567·10−8, with s = 11.4244 cm and l = 1.4091 cm. However, CJ (1) presented the
best mean f (s,l) value of the compared Jaya optimizers in Table 3.

To verify the performance and effectiveness of the Jaya and CJ methods for the Loney
solenoid, a brief analysis of the performance is also provided in Table 4, which shows
the comparison with the results reported in [19–23]. It can be seen that CJ (5) obtained
comparative results with those metaheuristics in terms of the best objective function value
f (s,l). On the other hand, the mean f (s,l) obtained by CJ (1) was competitive with the
other optimizers.

Table 4. Results in terms of the objective function f (s, l)·10−8. Data in bold font indicates the
smaller values.

Optimizer Minimum (10−8) Mean

CJ (1) 2.4380 3.38
CJ (5) 2.0566 6.60
CJ (8) 2.1721 6.48

GABC (0.1) [19] 2.2010 3.33
GABC (0.3) [19] 2.0658 3.87

Cultural SOMA [20] 2.4338 3.40
TRIBES [21] 2.0595 3.48
QBSO [22] 3.3990 3.57
GHS [23] 3.8035 3.40

Acronyms: Gaussian artificial bee colony (GABC), self-organizing migrating algorithm (SOMA), quantum-
behaved brainstorm optimization (QBSO), and Gaussian harmony search algorithm (GHS).

5.2. Results for the Brushless DC Motor Design

In this case, a population size of 20 and a stopping criterion of 900 evaluations of the
objective function in each run of the Jaya approaches were adopted.

It can be observed in Table 5 that the best solution (boldface) of the CJ in 50 runs
converged to the same solution found by sequential quadratic programming (SQP) [24] and
ant colony optimization (ACO) [25] (see Table 5), which was considered to be most likely
the problem global optimum. All solutions in each run obtained by the Jaya approaches
(see Table 5) were feasible.

Table 5. Optimization results for the brushless DC motor in 50 runs considering the objective function
to be maximized, given by max η = f (Ds, Be, δ, Bd, Bcs) − penalty. Data in bold font indicates the
larger values.

Optimizer Minimum
(Worst) Mean Maximum

(Best)
Standard
Deviation

Jaya 94.67 95.17 95.31 1.67·10−3

CJ (1) 94.40 95.12 95.31 1.67·10−3

CJ (2) 92.85 94.25 95.21 6.64·10−3

CJ (3) 94.32 95.23 95.32 1.63·10−3

CJ (4) 92.69 93.87 95.08 7.55·10−3

CJ (5) 93.67 94.84 95.32 4.17·10−3

CJ (6) 93.10 94.91 95.32 4.58·10−3

CJ (7) 93.53 94.46 95.29 5.09·10−3

CJ (8) 94.94 95.27 95.32 8.66·10−4

CJ (9) 94.14 94.97 95.32 2.89·10−3

CJ (10) 94.97 95.24 95.32 8.11·10−4

The best solution, in terms of the best η value obtained by CJ (3, 5, 6, 8, 9, and 10)
approaches, was Ds = 201.2 mm, Be = 0.6481 T, δ = 2.0437 A/mm2, Bd = 1.8 T, and Bcs =
0.8959 T. In this case, the obtained total mass was 15 kg. However, in terms of the mean η
values, the best results were obtained by CJ (8).
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According to the simulation results from Table 6, it was observed that the number
of evaluations of the objective function employed in the Jaya method was less than those
adopted by GA, PSO, and ACO mentioned in Table 6, except for the efficient nonlinear
programming method called SQP.

Table 6. Results of the optimizers for the brushless DC motor. Data in bold font indicates the
larger values.

Optimizer η NE *

Sequential quadratic programming (SQP) [24] 95.32 90
Genetic algorithm (GA) [24] 95.31 3380

GA and SQP [24] 95.31 1644
Ant colony optimization (ACO) [25] 95.32 1200

Particle swarm optimization (PSO) [25] 94.98 1600
CJ (3), (5), CJ (6), CJ (8), CJ (9), CJ (10) 95.32 900

* NE: number of evaluations of the objective function.

6. Conclusions and Future Scope

This paper presented novel Jaya approaches based on chaotic sequences applied to
electromagnetic optimization. In order to evaluate the new CJ algorithms’ performance,
we applied them to two real-world engineering problems, namely Loney’s solenoid and
the brushless DC motor.

Based on the results in Tables 3–6, some CJ approaches offered good performance in
terms of both efficiency and solution quality when compared with the other optimization
approaches presented in the literature.

The programming environment for numerical computations in the current work was
Matlab version 2020a. The operating system was Windows, running in an Intel Core
i7-5820 processor (3.30 MHz) that had 128 GB of random-access memory. The mean
computational times considering all Jaya approaches at each run were 0.3 s and 0.2 s for
the Loney’s solenoid and brushless DC motor cases, respectively.

In our future work, we are planning to study the proposed CJ approaches and recently
proposed optimizers [26–30] for additional optimization problems in telecommunications.
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