
1

ClusterSlice: Slicing Resources for Zero-touch
Kubernetes-based Experimentation

Lefteris Mamatas (Member, IEEE), Sotiris Skaperas (Member, IEEE), Ilias Sakellariou (Member, IEEE)
Department of Applied Informatics, University of Macedonia, GR-54636 Thessaloniki, Greece

{emamatas, sotskap, iliass}@uom.edu.gr

Abstract—ClusterSlice is an open-source solution for auto-
mated kubernetes-centered experimentation. It introduces well-
designed abstractions that reduce experimentation complexity
with improved reliability and reproducibility. Its main capabili-
ties are: (i) automated declarative operation, e.g., through declar-
ative specifications of experimentation slices; (ii) infrastructure-
as-a-service (i.e., the utilization of heterogeneous physical and
virtual resources), platform-as-a-service (e.g., multiple compos-
able Kubernetes flavors and network plugins), and application-
as-a-service (e.g., plug-and-play application features) capabilities;
(iii) multi-cluster and multi-domain support, i.e., inter-cluster
operation over multiple open testbeds, virtualization systems
and domains; and (iv) experimentation automation, e.g., support
of automated experiments of various research topics, including
network plugin performance assessments and anomaly detection
workflows. Here, we provide the basic architectural attributes of
ClusterSlice and proof-of-concept results highlighting its above
capabilities.

Index Terms—Testbed based experimentation, Kubernetes,
Edge Computing, Zero-touch Network Management, Network
Slicing.

I. INTRODUCTION

New research endeavours in cloud and networks benefit
from open testbed infrastructures that lower the barrier of
experimentation complexity, improve reproducibility of exper-
iments, while contribute in the technical accuracy of docu-
mented results. An experimenter typically logins in a testbed
system (i.e., via a web-site, testbed control application or an
API), requests resources with particular configurations (e.g.,
physical servers, virtual machines or network equipment) and
after a while is able to execute experiments. Such infras-
tructures may also be federated, i.e., supporting allocation of
scalable multi-testbed resources over the globe, as well as
commonly provide experimentation automation facilities.

However, both testbed hardware and software demand heavy
maintenance duties that are sometimes difficult to achieve,
especially during periods with research funding shortage.
Thus, opening research infrastructures to the wider scientific
community is not always feasible, and some testbeds end-
up commercializing their offerings, or their software becomes
obsolete or their hardware starts to face frequent failures.

On the other hand, Kubernetes is a widely used con-
tainer orchestration facility with impressive automation, fault-
tolerance, scalability, resource optimization capabilities and a

This research was partially funded by the Greek Ministry of Education
and Religious Affairs for the project ”Enhancing Research and optimizing
University of Macedonia’s administrative operation.

Corresponding Author: Sotiris Skaperas (email: sotskap@uom.edu.gr).

highly modular architecture. Kubernetes appears ideal for ex-
perimentation automation. Firstly, there is an emerging need to
experiment with kubernetes-based systems and containerized
workloads, since it is a common way nowadays to deploy
real software systems. Secondly, its disruptive management
paradigm can enrich experimentation automation through its
capabilities and abstractions. Lastly, it is well-maintained,
supported and documented from the open-source community
for both its basic features and extensions.

Along this direction, we have built ClusterSlice, an open-
source solution for automated kubernetes-centered experimen-
tation. ClusterSlice is a powerful solution which is able to
convert testbed resources from bare-metal to fully-operatable
experimentation slices. It introduces well-designed abstrac-
tions that reduce experimentation complexity with improved
reliability and reproducibility, as for instance each experimen-
tation node is represented by a container, which deploys and
configures the corresponding systems in a parallel fashion and
zero-touch manner.

ClusterSlice is cloud-native and fully integrated to Kuber-
netes, i.e., via custom resource definitions (CRDs) and the
operator pattern, and can be fully managed via the kubectl
tool. Due to this tight integration, it benefits from novel
Kubernetes reliability features. It improves reproducibility of
experiments, since they can be executed with an one-liner,
while supporting a heavy usage of versioning in all compo-
nents. Finally, it produces debug information and supports a
role-based security model, e.g., considers both administrator
and experimenter roles.

In summary, ClusterSlice supports:
• Declarative automated operation: Experimenters define

characteristics of experimentation slices to be deployed at
a higher level, in the form of YAML files. This declarative
definition includes slice’s specification in terms of the
cloud resources to be utilized, the Kubernetes configura-
tion, and the application modules to be installed.

• Infrastructure-as-a-service capabilities: ClusterSlice sup-
ports the utilization of heterogeneous configurable phys-
ical and virtual resources, including those utilized from
open testbed infrastructures (e.g., CloudLab), as well as
VMs allocated in XCP-NG and VirtualBox virtualization
systems. It can employ VM snapshots for more rapid
replications of experiments.

• Platform-as-a-service features: It supports multiple Ku-
bernetes flavors, such as vanilla Kubernetes (k8s), k0s,
k3s, and microk8s, as well as network plugins for both



2

intra-cluster (e.g., Flannel, Calico, Cilium, Kuberouter,
Kube-ovn, etc.) and inter-cluster communication (e.g.,
Submariner).

• Application-as-a-service attributes: An experimentation
slice supports the definition of applications to deploy,
k8s extensions and modular OS configurations, all in the
form of configurable application modules. It is free from
any dependencies on external libraries or APIs, since it
harvests on the power of bash scripting, SSH and Ansible
[1], ensuring maximum compatibility with heterogeneous
systems.

• Multi-cluster and multi-domain capabilities: ClusterSlice
can operate across multiple heterogeneous deployment
environments through technology-specific infrastructure
managers, establishing multi-cluster operation and com-
munication, such as Liqo, OCM, or Submariner. It sup-
ports multiple physical and virtual infrastructure con-
trollers (i.e., infrastructure managers in ClusterSlice ter-
minology).

• Experimentation automation: Experimentation automa-
tion capabilities are not only supported but also actively
developed, making the deployment and management of
experiments straightforward. For example, we support
automated comparable evaluations of network plugins
and AD workflows.

The rest of the paper is organised as follows. Section
II contrasts ClusterSlice to the related works. Section III
provides an overview of the ClusterSlice platform, i.e., details
the declarative definition of an experimentation slice and its
architecture along with an explanation of its core components.
Subsequently, the same section gives an example of a slice
deployment workflow. Finally, Sections IV and V present our
proof-of-concept results and conclude the paper, respectively.

II. RELATED WORK

Open testbeds are pivotal in enabling real experiments by
automating complex implementation, deployment, and con-
figuration tasks. These environments also grant researchers
access to valuable and often expensive infrastructures that are
otherwise challenging to obtain.

The European SLICES testbed [2] (formerly known as
Fed4FIRE+) federates 17 testbeds equipped with diverse
technologies, including 5G/6G, SDN, Edge Computing, AI,
GPUs, cognitive radio, optical, and more. Similarly, FABRIC
[3] (formerly known as GENI), a USA equivalent initiative,
enables multiple federations to interoperate, including Emu-
lab, CloudLab, Chameleon, Orbit, and others. PlanetLab [4]
adopted a crowd-sourcing model in which individual users or
institutes could contribute resources. At its peak, it controlled
1353 nodes across 717 sites in 48 countries. Such solutions
focus on the easy provisioning, sharing and federation of the
provided infrastructure based on novel testbed control features.

For example, the allocation of physical testbed resources
may utilize software capable of deploying or saving hard-disk
images, thereby enabling users to switch their experiments on
or off, so a time-sharing model for different experimenters
can be employed. Similar tools are the OMF [5] or Frisbee.

The latter is part of the Emulab software suite [6]. Another
approach is to access cloud facilities based on their proprietary
APIs, such as VM resources. Network isolation is usually
performed based on VLANs or relevant technologies.

GENI has developed the Aggregate Manager (AM) API [7]
for testbed federation, which is also utilized by the SLICES
testbed. AM operates based on the RSPEC format, which is
an XML-based representation of testbed resources. RSPEC is
employed by several testbed control tools and APIs, including
SLICES’ jFed and jFed-cli [8], GENI OMNI [7], and others.
The Emulab [6] and CloudLab [9] testbeds have evolved
to incorporate a Python API for experimentation control,
alongside a web-based GUI (e.g., [10]).

The above testbeds usually deploy particular software in
the form of OS or VM images. Testbed control facilities may
also support other software deployment automation capabil-
ities, e.g., jFed prepares Ansible environments based on the
configuration of an experimentation slice. It may also enable
experimentation automation, e.g., for sharing or collecting
measurements among/from the nodes.

These testbeds primarily provide infrastructure-as-a-service
capabilities, but they support useful tools and APIs that make
them re-usable for higher-level experimentation abstractions
or testbeds, e.g., one can access the same resources being
available for different context-sensitive testbeds. For example,
CloudNativeLab [11] enables the creation of a Kubernetes
cluster on SLICES testbeds, using a defined resource configu-
ration for the cluster. It offers access to the cluster via personal
VPN and Kubernetes configurations, along with the ability
to create customized deployments using tools like kubectl or
Helm.

ClusterSlice supports multiple infrastructure managers un-
der a common design abstraction, so all above mentioned
testbeds could be jointly utilized and federated. Additionally, it
includes in its release a software toolkit for new infrastructure
managers, i.e., provisions for the support of new physical
or virtual infrastructures. An example of the latter is the
CloudLab Infrastructure Manager, that allocates CloudLab
nodes for ClusterSlice, based on Geni Tools [7]. Further-
more, ClusterSlice also supports both platform-as-a-service
capabilities (e.g., composable Kubernetes clusters or multi-
cluster deployments) and application-as-a-service capabilities,
i.e, defining the experimentation software or Kubernetes exten-
sions to use: all at the level of experimentation slice definition.

An evolution of PlanetLab is EdgeNet [12], [13], which
extends vanilla Kubernetes, based on CRDs and operators,
with a number of novel capabilities. For example, EdgeNet
defines a role-based security model with untrusting tenants
who can operate as vendors (i.e., providing their resources to
other tenants) or consumers of resources, with each tenant
being allocated a specific quota or a slice (i.e., a number
of nodes exclusively assigned to them). It also allows users
or institutes to contribute nodes to EdgeNet, similarly to
PlanetLab, thereby enriching the scale and heterogeneity of
EdgeNet deployments. Its selective deployment feature is
manifested through a location-based node selection and de-
ployment, allowing for specific geographical regions or GPS
coordinates to be considered as criteria for locating nodes.



3

Lastly, a new feature of EdgeNet is the support of Kubernetes
clusters’ federation.

ClusterSlice is an extension of vanilla Kubernetes, architec-
tured around the concept of Custom Resources and Operators,
like EdgeNet, as being elaborated in the next Section (Sec.
III-B), but also provides full node access to experimenters,
as well as the capability to declarative define one or multi-
ple composable Kubernetes clusters and the experimentation
applications to use.

Other platform- or application-oriented solutions, include
Service Layer At The Edge (SLATE) [14] and the Kubernetes-
native testbed environment [15]. SLATE facilitates the feder-
ated operation of science platforms, allowing sites to delegate
service deployment and configuration to designated application
administrators. Sites interested in participating in the service
establish a SLATE container/virtualization platform, currently
based on Kubernetes. The Kubernetes-native testbed envi-
ronment integrates various microservices-based applications,
CI/CD environments, and monitoring tools, having a specific
focus on the application aspect.

Additionally, Kubespray [16] is an Ansible-based deploy-
ment tool for creating production-ready Kubernetes clusters.
It allows for the deployment of customizable clusters, such
as selecting the network plugin, across various infrastructures,
including AWS, GCE, Azure, OpenStack, vSphere, bare metal,
and more. Additionally, it is compatible with multiple Linux
distributions. ClusterSlice supports the declarative definition
of applications, experimentation software or Kubernetes ex-
tensions to deploy, based on Ansible as well.

Crossplane [17] is a cloud-native control plane framework
providing the necessary abstractions to provision, compose
and consume any kind of infrastructure, e.g, cloud resources.
These abstractions are: (i) Packages: these are extensions of
Crossplane that introduce new functionality, essentially bun-
dles of Custom Resource Definitions (CRDs) and controllers
designed to represent and manage external infrastructure; (ii)
Providers: packages that empower Crossplane to provision
infrastructure on external services; (iii) Managed Resources:
custom resources that serve as representations of infrastructure
primitives; and (iv) Composite Resources: these resources
combine managed resources into higher-level infrastructure
units.

5G-CDN [18] and NECOS [19], [20] are slicing infras-
tructures capable of allocating resources across various open
testbeds by utilizing the required experimentation control
and monitoring abstractions. The above solutions inspired
ClusterSlice, especially in the design and implementation of
its multi-infrastructure operation. Possible ClusterSlice exten-
sions could be to utilize Kubespray for cluster deployment
and benefit from the novel Crossplane abstractions, e.g., adopt
compatible provider packages.

Concluding, ClusterSlice aims at providing an overarching
approach, that is flexible enough to accommodate both a
diverse range of resource providing platforms and easy, fast
and reproducible deployment of experiments via a common
declarative specification, harvesting on the Kubernetes con-
cepts of CRDs and operators. To our knowledge, no other
approach offers all these characteristics simultaneously.

III. THE CLUSTERSLICE EXPERIMENTATION FRAMEWORK

In transforming testbed resources from bare-metal or hy-
pervisor setups into fully-operational Kubernetes slices in an
automated manner, ClusterSlice embraces a unique philosophy
characterized by:

• Design empowered from the Kubernetes paradigm, in-
corporating heavy utilization of Custom Resource Defi-
nitions and Kubernetes Operators. This approach inherits
the reliability, scalability, and resource optimization ca-
pabilities of Kubernetes.

• Introduction of innovative automation abstractions, en-
compassing both node-level and cluster-level automation,
i.e., Resource Managers and Slice Operators respectively.

• Avoidance of API or technology-specific software, aside
from tools like bash, command-line utilities, and SSH
through Ansible. This approach preserves the simplicity,
portability, and composability inherent to the Unix phi-
losophy.

• Abstractions of infrastructure managers that interface
with diverse testbed facilities (e.g., CloudLab) and
cloud/virtualization systems (e.g., VirtualBox or XCP-
NG). This maximizes compatibility across heterogeneous
systems and ensures seamless integration of future sys-
tems.

One of the strong features of ClusterSlice is its capability to
deploy a diverse range of characteristics for the experimental
slice through a declarative definition. This is further discussed
in the section that follows.

A. Declarative Definition

ClusterSlice involves three dimensions of X-as-a-service
capabilities, i.e., Infrastructure, Platform (or Kubernetes) and
Application. The declarative definition consists of parts, each
addressing a specific dimension, located in the respective fields
of the YAML file, as well as an overarching part on global
experimentation slice properties, as defined below:

• Global properties, such as the name of the slice to be
deployed, the user namespace, but also more complex
aspects such as the VM deployment strategy to be used
over multiple servers, as well as security details, i.e., slice
admin username and password.

• Infrastructure configuration that includes specifications
for all three types of nodes supported, i.e., regular
non-Kubernetes nodes, master nodes, and worker nodes.
These specifications define for example the number of
nodes to be deployed (e.g., workers count), the OS image
(e.g., workers osimage), etc.

• Platform (i.e., Kubernetes) configuration, that details the
respective deployment, such as the Kubernetes type,
supporting alternative flavors (e.g., vanilla, k3s, k0s,
microk8s), along with parameters such as the network
fabric, the versions of Kubernetes components (e.g.,
kubectl, kubeadm, containerd and configuration details,
e.g., service and network Classless Inter-Domain Routing
(CIDR) used in the experimentation slice. Such a declara-
tive specification leads to a platform that offers effortless



4

apiVersion: "swn.uom.gr/v1"
kind: SliceRequest
metadata:

name: plainslice
namespace: swn

spec:
name: plainslice
usernamespace: swn
deploymentstrategy: balanced
deploymentdomain: swntestbed
credentials:

username: clusterslice
password: <sha-512-encoded-password>

infrastructure:
masters:

count: 1
osimage: "ubuntu-22-clean"
mastertype: "vm"

workers:
count: 2
osimage: "ubuntu-22-clean"
workertype: "vm"

kubernetes:
kubernetestype: "vanilla"
networkfabric: "flannel"

applications:
- name: argo

version: "v3.4.4"
parameters: "{’workflow’:

’nginx.yaml’}"
scope: cluster

- name: docker
scope: all

Fig. 1: A Simple ClusterSlice YAML File

experimentation with a substantial set of alternative de-
ployments, as for example those described in Section IV.

• Application configuration. The term “application” refers
to experimentation-specific modules, i.e., user applica-
tions, Kubernetes extension deployment, or OS configura-
tion tasks. For instance the latter include Argo Workflows,
Kubernetes Dashboard GUI, Docker Engine, etc., as
well as experimenter applications, defined by the name,
version, parameters to pass in the application in JSON
format, their deployment scope (e.g., to specific or all
servers, at cluster level), etc.

Although almost self-explanatory, the YAML file depicted
in Fig. 1 specifies a simple ClusterSlice deployment, under the
name plainslice, with one server and two workers all run-
ning Ubuntu, where the network fabric is set to flannel. Multi-
cluster deployments can be specified with equal ease. Further
details regarding the definition of the declarative specification,
as well as examples of more complex deployments are part of
the framework documentation located in the repository1.

1https://github.com/SWNRG/clusterslice

B. ClusterSlice Architecture

ClusterSlice architecture is composed of six main types of
components: the Kubernetes API, the Slice Request Operator,
the Slice Operator, the Testbed Infrastructure Managers, the
Resource Managers and the Cloud Infrastructure Managers
all with clearly defined roles (Fig. 2). ClusterSlice framework
harvests on the extendibility of Kubernetes, hence the Kuber-
netes API is indicated as a component of the architecture, em-
ploying custom resource (CR) definitions and their respective
controllers to deliver the described functionality.

In brief, the Slice Request Operator provides a refinement
of the initial declarative description (i.e., the experimentation
slice input), via an allocation process that might involve
Testbed Infrastructure Managers, while the Slice Operator
oversees the slice deployment and operation via the Resource
Managers. The latter are responsible for managing partici-
pating nodes and rely on the Cloud Infrastructure Managers
for deploying the necessary VMs. A high-level overview of
the ClusterSlice architecture and the respective CR objects is
presented in Fig. 2 and their role is further detailed next.

Slice Request Objects, i.e., the instances of the respective
slice request CRD, are generated by the Kubernetes API and
embody the declarative specification of an experimentation
slice, outlining the intended configuration and operating state
of the latter. The component handling events related to these
objects is the Slice Request Operator, that implements the
objectives specified in the former by initiating a dynamic
Resource Discovery process. This process encompasses the
specified Compute Resources that represent entities that host
ClusterSlice nodes (such as Kubernetes nodes) and node
controllers. They can be configured either by administrators or
through dynamic population, as described later in this section
and are used both in the Resource Discovery process and
managed by the Slice Operator during operation.

The discovery process might also involve a resource embed-
ding phase, i.e., when multiple server options exist, it selects
the most appropriate ones based on particular embedding
schemas, as declared at the experimentation slice specification.
In the cases of deployments involving testbed resources, a dy-
namic allocation of physical nodes via abstracted technology-
specific testbed control features, i.e., Testbed Infrastructure
Managers, takes place, and the newly discovered resources are
mapped to Compute Resources. The outcome of the discovery
process in all cases is the generation of Slice Objects.

The Slice Object represents an active experimentation slice
that enhances the targeted configuration and state with the
currently active configuration and state. It is the task of
the Slice Operator to constantly align the active state and
configuration with the intended state, at the level of the
experimentation slice. This task is accomplished by deploying
and managing Resource Managers and overseeing abstracted
control of clusters and cluster-level applications.

Each Resource Manager mirrors to the Slice Operator the
active configuration and state of a ClusterSlice node, i.e.,
they embody a concept akin to a digital twin of a node.
These managers employ custom Ansible playbook templates
to achieve the desired configuration and state, and thus are



5

Fig. 2: ClusterSlice Architecture

tailored to specific technologies, yet they interact with the
upper part of the ClusterSlice architecture in an abstracted
manner. Thus, they provide a resource abstraction layer that
offers significant versatility in on-boarding a diverse range
of nodes and technologies. In the case of deployments over
cloud resources, as for instance in the case of deployments
over XCP-ng or even VirtualBox, Resource Managers rely on
the Cloud Infrastructure Managers for the deployment of the
respective VMs.

Cloud Infrastructure Managers receive a request for a VM,
deploy the latter and answer back with the details necessary for
the Resource Manager to complete the slice deployment. Each
such manager is again an abstraction layer over heterogeneous
virtualization technologies, such VirtualBox, XCP-ng, etc. The
current implementation supports single-server or multiple-
server virtualization systems, as well as the utilization of
VM snapshots. Our code base provides a software toolkit to
implement new infrastructure managers.

Finally, the role of the Testbed Infrastructure Managers
is to establish communication with technology-specific cloud
managers or testbed controllers within specific domains. Each
such manager targets a specific testbed, and the current imple-
mentation supports CloudLab. However, we are in the process
to also support Emulab and SLICES testbeds. These managers
function as drivers for the heterogeneous resource management
systems, handling both physical and virtual resources, forming
an abstraction layer that provides extendable, seamless access
to testbed resources.

C. Slice Deployment Workflow

Slice deployment is initiated by an experimenter through
defining a Slice Request Object manifest in the form of a
YAML file (Section III-A). The latter is transformed into a
Kubernetes CR object, via the usual Kubernetes command
(kubectl apply -f, Fig. 2).

The Slice Request Operator (SRO) is then notified about
the new Slice Request Object and proceeds to parse the object
descriptor. As mentioned, the SRO implements a Resource
Discovery process that matches Compute Resource Objects
with the specified slice requirements, as for instance the
number and type of workers needed (i.e., Resource Discovery
phase). The selected Compute Resource Objects are marked as
reserved, while their details are stored in a fresh Slice Object
manifest (i.e., Slice Object Generation process, Fig. 2).

It should be noted that the overall discovery and allocation
process is designed to handle a range of cases with respect
to the type of Compute Resources available. If there is a
demand for open testbed nodes, these nodes are allocated
through the appropriate Testbed Infrastructure Manager, and
their details populate both new Compute Resources and the
generated Slice Object manifest. In scenarios where there is a
demand for new Virtual Machines (VMs), a VM embedding
process might also occur in the case that two or more cloud
servers are assigned to the reserved Compute Resource objects.
This task leads to VMs allocated to specific cloud servers,
via the Cloud Infrastructure Managers. The respective VM
placement algorithm employed can be configured within the
Slice Request manifest, contributing towards the flexibility of
the approach.

Once the Slice Object is generated, the responsibility shifts
to the Slice Operator, which extracts the configuration pa-
rameters of cloud servers and nodes (such as hostnames
and IP addresses) from the former. It proceeds to create a
dedicated Resource Manager for each node, incorporating the
appropriate high-level configuration details, like hostnames,
IPs, designated cloud servers, intended application modules
for deployment, and more. In essence, Resource Managers
are in charge of tasks such as VM allocation (OS installation
and configuration phase), Kubernetes deployment and config-
uration (K8s deployment phase), and installing the predefined



6

application modules (Application installation phase). The Slice
Operator manages horizontal node control processes, like the
establishment of the Kubernetes cluster via the communication
with the appropriate Resource Managers.

The Slice Object maintains a status state along with corre-
sponding text descriptions that convey its condition, including
the ability to report failure messages. Resource Managers are
responsible for maintaining comprehensive log information
regarding the deployment process, including maintaining the
appropriate resource status states for the Compute Resources
they are responsible for, as for instance “deploy_VM”,
“booting”, “install_os” and more. In the unlikely event
that a Resource Manager fails or it is terminated, it will
automatically restart and continue configuring its assigned
node from its current state and onwards.

The completion of the above described workflow leads to
the new experimentation slice being up and running. Finally,
user access to the slice is achieved via the admin user
credentials specified in the Slice Request object.

D. Multi-Clustering and Multi-Domain Capabilities

We have recently extended the above single cluster architec-
ture to support multi-cluster and multi-domain functionalities
in a rather “recursive” manner, i.e., via introducing a new
Multi-Cluster SliceRequest CR and a corresponding Opera-
tor. This higher-level abstraction is responsible for creating
and overseeing multiple Slice Request objects, which in turn
allocate the clusters that constitute the multi-cluster slice. It
also manages the deployment of multi-cluster management
software, such as Liqo or OCM, currently in the form of
application modules.

Furthermore, experimenters can specify a deployment do-
main within a Slice Request definition. Multi-Cluster Slice Re-
quest manifests offer the flexibility to define multiple domains,
with one domain per cluster. Enhanced multi-domain capabil-
ities can be enabled by deploying ClusterSlice across multiple
clusters, where Infrastructure and Resource Managers can be
distributed at the various domains to speed-up deployments
and improve security. However, this aspect is complex enough
to deserve a further study.

IV. EXPERIMENTATION ANALYSIS

In this Section, we detail: i) the methodological aspects of
our experimental analysis, including the considered scenarios
and metrics, as well as the configuration of the testbed we
used; and, ii) our proof-of-concept results, which showcase
the key features of ClusterSlice, as elaborated below.

A. Methodology

Our analysis is based on the following distinct experimental
scenarios:

• Scenario 1 – Single-cluster deployment. The first scenario
focuses on the declarative, automated deployment of
clusters with increasing sizes. It also assesses a main
infrastructure-as-a-service attribute of ClusterSlice, i.e.,
through the incorporation of experiments with and with-
out VM snapshots.

• Scenario 2 – Multi-clustering. This scenario highlights
ClusterSlice’s multi-clustering capabilities, through the
deployment of multiple clusters and the automated in-
stallation and configuration of Open Cluster Manager
(OCM).

• Scenario 3 – Multiple Kubernetes flavors and network
plugins. It demonstrates the deployment of multiple Ku-
bernetes flavors and network plugins, while quantifying
the associated deployment times. These results underline
the platform-as-a-service capabilities of ClusterSlice.

• Scenario 4 – ClusterSlice as an experimentation platform.
The last scenario showcases the experimentation automa-
tion features of ClusterSlice, performing a comparative
analysis between different plugins, as well as, between
AD approaches. This scenario focuses on the application-
as-a-service capabilities of ClusterSlice.

Concerning the performance metrics considered, in the first
three scenarios we focus on the completion times of all phases
involved in the deployment process: i) resource discovery
(RD); ii) operating system (OS) installation (OS inst); iii)
OS configuration (OS config); iv) Kubernetes deployment
(k8s); and, v) application installation (app inst). The resource
discovery phase is performed by the Slice Request Operator,
while the rest are handled by the Resource Managers. Such
measurements are collected by the Slice Operator, which
watches the state changes of Compute Resources.

In the fourth scenario, the resource utilization is measured
in terms of CPU utilization (%) and memory consumption
(MB). For evaluating network plugins, we take into account
the average throughput (Mbps). Regarding anomaly detection
mechanisms, we measure (i) detection time, referring to the
time duration between the occurrence and the estimation of the
anomaly, in milliseconds (ms); and, (ii) response time, repre-
senting the average time, in ms, for a data point to be processed
by the anomaly detection mechanism, including the client-
server communication cost. To conduct these experiments, we
employ the k8s-bench-suite2, a widely-used benchmarking tool
designed to measure the network performance of Kubernetes
clusters. The anomaly detection workflows are implemented
using Kubernetes Argo. The corresponding mechanisms are
included within a MATLAB container that features a REST
API, enabling the selection and configuration of a mechanism,
as well as the communication of measurements.

Next, we will provide details about the specifications of the
experimental testbed we used. The University of Macedonia
(UoM) testbed consists of 2 Dell PowerEdge R360 servers,
each equipped with a dual Intel(R) Xeon(R) ES-2620 v4 CPU
running at 2.10GHz, 1.5TB of SSD storage, and 64GB and
34GB of RAM, respectively. These servers host the XCP-ng
virtualization platform3. The VM nodes within the testbed are
operating Ubuntu 22.04.2 LTS and are utilizing kernel version
5.15.0-71-generic. Notably, the baseline inter-communication
plugin used among the nodes is the Flannel CNI plugin4.

2https://github.com/InfraBuilder/k8s-bench-suite
3https://xcp-ng.org/
4https://github.com/flannel-io/flannel



7

2 3 4 5 6 7 8

Amount of nodes

0

200

400

600

800

1000

1200

D
e

p
lo

y
m

e
n

t 
ti
m

e
 (

s
e

c
)

RD OS inst OS config k8s app inst

(a) Regular VM deployment.

2 3 4 5 6 7 8

Amount of nodes

0

200

400

600

800

1000

1200

D
e

p
lo

y
m

e
n

t 
ti
m

e
 (

s
e

c
)

RD OS inst OS config k8s app inst

(b) VM deployment with snapshots.

Fig. 3: ClusterSlice deployment times across two physical servers for the two VM deployment approaches with respect to a
varying number of cluster sizes.

To enhance the statistical accuracy of our results, each
scenario has been conducted 10 times and we document the
average values of the replications.

B. Experimental Results

1) Scenario 1: Single-cluster deployment: In the initial
scenario, we start with a single cluster setup where the number
of nodes varies, ranging from 2 to 8. In this setup, one node
takes on the role of the master, while the rest function as
workers. Additionally, we implement two alternatives for VM
deployment: (i) regular VM deployment; and (ii) VM deploy-
ment with snapshots. This approach allows us to measure the
impact of using snapshots on the overall installation times.

In Fig. 3, we illustrate ClusterSlice’s completion times
for each individual deployment phase across different cluster
sizes. When comparing VM deployment without snapshots,
as shown in Fig. 3(a), to VM deployment with snapshots, de-
picted in Fig. 3(b), it becomes evident that the former approach
results in a significant increase in the duration of ClusterSlice
deployment, particularly as the number of in-cluster nodes
increases. The extended duration can be primarily attributed
to the OS installation phase, which is a computationally and
network-intensive operation. This phase also makes the most
significant contribution to the overall deployment time.

Specifically, VM deployment with snapshots exhibits a
remarkable decrease of up to 30% when compared to the
scenario without VM snapshots across all variations of in-
cluster nodes being examined. In contrast, the number of
cluster nodes does not seem to have a noticeable impact on
the overall deployment time for other installation phases. For
instance, the Kubernetes installation phase, for both options,
remains consistent as the number of nodes increases.

Next, we aim to gain a better understanding on the parallel
behavior of the deployments and the dependencies between
the respective phases. Fig. 4 depicts the duration of each
installation phase on each individual node in the experiment.

In this case, a cluster with a total of five nodes (m1 being
the master node and w<x> representing the worker nodes) is
considered, both with and without the option of VM snapshots.
Each horizontal bar in the figure represents the time interval
of the corresponding phase (PD, OS installation, etc.) on each
node. It indicates the start and end times of each phase.
As shown, the deployment duration for the OS installation
and configuration phases varies among the nodes due to the
placement decisions of the VM nodes on the two available
servers in the testbed. The latter follows a simple ”round-
robin” approach, allocating the master in the first physical
machine, and then alternating allocation of workers among
the two hosts (i.e., w1 on the first server, w2 in the second,
etc.). As a result, in this specific instance, m1, w1 and w3
nodes reside in the first physical machine, while w2 and w4
in the second.

Finally, regarding the k8s deployment, the master node
incurs the longest deployment time, primarily because of syn-
chronisation issues in cluster creation. In practice, the master
has to create the cluster, generate the necessary token for
worker nodes to join, and then to wait until all worker nodes
have successfully joined. This can be observed in the end times
in Fig. 4, where worker nodes complete the k8s deployment
simultaneously, once they receive the cluster token. Note that
if a worker node concludes the OS configuration installation
(e.g., w3 and w4) before the master node (e.g., m1), the former
node waits until the latter proceeds to the k8s deployment
phase.

2) Scenario 2: Multi-clustering: In this experiment, we
demonstrate the operation of ClusterSlice over multi-cluster
Kubernetes deployments, through the incorporation of Open
Cluster Management (OCM), an open-source Kubernetes
multi-cluster orchestration platform.

Following the OCM mindset, we specify one cluster as
the hub, while the remaining clusters serve as the managed
clusters (ranging from 1 to 3). Each cluster contains three



8

0 100 200 300 400 500 600 700 800

Deployment time (sec)

m1

w1

w2

w3

w4

N
o

d
e

RD OS inst OS config k8s app inst

(a) Regular VM deployment.

0 100 200 300 400 500 600 700 800

Deployment time (sec)

m1

w1

w2

w3

w4

N
o

d
e

RD OS inst OS config k8s app inst

(b) VM deployment with snapshots.

Fig. 4: ClusterSlice deployment time analysis (breakdown) for a cluster of five virtual nodes across two physical servers.

nodes, i.e., a master and two worker nodes. This scenario
considers exclusively deployments using VMs with snapshots,
due to the deployment time advantages they provide.

Fig. 5 depicts the OCM deployment time along with the dif-
ferent phases of the deployment process, for a varying number
of participating clusters, aiming also to provide insights into
the scalability aspects of this approach.

1 2 3 4

Number of clusters

0

200

400

600

800

1000

1200

1400

D
e
p
lo

y
m

e
n
t 
T

im
e
 (

s
e
c
)

RD OS inst OS config k8s app inst

Fig. 5: Multi-cluster OCM deployment time for different
number of clusters.

As expected, the deployment time increases with the number
of clusters, while the deployment time for each individ-
ual cluster, across the different multi-cluster deployments, is
distributed fairly evenly. Next, focusing on the deployment
phases, it appears that the OS configuration and k8s instal-
lation phases have the most significant impact on the overall
deployment time. The impact of OS installation, on the other
hand, remains relatively low due to the utilization of VM
snapshots. Finally, in contrast to the single cluster approach,
we observe an increased impact on the application installation
time, since the latter also includes the OCM installation.

3) Scenario 3: Multiple Kubernetes flavors and network
plugins: In the third scenario, we assess ClusterSlice’s ability
to support multiple Kubernetes flavors and intra-cluster net-
work plugins, highlighting its potential in providing compos-
able Kubernetes deployments. With respect to the different
Kubernetes flavors, we consider the commonly used vanilla
Kubernetes that offers a fully featured k8s distribution and two
lightweight k8s distributions, i.e., k3s and k0s, which target
edge computing and IoT environments.

We also consider the following widely-used network plu-
gins: (i) Flannel, a simple and easy-to-use network plugin
that provides basic IP networking connectivity; (ii) Calico,
which is a more advanced and feature-rich plugin that supports
advanced security policies and network segmentation; and,
(iii) Kuberouter, a lightweight and highly efficient Kubernetes
network plugin that focuses on simplicity and performance.
These plugins are also supported in k3s and k0s flavors, i.e.,
the latter have a more limited set of options compared to
vanilla k8s.

Furthermore, we consider a single-cluster environment con-
sisting of three nodes, with one acting as the master node and
the rest as worker nodes. The results of this experiment are
illustrated in Fig. 6 and are discussed below.

Initially, we observe that the variation in the overall deploy-
ment time, for the alternative Kubernetes flavors and network
plugin options, mainly depends on the Kubernetes deployment.
In this context, vanilla k8s based on the Calico network
plugin results on the higher overall deployment time while the
integration of k3s with Flannel to the lowest. In general, the
Calico plugin leads to longer Kubernetes deployment times,
while Flannel results in shorter deployment times for all the
considered Kubernetes flavors. This result is consistent with
existing literature, as seen in [21].

When comparing the Kubernetes flavors, the lightweight
options, such as k3s and k0s, outperform the vanilla k8s so-
lution in terms of deployment time, regardless of the network
plugins under consideration. For instance, with the Calico



9

k8s-fla
nnel

k8s-calico

k8s-kuberouter

k3s-fla
nnel

k3s-calico

k0-kuberouter

k0-calico

Plugins

0

100

200

300

400

500

600

D
e

p
lo

y
m

e
n

t 
T

im
e

 (
s
e

c
)

RD OS inst OS config k8s app inst

Fig. 6: ClusterSlice deployment time over different
combinations of Kubernetes flavors/network plugins.

plugin, vanilla k8s completes the deployment with 37% higher
deployment time compared to k3s and 34% higher compared
to k0s.

4) Scenario 4: ClusterSlice as an experimentation platform:
This last scenario showcases ClusterSlice’s ability to function
as an experimentation testbed, supporting a diverse range
of experimental objectives and requirements. It allows for
the effortless definition of complex experimental scenarios
involving various deployment alternatives.

More specifically, we demonstrate the execution of two dis-
tinct experiments: (i) a networking benchmark across various
Kubernetes flavors and network plugins; and (ii) a performance
evaluation test between two different machine learning-based
anomaly detection techniques, namely the ratio-type CUSUM
and a standard CUSUM detector as described in [22].

In both experiments, the cluster comprises a master and a
worker node to gain insights into the ideal maximum perfor-
mance. It is worth noting that both the definition and execution
of experiments were easily accomplished using appropriate
Slice Request manifests.

Regarding the first experiment, Fig. 7 depicts the average
throughput (Mbps) obtained for TCP/UDP communication
between pods (pod2pod) and communication between pods
and services (pod2svc) across different Kubernetes flavors
and network plugins. As observed, the Kuberouter plugin
outperforms both Calico and Flannel in terms of throughput
for all communication types, while the Flannel plugin con-
sistently exhibits the lowest throughput. Additionally, Flannel
notably decreases its throughput performance for the TCP
protocol, whereas Calico exhibits a decrease for the UDP
protocol, within both vanilla Kubernetes (k8s) and k3s flavors.
In contrast, the Kuberouter plugin maintains its throughput
performance consistently across all communication types and
Kubernetes flavors considered.

Concerning resource utilization, Fig. 8 illustrates the CPU
utilization and memory consumption, for both client and server
pods. These results highlight: (i) the lightweight nature of
Flannel, when compared to Kuberouter and Calico, and, (ii)
the resource intensive performance of the Calico plugin, in

consistency to the outcomes of Scenario 3 (Fig. 6). Addition-
ally, CPU usage is not significantly affected from the choice of
Kubernetes flavor or the network plugin, especially concerning
the client utilization. On the other hand, memory usage with
the Calico plugin is notably greater than with the Kuberouter
and Flannel. As expected, resource utilization, in terms of both
memory and CPU, is higher for the nodes hosting server pods.

Next, we further demonstrate ClusterSlice’s capabilities as
an experimentation platform that extends beyond conducting
networking experiments, showcasing its ability to enable easy
experimentation with more complex workflows. In more de-
tail, we demonstrate its effectiveness in evaluating machine
learning approaches to gain insights into their performance for
real-world applications. In this context, Fig. 9 highlights the
operation of both a ratio-type CUSUM and a typical CUSUM
change-point detector, assessing their detection and response
times, as well as their CPU and memory consumption in
parallel. Validation is performed using synthetic time-series
(Xt) of length N = 200, following the standard Normal
distribution Xt ∼ N (0, 1) and introducing a single change-
point (CP), at the time instance t = 100, increasing the mean
value by 1.

In Figs. 8(a)–(b), we illustrate the CPU and memory usage
of both CP procedures, highlighting how the choice of the
Kubernetes flavor and network plugin impacts the resource
utilization of the ML procedures. Our results are consistent
with the findings from our previous experiments. For instance,
both procedures consume more resources when the Calico
network plugin is employed. Interestingly, despite the fact
that the ratio-type CUSUM is more computationally intensive
compared to the typical CUSUM, when using the Flannel
plugin, it exhibits lower resource consumption compared to
the typical CUSUM with the Calico plugin. Furthermore,
according to Figs. 8(c)–(d), the detection and response times
(processing time for each time step) of both procedures are
also affected by the selected plugin.

Last but not least, for the needs of the four experimentation
scenarios discussed above, we deployed a total of 410 clusters
and 1530 nodes. Remarkably, there was not a single failure,
which serves as the first validation of the reliability advantages
of ClusterSlice. In the future, we also plan to further assess
this aspect using chaos engineering methodologies.

V. CONCLUSIONS

ClusterSlice contributes towards an effortless, zero-touch
solution for transforming testbed resources from bare-metal
to fully-operational experimentation slices, targeting auto-
mated kubernetes-centered experimentation. Its well-designed
abstractions, harvesting on the CRD and Operator patterns
of Kubernetes offer the ease of a declarative specification
and allow to act as a infrastructure/platform/application-as-a-
service solution, over single and multi-cluster, multi-domain
environments, that include local and remote testbed resources.
The current paper demonstrates both its potential in offering
the above as well as to act towards its aims to reduce
experimentation complexity, while maintaining and improving
reliability and reproducibility.



10

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

200

400

600

800

1000

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

k8s-flannel

k8s-calico

k8s-kuberouter

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

200

400

600

800

1000

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

k3s-flannel

k3s-calico

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

200

400

600

800

1000

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

k0s-kuberouter

k0s-calico

Fig. 7: Throughput of network plugins for different Kubernetes flavors and communication types.

The current platform can be extended to a number of
directions. The first includes building of an open-source com-
munity around the current implementation, in order to test its
capabilities in a wider, more diverse setting. The second is to
investigate a number of optimization problems that arise in the
various phases of the slice deployment, such as the resource
discovery and VM placement, problems that have been of a
concern to the wider research community. Finally, a number of
extensions regard on-boarding more experimentation facilities
by including more Cloud and Testbed Infrastructure Managers.

REFERENCES

[1] “Ansible,” https://www.ansible.com/, Accessed, October 2023.
[2] “SLICES Test-Beds,” https://portal.slices-sc.eu/, Accessed, October

2023.
[3] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,

T. Lehman, and P. Ruth, “Fabric: A national-scale programmable ex-
perimental network infrastructure,” IEEE Internet Computing, vol. 23,
no. 6, pp. 38–47, 2019.

[4] “PlanetLab,” https://planetlab.cs.princeton.edu/, Accessed, October
2023.

[5] “OMF,” https://omf.orbit-lab.org/, Accessed, October 2023.
[6] “Emulab,” https://gitlab.flux.utah.edu/emulab, Accessed, October 2023.
[7] “GENI tools,” https://github.com/GENI-NSF/geni-tools, Accessed, Oc-

tober 2023.
[8] “jFed and jFed-cli,” https://jfed.ilabt.imec.be/, Accessed, October 2023.
[9] “CloudLab,” https://www.cloudlab.us/, Accessed, October 2023.

[10] “Portal Tools,” https://gitlab.flux.utah.edu/stoller/portal-tools, Accessed,
October 2023.

[11] “CloudNativeLab,” https://practicum.cloudnativelab.ilabt.imec.be/, Ac-
cessed, October 2023.

[12] B. C. Şenel, M. Mouchet, J. Cappos, O. Fourmaux, T. Friedman, and
R. McGeer, “Edgenet: a multi-tenant and multi-provider edge cloud,” in
Proc. 4th ACM Int. Workshop Edge Syst., Analytics and Netw. (EdgeSys),
Edinburgh, Scotland, UK, 26 Apr. 2021, pp. 49–54.

[13] “EdgeNet,” https://www.edge-net.org/, Accessed, October 2023.
[14] J. Breen, L. Bryant, G. Carcassi, J. Chen, R. W. Gardner, R. Harden,

M. Izdimirski, R. Killen, B. Kulbertis, S. McKee, B. Riedel, J. Stidd,
L. Truong, and I. Vukotic, “Building the slate platform,” in Proc. ACM
Pract. Experience Adv. Res. Comput. (PEARC ’18), Pittsburgh, PA,
USA, Jul. 2018, pp. 1–7.

[15] “Kubernetes-Native-Testbed,” https://github.com/
kubernetes-native-testbed/kubernetes-native-testbed, Accessed, October
2023.

[16] “Kubespray,” https://github.com/kubernetes-sigs/kubespray, Accessed,
October 2023.

[17] “Crossplane,” https://github.com/crossplane/crossplane, Accessed, Octo-
ber 2023.

[18] P. Valsamas, I. Sakellariou, S. Petridou, and L. Mamatas, “A multi-
domain experimentation environment for 5G media verticals,” in Proc.
IEEE Int. Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Paris, France, Apr. 2019, pp. 461–466.

[19] P. Valsamas, P. Papadimitriou, I. Sakellariou, S. Petridou, L. Mamatas,
S. Clayman, F. Tusa, and A. Galis, “Multi-pop network slice deploy-
ment: A feasibility study,” in Proc. 8th IEEE Int. Conf. Cloud Netw.
(CloudNet), Coimbra, Portugal, Nov. 2019, pp. 1–6.

[20] S. Clayman, A. Neto, F. Verdi, S. Correa, S. Sampaio, I. Sakelariou,
L. Mamatas, R. Pasquini, K. Cardoso, F. Tusa et al., “The necos ap-
proach to end-to-end cloud-network slicing as a service,” IEEE Commun.
Mag., vol. 59, no. 3, pp. 91–97, 2021.

[21] S. Qi, S. G. Kulkarni, and K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 1, pp. 656–671, 2020.

[22] S. Skaperas, L. Mamatas, and A. Chorti, “Real-time video content
popularity detection based on mean change point analysis,” IEEE Access,
vol. 7, pp. 142 246–142 260, 2019.



11

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

5

10

15

20

25

30

C
P

U
 (

%
)

k8s-flannel

k8s-calico

k8s-kuberouter

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

5

10

15

20

25

30

C
P

U
 (

%
)

k3s-flannel

k3s-calico

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

5

10

15

20

25

30

C
P

U
 (

%
)

k0s-kuberouter

k0s-calico

(a) CPU utilization of node hosting client pods.

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

5

10

15

20

25

30

C
P

U
 (

%
)

k8s-flannel

k8s-calico

k8s-kuberouter

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

5

10

15

20

25

30

C
P

U
 (

%
)

k3s-flannel

k3s-calico

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

0

5

10

15

20

25

30

C
P

U
 (

%
)

k0s-kuberouter

k0s-calico

(b) CPU utilization of node hosting server pods.

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

450

500

550

600

650

700

750

R
A

M
 (

M
B

)

k8s-flannel

k8s-calico

k8s-kuberouter

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

450

500

550

600

650

700

750

R
A

M
 (

M
B

)

k3s-flannel

k3s-calico

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

450

500

550

600

650

700

750
R

A
M

 (
M

B
)

k0s-kuberouter

k0s-calico

(c) RAM consumption of node hosting client pods.

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

450

500

550

600

650

700

750

R
A

M
 (

M
B

)

k8s-flannel

k8s-calico

k8s-kuberouter

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

450

500

550

600

650

700

750

R
A

M
 (

M
B

) k3s-flannel

k3s-calico

idle

pod2pod-tc
p

pod2pod-udp

pod2svc-tc
p

pod2svc-udp

Communication Type

450

500

550

600

650

700

750

R
A

M
 (

M
B

) k0s-kuberouter

k0s-calico

(d) RAM consumption of node hosting server pods.

Fig. 8: CPU utilization and RAM consumption for different combinations of Kubernetes flavors/network plugins, for the
nodes hosting client (rows (a) and (c)) and server pods (rows (b) and (d)).



12

k8s-fla
nnel

k8s-calico

k8s-kuberouter

k3s-fla
nnel

k3s-calico

k0s-kuberouter

k0s-calico

Plugins

6

6.5

7

7.5

8

8.5

9

9.5

C
P

U
 (

%
)

CUSUM

ratio-type CUSUM

(a) CPU utilization.

k8s-fla
nnel

k8s-calico

k8s-kuberouter

k3s-fla
nnel

k3s-calico

k0s-kuberouter

k0s-calico

Plugins

650

700

750

800

850

900

950

R
A

M
 (

M
B

)

CUSUM

ratio-type CUSUM

(b) RAM consumption.

k8s-fla
nnel

k8s-calico

k8s-kuberouter

k3s-fla
nnel

k3s-calico

k0s-kuberouter

k0s-calico

Plugins

900

950

1000

1050

1100

1150

1200

1250

1300

1350

T
im

e
 (

m
s
e
c
)

CUSUM

ratio-type CUSUM

(c) Detection time.

k8s-fla
nnel

k8s-calico

k8s-kuberouter

k3s-fla
nnel

k3s-calico

k0s-kuberouter

k0s-calico

Plugins

16

18

20

22

24

26

28

T
im

e
 (

m
s
e
c
)

CUSUM

ratio-type CUSUM

(d) Response time.

Fig. 9: Comparison of (a) CPU utilization, (b) RAM consumption, (c) detection time, and, (d) response time between two
different anomaly detection schemes, over several Kuberneters flavors/network plugins.


