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Abstract
Choosing the Most Preferred Solution (MPS), namely a real or artificial Decision Making Unit (DMU) reflecting the
decision maker’s preferences over the desirable structure of inputs and outputs, is of particular importance in Value
Efficiency Analysis (VEA). In this paper, we review various MPS choices used in the VEA literature and propose some new,
which rely respectively on the relative position of frontier DMUs, the Most Productive Scale Size (MPSS), the Average
Production Unit (APU), and common vectors of weights. The suggested MPS choices reflect overall organizational goals
such as the pursuit of scale economies and the maximization of structural efficiency, or the need to assess DMUs against
common standards because of limited control over the resources allocated to them or autonomy in setting their own
priorities. The potential implications of using different MPSs in VEA are illustrated by providing comparative empirical
results using a dataset of 526 Greek cotton farms.

Keywords Value efficiency analysis ● Most preferred solution ● DMU frontier position ● Most productive scale size ● Average
production unit ● Common weights
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1 Introduction

In several occasions where the performance of Decision
Making Units (DMUs) is evaluated by means of Data
Envelopment Analysis (DEA, Charnes et al. 1978), it is
desired or necessary to consider the preferences of central
management, supervising agencies or Decision Makers
(DMs) that coordinate the operation of DMUs. This need
might arise for purposes of performance monitoring, i.e.,
measuring the extent to which the performance of DMUs
complies with overall behavioral or organizational
objectives (monetary and non-monetary), as well as for
performance control and future planning, namely

designing mechanisms that redirect DMUs towards the
achievement of managerial goals or normative perfor-
mance standards.

Preferences in DEA studies are often elicited by means
commonly used in Multiple Objective Linear Programming
(MOLP), namely by incorporating expert information on
the desirable input and output values for the evaluated
DMUs (Korhonen et al. 2002). One form this might take is
that of the Most Preferred Solution (MPS). The MPS is a
non-dominated (i.e., strongly DEA-efficient) DMU or a
combination of DMUs, which has the most desirable
structure in DM’s view, in the sense of maximizing his/her
value (Korhonen 2002) or utility function (Yang et al.
2009). It may represent the structure according to which
management in a firm wishes to reorganize its branches or it
might be viewed as a mentor from which other DMUs can
learn. The MPS was incorporated into DEA by Halme et al.
(1999), in an approach coined Value Efficiency Analysis
(VEA). In VEA, the DMUs are assessed against a frontier
consisting of the extended DEA efficient facets intercepting
at the MPS, which is chosen by the DM in a prior step. In
essence, the marginal rates of substitution (MRSs) of inputs
or transformation (MRTs) of outputs imposed on the
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evaluated DMUs are those observed on the DEA frontier for
the MPS.

Choosing the MPS is an important issue in VEA, as it
affects the resulting efficiency frontier and, consequently,
the DMUs’ efficiency scores (Korhonen et al. 2001). A
suitably chosen MPS can yield valuable insights regard-
ing the extent to which current DMUs’ performance
complies with managerial preferences or organizational
goals, and provide the basis for a cost-saving or revenue-
increasing restructuring. On the other hand, an inap-
propriate MPS choice might provide questionable effi-
ciency scores, which may subsequently give rise to poor
managerial decisions, such as an unnecessary and costly
resource reallocation. Nevertheless, there seems to be no
general rule for choosing the MPS in VEA. Instead,
several suggestions have been made up to date. In many
of these, the MPS is not chosen on the basis of some
overall managerial objective and thus it is difficult to
come up with an intuitive explanation for the DM’s
choice, while in others the chosen MPS may favor spe-
cialization in the production of a few outputs or in the use
of a few inputs, which is often deemed unsatisfactory by
managers (Epstein and Henderson 1989). Other MPS
choices may compare DMUs with exceptionally per-
forming benchmarks, assess them against a DMU oper-
ating with non-technically optimal scale, or zero and
undefined values for MRSs and MRTs, i.e., using vectors
of input/output weights including zero values. In addi-
tion, no empirical work has been done so far on how
alternatively chosen MPSs may affect the VEA efficiency
scores.

The objective of this paper is twofold: First, to expand
the set of MPS choices. We first advocate that the DM
could make a more informed choice of the MPS among the
efficient DMUs, by paying attention on their position on
the efficient frontier. In particular, we propose that prior to
MPS choice the efficient DMUs are clustered based on
whether they appear in the reference sets of other DMUs in
DEA and whether they reside in frontier edges (Edvardsen
et al. 2008). This clustering can provide additional infor-
mation to the DM about the DMUs for which there is
strong evidence of good relative performance, those that
are potentially overspecialized, and those that may be
associated with zero and/or undefined marginal rates.
Alternatively, one may choose the MPS among those with
Most Productive Scale Size (MPSS), i.e., those achieving
maximal average productivity for their input/output bun-
dle. This will ensure that the DMUs are assessed against a
technically optimal scale, the achievement of which is a
long-term organizational goal, which interests both indi-
vidual DMUs as well as central management (Førsund and
Hjalmarsson 1979). Our third proposed MPS is the com-
bination of peers of the Average Production Unit (APU).

The APU is an artificial DMU that operates with the group
means quantities of inputs and outputs, and its technical
efficiency score reflects the structural efficiency of the
whole group of DMUs when resource allocation is cen-
trally coordinated. Its structure reflects the one that each
DMU should have in order for the group as a whole to
realize its full potential output production, and the result-
ing VEA scores may be particularly useful for guiding
future performance planning. Another proposal is to assess
DMUs using on a common vector of strictly positive input/
output weights in VEA, by choosing a combination of
DMUs that generate a unique Fully Dimensional Efficient
Facet (FDEF) as the MPS. This results in evaluating all
DMUs against a common standard and well-defined MRSs
and MRTs and could be useful in several cases where the
assessed DMUs perform essentially the same task or have
limited autonomy in setting their own priorities and
objectives (i.e., choose individually the values of input/
output weights).

The paper’s second objective is to provide comparative
empirical evidence on how alternative MPS choices may
affect the estimated VEA efficiency scores. More specifi-
cally, using data for 526 Greek cotton farms, we compare
the efficiency estimates obtained by the DEA model and
those of VEA models with alternative MPS choices. The
results of this analysis provide useful insights regarding the
MPS choices that are more likely to result in excessive or
negligible differences between the DEA and the VEA dis-
tributions of efficiency scores.

The rest of the paper unfolds as follows: In the second
section, we present the VEA model while in the third sec-
tion, we review the MPSs proposed previously in VEA and
suggest four new. In the fourth and the fifth section, we
illustrate how the choice of the MPS may affect VEA
efficiency scores. Concluding remarks follow in the last
section.

2 Materials and methods

In VEA, DM preferences are reflected through an implicitly
known pseudo-concave value function (i.e., an indifference
curve), that becomes tangent to the DEA efficient frontier at
the point where the MPS is located.1 This value function
might reflect some organizational objective, i.e., be a cost or
a profit function, but it might also reveal preferences other
than those related with prices (Thanassoulis et al. 2008, p.
73). The empirical VEA frontier is then constructed as the
lower envelope of the extended efficient facets intercepting
at the MPS. As DEA facets are generated by extreme-
efficient DMUs (i.e., those that reside at a point of the

1 For a detailed treatment of VEA, see Joro and Korhonen (2015).

204 Journal of Productivity Analysis (2022) 58:203–220



convex DEA frontier where more than one facets intercept,
see Charnes et al. 1991), the MPS will be either a single
extreme-efficient DMU or a combination of extreme-
efficient DMUs that are jointly efficient, in the sense that
they generate at least one common facet.2 In the latter case,
only those common efficient facets are extended to obtain
the VEA frontier.

Introducing the MPS requires only slight modifica-
tions to the conventional DEA model. Let us consider a
set of K DMUs (h= 1, …, K), that operate under the
same technology and use I (i= 1, …, I) inputs to produce
J (j= 1, …, j) outputs. The input and output vectors of
each DMU are assumed to be semi-positive, that is, each
DMU uses at least one input to produce at least one
output. Further, we assume that the DM has select a set
R (r= 1, …, R) of extreme-efficient DMUs as the MPS.3

An output-oriented, variable-returns-to-scale (VRS)
VEA model in its multiplier and envelopment form is
given as (Halme and Korhonen 2015):
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where x and y are input and output quantities, 1/φVEA∈ (0,1]
is the efficiency score, λ the intensity variables, and v, u and
uk are parameters to be estimated. The input-oriented

counterpart of (1) is given as:
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where θVEA∈(0,1] is the efficiency score. The constant-
returns-to-scale (CRS) form of (1) and (2) are obtained by
removing the free variable and the convexity constraint
from their multiplier and envelopment forms, respectively.
The CRS counterpart of (2), in its multiplier form, appears
for the first time in Oral and Yolalan (1990) and Oral et al.
(1992), where it is used to compare every DMU’s
performance to that of a particular efficient DMU, which
is selected at a previous step.

The envelopment form of the models in (1) and (2)
differs from those of conventional DEA in that the sign of
the intensity variable corresponding to the MPS is free
instead of restricted to be non-negative (Halme et al.
1999). In the multiplier form of the models, this corre-
sponds to turning from inequality to equality the
restriction referring to the MPS. This restricts the choice
of input/output weights for the evaluated DMUs only to
those that are optimal for the MPS.4 In essence, the
choice of the MPS results in evaluating every DMU using
the MRSs and MRTs that are observed on the DEA
frontier in the neighborhood of the MPS. The DM may
view these marginal rates as adequate enough to apply
globally as they reflect his/her own valuation of inputs
and outputs. The evaluated DMUs for which at least one
optimal vector of weights in DEA is also optimal for the
MPS receive the most optimistic VEA score possible,

2 If the DM selects a DEA-inefficient or weakly-efficient DMU (i.e., a
dominated DMU that has at least one positive optimal value for an
input or output slack), or a non-extreme-efficient DMU (one located on
the interior of a facet) as the MPS, then the combination of the
extreme-efficient DMUs that are identified as its peers in DEA can be
used as the MPS instead (see e.g., Halme et al. 1999). The use of the
peers of the DEA-inefficient DMU rather than its radial projection in
the DEA frontier is advocated, as the latter might be associated with
input and/or output slacks and thus may not be a non-dominated
DMU. The same is the case for weakly efficient DMUs.
3 Note that the number of extreme-efficient DMUs constituting the
MPS cannot be more than (I+ J− 1) in DEA models with constant
returns to scale (CRS) and (I+ J) in DEA models with variable returns
to scale (VRS), as this is the maximum number of extreme-efficient
DMUs that may generate an efficient facet of the DEA surface (see
Olesen and Petersen 2003). These maximal facets are called fully
Dimensional Efficient Facets (FDEFs) and are associated with a
unique normal vector of input/output weights with strictly positive
values (Olesen and Petersen, 2015).

4 Such equality restrictions have been used for incorporating expert
views in DEA in other studies as well, without referring explicitly to
VEA. Zhu (2001) uses the CRS counterpart of (2) in its multiplier form
to benchmark the quality of life of 20 cities against a set of peer DMUs
that would necessarily contain three pre-selected cities identified by
Fortune magazine as the top-three best cities in terms of quality of life
(see his equation (8)). Furthermore, Cook et al. (2004) used input-
oriented CRS and VRS VEA models under the name “fixed bench-
mark model” in order to measure the performance of out-of-sample
DMUs (see their equations (9) and (10)). Also, Wang and Luo (2006)
used a model that is equivalent to the input-oriented CRS VEA model,
in which the frontier projection of an artificially constructed ideal
DMU (IDMU), namely one that consumes the minimum sample
quantities for each input while producing the maximum sample
quantities for each output, corresponds to the MPS (see their equation
(4)). The DEA frontier projection of the IDMU was obtained via a
super-efficiency model.
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namely one that is equal to their DEA efficiency score.
The remaining DMUs, the input/output structure of which
“deviates too much” from the one of the MPS (Korhonen
et al. 2002, p. 59), are forced to accept less favorable
weights in VEA compared to DEA, and their VEA scores
are lower than the corresponding DEA ones.

The facet extensions in VEA are illustrated in Fig. 1 in
the case of one-input-two-outputs technology. Choosing
DMU D as the MPS implies the dashed line frontier by
extending facets CD and DE. If the output price ratio
ranges between the slopes of the two facets intercepting
at D, the resulting VEA scores might be viewed as pro-
viding approximate estimates of overall (i.e., cost, rev-
enue, or profit) efficiency (Joro and Korhonen 2015 p.
100). If the DM wishes to prioritize the production of the
second output compared to that of the first one, he/she
might choose DMU B as MPS, which would extend
facets AB and BC. On the other hand, if the DMUs
operate in a relatively uniform environment (e.g., are
employees within the same organizational department),
the DM may wish to evaluate them based on a common
value system. This could be done, for instance, by
choosing both C and D as MPS. Then, only the common
facet between C and D is expanded, and DMUs are
evaluated by using a common vector of weights (the one
that is normal to facet CD). If, however, DMU G is
chosen as the MPS, the VEA frontier will also include the
vertical segment (weakly efficient facet) between DMU G
and the horizontal axis, for which the MRT between the
two outputs is undefined. This will allow the inefficient
DMU H to assign a zero value to the weights of the first
output in its evaluation by VEA.

3 MPS choice

This section is divided into a literature review subsection,
where we present and evaluate previously suggested MPSs,
and a subsection where we make four new suggestions for
MPS choice.

3.1 Literature review

In this section we present nine suggestions used previously
in the literature and discuss the rationale associated with
each one and characteristics that may encourage or dis-
courage its use by managers.

3.1.1 DM personal judgment

In this case, DMs fully exert their judgments and obtain
evaluation results that correspond to their legitimate
priorities.5 The DM may choose a single or several DMUs for
this purpose. In the latter case, Korhonen et al. (2002) sug-
gested to form a virtual DMU by averaging over the input and
output quantities of the chosen DMUs. The so constructed
DMU may be inefficient, indicating that the DM has con-
flicting preferences, and in this case its set of DEA peers
should be used as MPS (see Joro and Korhonen 2015,
p. 124).

3.1.2 AHP importance weights

The Analytic Hierarchy Process (AHP) is suggested as
another means to choose the MPS in VEA (Korhonen et al.
1998). It may be used to obtain the “best” combination among
all the DEA-efficient DMUs, or among a subset of them. The
chosen DMUs are used as alternatives in AHP and the DM
performs pairwise comparisons among them. The MPS is
then obtained as a combination of the chosen DMUs using the
importance weights derived from AHP. This might be a time-
consuming process if there is a large number of chosen
DMUs. In addition, the resulting DMU might be inefficient,
indicating poor judgment in the initial selection of DMUs. In
this case, its set of DEA peers should be used as MPS.

3.1.3 Interactive optimization

Halme et al. (1999) suggested the use of multi-criteria inter-
active optimization algorithms to choose the MPS. These
algorithms enable the DM to search the efficient frontier and
identify different non-dominated solutions. Halme et al.
(1999) use the Pareto Race (see Korhonen and Wallenius
1988), in which a MOLP problem is iteratively solved to

Fig. 1 Extending efficient facets through VEA

5 We are indebted to an anonymous reviewer for suggesting this
interpretation.
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obtain an efficient input/output combination, which has the
maximum (minimum) possible value for each output (input).
In each iteration, the DM reviews the resulting combination
and can prioritize which input (output) should be further
decreased (increased) at the expense of others, i.e., determine
the direction on which the next (and possibly more preferred)
input/output combination will be searched for. The algorithm
stops when the DM decides that the last identified input/
output combination is the MPS. In most of the cases, this is a
combination of efficient DMUs.

An alternative proposed by Korhonen et al. (2002) is the
Visual Interactive Method for Discrete Alternatives (VIMDA)
(see Korhonen 1988). It is similar to Pareto Race but in each
iteration it identifies an input/output combination corre-
sponding to an existing DMU rather than a combination of
DMUs. Such algorithms can be time-consuming and require a
DM that is willing to participate and direct the algorithm
according to his/her preferences (Thiele et al. 2009). This may
increase management workload and the risk of providing a
poor judgment. Also, in practical applications DMs usually
view the existing DMUs as more reliable benchmarks com-
pared to combinations of DMUs (Korhonen et al. 2002).

3.1.4 Prior or external information

Prior or external information, regarding previous evaluation
results or achievements, may be used by DMs to choose a
single or a set of MPS. Marshall and Shortle (2005) made
this suggestion but its usefulness depends on the accuracy
of the relevant information. As these might refer to a dif-
ferent sample of DMUs, another set of inputs and outputs,
and different “environmental” conditions, they might not be
representative for the evaluated DMUs at hand.

3.1.5 Best-in-input or best-in-output DMUs

Korhonen et al. (1998) suggested choosing as the MPS a best-
in-input DMU, namely one that uses the smallest quantity of a
particular input, or a best-in-output DMU, i.e., one that pro-
duces the largest quantity for a given output. In a multiple-
input-multiple-output setting, there will be more than one best-
in-input and best-in-output DMUs, in which case one of them
should be chosen as the MPS. The choice may be facilitated if
the DM views a particular input or output as overwhelmingly
more important than all other inputs or outputs (as e.g., is the
case with employee salaries in public services, see Joro and
Viitala 2004). Such views could however be reflected directly
in the specification of inputs and outputs by excluding all other
inputs or outputs from the analysis.

The use of a best-in-input or a best-in-output DMU may
result in assessing the DMUs against a technically non-
optimal scale. This is because a best-in-input DMU is usually
of very small size and possibly of sub-optimal scale, and a

best-in-output DMU is often large-sized and has supra-
optimal scale. Also, the choice of a best-in-output MPS might
imply a management directive towards increasing production
disregarding the costs this may incur, while a best-in-input
MPS might reflect the need for urgent budget cuts, without
considering whether the resulting decreased production will
be able to meet demand in the future.

3.1.6 IDMU

The IDMU uses the sample minimum quantities of each
input to produce the sample maximum quantities of each
output. It is thus “best” in all inputs and outputs. If it is not
among the evaluated DMUs, it cannot be used as the MPS,
but its DEA frontier projection could be. For this purpose,
one may estimate its efficiency score by means of a super-
efficiency DEA model and use its efficient projection of
inputs and outputs as MPS (Wang and Luo 2006). Since the
frontier projection of the IDMU may contain slacks, the set
of IDMU peers may instead be used as MPS, to ensure that
it is a non-dominated DMU. In several occasions, the
IDMU may look as a suitable MPS choice but its input/
output bundle is likely to differ from most of the evaluated
DMUs. This in turn will result in VEA efficiency scores that
differ significantly from the DEA efficiency scores.

3.1.7 Most frequent peer

In this case, the MPS is the efficient DMU appearing the most
times as a peer in the DEA model. This DMU is an example-to-
follow for most of the DMUs, and it may be viewed as rea-
sonable benchmark or “global leader” (Oral and Yolalan 1990);
Oral et al. 1992) for them. Then, the VEA efficiency scores for
most of the DMUs will be equivalent to their DEA ones, and
thus the use of VEA will not provide additional insights to
central management compared to the results of the DEA model.
In addition, a DMU acting as a peer for a large number of
DMUs could be a potential outlier if it performs extremely
better in relative terms compared to the DMUs it influences
(Bogetoft and Otto 2011, p. 147), in which case it should be
excluded from the sample rather than being used as MPS.

3.1.8 Maximum (or infinite) super-efficiency

Halme and Korhonen (2015) suggested choosing as the MPS
the DMU with the maximum super-efficiency score. In a CRS
setting, the DEA super-efficiency model always results in finite
scores, in which case it is rather straightforward to choose the
MPS. On the other hand, the VRS super-efficiency DEAmodel
may result in an infeasible solution for some DMUs. One may
then choose as the MPS either the DMU with the maximum
finite super-efficiency score or one among the DMUs for which
the super-efficiency model has an infeasible solution. The
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DMU with the maximum super-efficiency score will most
probably be among those that exert the most influence on the
other DMUs’ efficiency scores (Wilson 1995), in the sense that
it already appears as a peer for quite many DMUs. Then, the
VEA model is not likely to provide additional insights to
management. Also, DMUs with very large super-efficiency
scores are often regarded as outliers (Wilson 1995; Banker and
Chang 2006), in which case such a DMU should not be used as
MPS. On the other hand, DMUs for which the VRS super-
efficiency model has an infeasible solution are usually located
at some “end-point” of the DEA frontier (Seiford and Zhu
1999), i.e., are likely overly specialized and are associated with
MRSs and MRTs that are not well-defined (as DMUs A and G
in Fig. 1). If they are used as MPS, the VEA efficiency scores
are likely to differ significantly from those of the DEA model
and one or more of the inputs and the outputs will likely be
assigned zero weights.

3.1.9 Minimum average Coefficient-of-Variation of optimal
weight vectors

According to Gonzalez et al. (2010), the efficient DMU with
the minimum variability across its different optimal weight
vectors is chosen as the MPS. To identify it, one needs first to
estimate a VEA model using in sequence every efficient DMU
as the MPS. For each of these models, one should calculate the
Coefficient-of-Variation (CV) for the optimal values of every
input and output weight and then take their average value. The
MPS is chosen as the efficient DMU for which the average
CV in the corresponding VEA model is the minimum. This
might be appealing for DMs that want to avoid highly dis-
similar optimal weight vectors among the evaluated DMUs in
the VEA model but it can be relatively time-consuming.
Furthermore, a common vector of weights across DMUs,
which would reflect the greatest possible congruence (Gon-
zalez et al. 2010), i.e., the minimum variability, among DMUs
in selecting their optimal weights, is not guaranteed.

3.2 Some new suggestions

In this section we expand the set of MPS choices in VEA by
suggesting four new, each of which may be useful to
managers for certain reasons.

3.2.1 Informed personal judgment

In the first of our suggestions the DM exerts his/her per-
sonal judgments by explicitly considering the position of
DMUs on the DEA efficient frontier. Some of the efficient
DMUs reside closer to most of the sample DMUs while
others use a somewhat more extreme input/output bundle.
In addition, some efficient DMUs are associated with zero
or undefined marginal rates while others are not, some can

remain efficient even if their input/output bundle changes,
and for some there do not exist DMUs with similar input/
output structure in the sample. Classifying the DMUs based
on such features may aid the DM in making a more
informed personal judgment when choosing the MPS.

We consider two main classifications of the efficient DMUs
based on their position on the frontier. In the first one, the
DMUs are classified as either active or self-evaluators
(Edvardsen et al. 2008). The former are efficient DMUs that
appear as peers for at least one inefficient DMU, while the latter
appear as peers only for themselves, in the sense that the
maximum optimal values of the corresponding intensity vari-
ables are equal to zero for every inefficient DMU. Each of the
active and self-evaluator DMUs can be further classified as an
interior or an exterior. For an exterior DMU, at least one among
its adjacent facets is weakly efficient, while for an interior this is
not true.6 An interior active DMU resides closer to most of the
sample DMUs and its use as MPS might result in moderate
(and even insignificant) differences between the DEA and the
VEA efficiency scores. An exterior active DMU may use a
more extreme input/output bundle, and if used as MPS, a zero
weight will be assigned to one or more inputs and/or outputs for
some of the evaluated DMUs. The interior self-evaluators are
“alone in the crowd”, while the exterior self-evaluators are “far
out”, located at an “end-point”, i.e., use an extreme input/output
bundle and may be very small- or large-scaled (Edvardsen et al.
2008). In both cases, significant differences should be expected
between the DEA and VEA efficiency scores. In addition, some
inputs and/or outputs are more likely to have a zero weight if an
exterior self-evaluator is used as the MPS.

The second classification partitions the efficient DMUS into
terminal and non-terminal ones (Krivonozhko et al. 2015). A
terminal DMU will remain efficient even if the quantity of one
of its inputs (outputs) is increased (decreased), while for a non-
terminal one this is not true.7 Each terminal DMU may be
further classified as being either interior or exterior, but all
non-terminal DMUs are interior.8 An exterior terminal DMU

6 The classification of efficient DMUs into exteriors or interiors is
obtained by enveloping the efficient DMUs “from below” (Edvardsen
et al. 2008) through a modified version of the Additive DEA model in
which inputs are treated as outputs and vice versa. A DMU with a zero
(positive) optimal value is classified as an exterior (interior).
7 Terminal DMUs are adjacent to at least one-dimensional facet
(Krivonozhko et al. 2015). They are identified by estimating a series of
linear programs, one for each different input and output, each of which
aims at maximizing the value of the intensity variable of a given
extreme-efficient DMU while allowing for the particular input (output)
of the DMU to increase (decrease) along a one-dimensional ray. A
DMU is classified as terminal if the optimal value of its intensity
variable equals one in at least one of those linear programs. Otherwise,
it is non-terminal.
8 Krivonozhko et al. (2015) show that the set of terminal DMUs
contains that of exterior DMUs as a subset, i.e., each exterior DMU is
also a terminal DMU, but a terminal DMU may be either an interior or
an exterior.
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is more likely to be located on “end-points” of the frontier
compared to an interior terminal DMU, but Krivonozhko et al.
(2015) note that both classes may contain quite normal effi-
cient units. Thus, the use of an exterior terminal DMU may
result in significant or insignificant differences between the
DEA and VEA efficiency scores, and the same may be the
case when an interior terminal DMU is the MPS. On the other
hand, the use of a non-terminal DMU as MPS is less likely to
result in assessing the DMUs against unacceptable marginal
rates, while when using a terminal DMU this is expected
to occur.

3.2.2 Most productive scale size

Our second suggestion is to choose a DMU with MPSS as
MPS. Such DMUs operate with technically optimal scale,
namely maximize average productivity for their input/output
mix. Each such DMU is efficient under both a CRS and a
VRS DEA model, i.e., resides on a frontier segment in which
CRS prevails and scale elasticity equals one (Banker 1984).
The use of an MPSS DMU as the MPS in VEA ensures that
DMUs are assessed against a technically optimal scale. The
resulting VEA scores could yield useful insights for central
management. They might be used for reorganizing or incen-
tivizing the DMUs so that they adjust to the optimal scale, the
pursuit of which constitutes a long-term organizational goal.

In several cases, there are multiple MPSS DMUs, each of
which operates with the technically optimal scale for its own
input/output bundle (Banker and Thrall 1992). In this case
Banker (1984) noted that obtaining the overall optimal scale for
the underlying technology requires the use of additional
knowledge or information. This can be provided by the DM by
means of choosing one DMU or a combination of DMUs
among those with MPSS as the MPS. The chosen input/output
bundle might be close to that of most DMUs in the sample, in
which case the VEA efficiency scores may differ only mod-
erately from their DEA counterparts. Alternatively, there might
be significant differences between the DEA and VEA effi-
ciency scores if the DM chooses an MPSS DMU with some-
what extreme mix of inputs and outputs.

3.2.3 Average production unit

Our next suggestion is to use the combination of DMUs that
are the peers of the Average Production Unit (APU), namely an
artificially constructed DMU that operates with the sample
means quantities of inputs and outputs, as the MPS. This
reflects the objective of maximizing the structural efficiency of
an overall entity that coordinates a set of DMUs.9 This entity

might be either a firm operating through a network of multiple
branches or plants, or an industry of similar firms. Structural
efficiency is a normative rather than a positive measure (Kar-
agiannis 2015), in the sense that it assesses the extent of
potential improvement of the entity (firm or industry) as a
whole, as if it were a single DMU utilizing and coordinating
(through centralized resource allocation) the total quantities of
inputs and outputs. The maximum potential output for the
entity could be realized if each of the coordinated DMUs had
the input/output structure of the APU and then removed its
technical inefficiencies (Kittelsen and Førsund, 1992; Kar-
agianis 2015) as well as input and/or output slacks.

When the APU peers are used as the MPS, the VEA
efficiency scores reflect the relative performance of DMUs
from the perspective of fully centralized management and
can provide useful insights to managers that coordinate a
firms’ branches or to authorities planning a sectoral reor-
ganization. The APU input/output bundle is relatively close
to that of many DMUs, and thus one might expect moderate
changes in the efficiency scores in VEA compared to DEA.
However, the efficiency scores of DMUs using extreme
input/output bundles may decrease considerably. For
example, in Fig. 1 where the APU is radially projected on
the efficient facet CD and thus its DEA-efficient peers are
DMUs C and D, VEA evaluates all DMUs compared to the
extended facet CD, and the DMUs A, G and H exhibit large
decreases in efficiency compared to their corresponding
DEA scores.

3.2.4 Common weights

Our fourth suggestion concerns evaluating all DMUs using
a common vector of strictly positive input/output weights.
This results in evaluating all DMUs based on a common
standard (Kao and Hung 2005) and might thus be preferred
when DMs wish to prevent individual DMUs from setting
and pursuing their own priorities. This could be the case if
the DMUs are homogeneous enough, operate under a
common policy framework (Cook et al. 2019), and/or in the
same environment (e.g., professors engaging in teaching
and research activities within the same university faculty).
Potential discrepancies between the results using common
weights and conventional DEA should then indicate the
effect of special circumstances under which a DMU oper-
ates (Roll et al. 1991), or a DMU that may be prioritizing its
own objectives over those of the organization. This sug-
gestion for choosing the MPS reflects the greatest possible
congruence among DMUs in selecting their optimal weights
and is, to the best of our knowledge, the only one securing
the assessment of DMUs against well-defined MRSs
and MRTs.

Common and strictly positive weights across DMUs are
guaranteed in VEA when a single FDEF of the DEA

9 Using the sample average DMU as the MPS generalizes in a sense
the suggestion made by Korhonen et al. (2002) to obtain the MPS by
averaging across a pre-selected subset of efficient DMUs.
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frontier is extended. This will occur if the unique combi-
nation of (I+ J− 1) extreme efficient DMUs that supports
an FDEF when CRS is assumed (or (I+ J) DMUs in VRS
models) (Olesen and Petersen 2003; 2015) is chosen as the
MPS, provided that at least one FDEF exists. In most cases,
the DEA frontier is generated by multiple FDEFs. The DM
should then choose one among those FDEFs to be extended
in the VEA model. The choice can be facilitated if one
identifies all the FDEFs of the DEA efficient surface and the
combinations of DMUs spanning each, which is frequently
done using mixed-integer linear programs (see Olesen and
Petersen 2003; Fukuyama and Sekitani 2012; Davtalab-
Olyaie et al. 2014). The DM can then review these results
and choose the FDEF against which DMUs will be asses-
sed. The use of common weights in VEA will more likely
result in efficiency scores that differ, in a statistically sig-
nificant sense, from those of the DEA model. More speci-
fically, only DMUs which are already projected by DEA in
the chosen FDEF, i.e., those for which the combination of
efficient DMUs generating the FDEF coincides with their
set of peers, will retain the same efficiency score, while the
remaining ones will exhibit at least slight decreases in
efficiency. The differences can be on average large if a
DMU with a relatively extreme input/output bundle is
among those generating the chosen FDEF.

4 Data, variables and modeling choices

For our empirical application we use data for 526 Greek
cotton farms obtained from the Farm Accounting Data
Network (FADN). The FADN covers large entrepreneurial
farms as defined in the farms structure survey of the EU, in
which each farm is classified by commodity according to its
main source of revenue. That is, a farm is classified as a
cotton producer if at least two thirds of its revenue come
from the production of cotton.

Output orientation is usually considered as the more
appropriate choice when measuring efficiency in agri-
culture, in which input choices are made well in advance of
output realization. (Karagiannis 2014). We also assume that
input and output prices are uniform across DMUs, since the
agricultural sector is widely considered as a rather compe-
titive one, where there is usually a large number of farmers
specializing on the production of a particular commodity
and facing similar prices for the resources used and their
final product. In this case, input and output data expressed
both in terms of quantities and in terms of values (i.e., costs
and revenues) can be used to assess technical efficiency (see
Portela 2014). We use four inputs, namely land measured in
ha, labor (including family and hired workers) measured in
annual working hours, intermediate inputs (i.e., fertilizer,
pesticides, etc.) measured in euros, and capital stock

(including machinery and buildings) measured in terms of
the end-of-the-year book values (in euros) and a single
output, measured in terms of total gross revenue (in euros).

Average values of the model variables are given in
Table 1. In that, we also include information on additional
farm characteristics. These are farm size, the farmer’s age,
the geographic region in which each farm is located, the
percentages of own and irrigated land, the percentage of
family labor employed, as well each farm’s degree of spe-
cialization in the production of cotton.10 Such variables
account for important factors which affect the operating
conditions of farms and consequently, their input/output
structure and can provide insights regarding the closeness of
the MPS’s structure compared to that of the majority of the
sample farms.

Most of our sample farms are located in Central Greece
(i.e., Thessaly, 55.9% of the sample), while the rest are
almost equally divided between Northern (Macedonia and
Thrace) and Southeastern (namely Sterea Ellada and
Aegean Islands) Greece (23.4% and 19.4% respectively).
Only a small fraction (1.3%) of farms is located at Western
(Epirus and Peloponnesus) Greece. On average, the sample
farms are relatively specialized in the production of cotton,
rent about 44% of their land, while most of them are of
large size according to FADN standards and are operated by
middle-aged farmers (see Table 2).

5 Empirical results

This section provides the first thorough comparative
empirical analysis of the variability in VEA efficiency
scores for alternative MPS choices. For these purposes
several models were estimated. More specifically, technical
and scale efficiency scores for the sample DMUs (including
the APU) were obtained by estimating conventional CRS
and VRS DEA models. We find 12 farms to be both tech-
nical and scale efficient (i.e., have MPSS), while there were
21 technically efficient farms, most of which (17) operating
with increasing returns-to-scale (RTS). The complete set of
the efficient farms is given in Table 2. On average, ineffi-
ciency is more due to producing below the frontier rather
than operating at non-optimal scale (average technical and
scale efficiency equal 0.598 and 0.947, respectively), while

10 In FADN, farm size is defined in terms of gross value added. FADN
defines nine size classes, which are grouped here into three categories,
namely small, medium, and large farms. We also define three different
age bands, namely younger (less than 40 years old), middle-aged
(between 40 and 60 years) and older farmers (over 60 years old). The
degree of specialization is measured by the Herfindhal concentration
index (defined as Hk ¼

P
j s

2
jk , where sjk is the share of the jth output in

total production of the kth farm). A value of H equal to unity indicates
complete specialization, whereas smaller values reflect increased
diversification.
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supra-optimal scale farms appear to operate closer to opti-
mal scale compared to sub-optimal scale farms.

In addition, we estimated super-efficiency CRS and VRS
DEA models. For eight farms the VRS model resulted in an
infeasible solution. Separate super-efficiency DEA models
were estimated for the IDMU by including it in the sample,
among which the one assuming VRS resulted in an infea-
sible solution. We also estimated CRS and VRS VEA
models using each of the efficient farms as the MPS, to
identify the farm for which the variability across the optimal
input and output weight vectors is minimum, as suggested
in Gonzalez et al. (2010). The FDEFs generating the CRS
and VRS DEA frontiers (14 FDEFs in the CRS frontier and
68 FDEFs in the VRS one) were identified using the mixed
integer binary optimization algorithm of Davtalab-Olyaie
et al. (2014).

5.1 Choice of MPS

A two-step procedure was used to choose the MPS for the
CRS and VRS VEA models. In that, we considered all the
MPS choices discussed in the third section apart from
external information, interactive optimization, personal
judgments and the AHP. This is because external infor-
mation is not available while the other three suggestions
require the presence of a DM. In the first step, we identified
the DMUs that could be the MPS in each case assuming
CRS and VRS. These are indicated by a rectangle in their
corresponding cell in Table 2, the last column of which

shows the number of different MPSs indicated by each
choice.

More specifically, the farm appearing the most times as
peer in the CRS and VRS DEA models, the best-in-output
farm and the four best-in-input farms were identified. With
CRS, only the best-in-output farm is efficient, while with
VRS the best-in-input farms are efficient as well. We also
identified the farms with the minimum average CV, those
having the maximum finite super-efficiency score with CRS
and VRS, as well as those for which the VRS DEA super-
efficiency model resulted in an infeasible solution. CRS
super-efficiency models do not have infeasible solutions,
and thus there is a dash in the respective cell in the last
column of Table 2.

The peers of the APU and the IDMU were identified,
albeit for the latter only with CRS. Each farm was also
classified based on its position on the DEA frontier, fol-
lowing the two classification schemes presented in the third
section. From Table 2 we see that at least one farm is
included in every group with VRS, while with CRS there
are no self-evaluators. Also, a farm may be classified in a
different group with CRS and with VRS. In addition, we
identified the combinations of efficient farms generating the
14 FDEFs of the CRS frontier and the 68 FDEFs of the
VRS one. With CRS, each efficient farm generates at least
one FDEF, while this is not the case with VRS.

The second step involved choosing one DMU or a
combination of DMUs to use in the empirical application
when more than one DMUs or combination of DMUs could
be the MPS. This is more likely to be the case when the DM
chooses the MPS among (i) interior active, (ii) exterior
active, (iii) self-evaluators, (iv) interior terminal, (v) exterior
terminal, (vi) non-terminal, (vii) MPSS, (vii) best-in-input
and best-in-output DMUs, (viii) the DMUs for which the
VRS super-efficiency model has an infeasible solution and
(ix) the combinations of DMUs generating an FDEF. See
the last column in Table 2, where for most of these choices
there are multiple alternatives for the MPS. For each of
these choices, we chose as the MPS the farm for which land
quantity was closest to the average quantity of land among
those farms indicated as potential MPSs by the choice. A
similar procedure was followed in the case of common
weights, namely to choose one combination of farms gen-
erating an FDEF. We ranked the efficient farms in terms of
their deviation from the sample average land quantity and
chose the farm with the minimum deviation. If the farm
ranked second shared a common facet with the one ranked
first, we considered it for the combination. Otherwise, we
bypassed it and moved to the next farm in the ranking. This
process ended when a combination of farms generating an
FDEF was obtained. After the MPS choice, a VEA model
was estimated for each of the alternative MPSs with CRS
and with VRS.

Table 1 Sample average estimates of model variables

Revenue (in euros) 6434.103

Land (in ha) 1188.139

Labor (in annual working hours) 2045.654

Intermediate inputs (in euros) 2369.776

Capital (in euros) 5703.852

Number of farms in the sample 526

Farms from Northern Greece 123

Farms from Western Greece 7

Farms from Central Greece 294

Farms from South-Eastern Greece 102

Small size farms 45

Medium size farms 207

Large size farms 274

Farms owned by younger farmers 67

Farms owned by middle-aged farmers 386

Farms owned by older farmers 73

Own land (%) 0.662

Irrigated land (%) 0.829

Family labor (%) 0.870

Specialization index 0.736
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The farms or the combination of farms chosen as the
MPS are indicated by a filled rectangle in the respective cell
of Table 2. From that we see that a particular MPS choice
may result in choosing a different MPS with CRS and with
VRS (see the average CV). In addition, some farms are
frequently suggested as the MPS: with CRS two farms are
suggested as the MPS (either solely or within a combination
of farms) six and seven times respectively, while with VRS
case one farm is suggested as the MPS seven times while
six farms are suggested five times each. This can be
attributed to the fact that for many of the MPS choices
multiple DMUs could be the MPS.

The economic and socio-demographic characteristics of
the chosen MPS are given in Table 3. Most of these are
medium or large in size, are located in Central Greece and
operated by middle-aged farmers (ages 40 to 60). On the
other hand, only a few chosen MPSs are located in Northern
Greece. More specifically, farm #32 is a medium-sized farm
located in Northern Greece that is chosen as an exterior
active MPS with VRS. It operates with a sub-optimal scale
and it owns and irrigates very low percentages of its land
compared to the average. Farm #69 is located in Northern
Greece, operates with sub-optimal scale and uses the lowest
quantity of land in the sample (best-in-input), while it is also
chosen as MPS among the farms with an infeasible VRS
super-efficiency model. It is thus possibly located at an “end
point” of the frontier. The same is likely the case for farm
#119, which is a sub-optimal scale farm located in Northern
Greece and chosen as an exterior self-evaluator MPS. On the
other hand, the selected interior self-evaluator farm #216 is of
sub-optimal scale but large in size and located in Central
Greece, as most of the sample DMUs. It is thus more likely
to be “alone in the crowd”.

Farm #130 is a large size, optimal-scale farm located in
Western Greece and operated by a middle aged-farmer that is
chosen as the MPS multiple times (as exterior active and
exterior terminal with VRS, as interior active and interior
terminal with VRS, and as MPSS). Its input-output bundle is
somewhat similar to the average, suggesting that it is located
close to most of the farms in the sample. The same is likely for
farm #293, which has a similar structure, operates with tech-
nically optimal scale and is chosen as interior active and non-
terminal MPS with CRS. On the other hand, the non-terminal
MPS with VRS (farm #147) is a medium-sized one, although it
has similar socio-demographic characteristics with farm #293
and is also of optimal scale. The other farms chosen based on
their frontier location (farm #154 as interior terminal with CRS
and farm #241 as exterior terminal with VRS) are both large-
sized and located in Central Greece. Farm #241 is however of
supra-optimal scale and is operated by a young farmer, while
farm #154 operates with technically optimal scale.

The best-in-output farm #252 is a large-sized, relatively
capital-intensive farm located in Central Greece which

appears the most times as a peer with CRS and with VRS. It
is thus a very influential peer, as is likely the case for farm
#178, which is the one with the maximum finite super-
efficiency score for both model specifications. It is located in
Central Greece but is of medium size and relatively more
labor-intensive. On the other hand, the two farms suggested
as the MPS with the minimum variability in their optimal
weights with CRS (farm #183) and with VRS (farm #142)
have a very small scale compared to the average. Both are
located in Central Greece but the latter operates with a
technically sub-optimal scale and appears as a peer only for
itself, suggesting that it is located at an “end-point” of the
frontier.

In the case of the APU, a combination of four farms is the
MPS either with CRS or with VRS. Each farm in these
combinations is MPSS, while most of these are large-sized
farms located Central Greece and operated from middle-
aged farmers. The same is the case for the combinations of
farms (four with CRS and five in VRS) selected as MPS in
the case of common weights. Most of the farms in these
combinations have an input/output bundle relatively close to
the average. For the case for common weights this is a result
of the process we followed to select the associated FDEF.
On the other hand, the IDMU peers are three MPSS farms,
which utilize very low capital quantities compared to the
average. One of these is located in Northern Greece, while
two of them own excessively low proportions of their
cultivated land.

5.2 Comparative results between DEA and VEA
models

The VEA efficiency scores are always less than or equal to the
corresponding DEA scores. This implies a decrease in average
efficiency compared to the DEA model (see Table 4), and a
left ward shift of the VEA distribution of efficiency scores
compared to that of DEA (see Fig. 2). For some of the MPS
choices these shifts are large, for others there are only mod-
erate, while for some MPS choices the VEA distribution of
efficiency scores is not statistically different from that of the
DEA scores (see Table 5) based on average shifts in rank
(given as R ¼ 1

k

PK
k¼1 rankA yk

� �� rankB yk
� ��� ��� �

, see
Saisana et al. 2005) and distribution equality tests (Banker and
Natarajan 2011).

More specifically, the use as the MPS of (i) the farm that
appears the most times as a peer, (ii) the one with the
maximum finite super-efficiency score, and (iii) the best-in-
output farm results in efficiency distributions that do not
differ, in a statistically significant way, between DEA and
VEA, irrespective of the RTS assumption (see Table 5). The
same is essentially true with CRS for the non-terminal and
the interior-active MPS, which are the same farm. In these
cases, the results from the VEA model do not offer some

Journal of Productivity Analysis (2022) 58:203–220 213



Ta
bl
e
3
E
co
no

m
ic

an
d
so
ci
o-
de
m
og

ra
ph

ic
ch
ar
ac
te
ri
st
ic
s
of

th
e
M
P
S
s

F
ar
m

(i
n

co
de
d

nu
m
be
r)

R
ev
en
ue

(i
n
eu
ro
s)

L
an
d
(i
n
ha
)

L
ab
or

(i
n
an
nu

al
w
or
ki
ng

ho
ur
s)

In
te
rm

ed
ia
te

in
pu

ts
(i
n
eu
ro
s)

C
ap
ita
l

(i
n
eu
ro
s)

R
eg
io
n

F
ar
m

si
ze

F
ar
m
er

ag
e

O
w
n

la
nd

(%
)

Ir
ri
ga
te
d

la
nd

(%
)

F
am

ily
la
bo

r
(%

)
S
pe
ci
al
iz
at
io
n

in
de
xc

R
T
S

32
31

60
10

50
55

4
71

7
63

84
N
or
th
er
n

m
ed
iu
m

41
0.
45

7
0.
26

7
1.
00

0
0.
54

1
ir
s

37
60

90
16

20
16

73
19

75
45

8
N
or
th
er
n

la
rg
e

59
0.
13

3
0.
62

0
0.
72

7
0.
76

2
cr
s

69
20

29
36

0
32

1
68

9
30

91
N
or
th
er
n

sm
al
l

56
1.
00

0
1.
00

0
1.
00

0
0.
50

0
ir
s

11
9

10
67

25
5

12
67

27
9

14
99

N
or
th
er
n

sm
al
l

48
1.
00

0
0.
68

6
1.
00

0
0.
44

6
ir
s

13
0

77
60

12
40

30
70

10
70

35
10

W
es
te
rn

la
rg
e

46
0.
29

0
1.
00

0
0.
96

1
0.
60

7
cr
s

14
2

16
70

21
0

13
23

38
6

48
7

C
en
tr
al

sm
al
l

64
1.
00

0
1.
00

0
1.
00

0
0.
69

3
ir
s

14
7

67
41

67
0

95
5

17
17

15
27

C
en
tr
al

m
ed
iu
m

55
0.
70

1
1.
00

0
1.
00

0
1.
00

0
cr
s

15
4

13
57

8
14

80
10

29
36

63
33

37
C
en
tr
al

la
rg
e

45
0.
24

3
0.
94

6
0.
97

9
0.
97

6
cr
s

17
8

40
50

30
0

22
22

77
6

16
2

C
en
tr
al

m
ed
iu
m

33
1.
00

0
1.
00

0
0.
73

4
0.
54

6
cr
s

18
3

33
93

42
0

82
0

13
44

32
0

C
en
tr
al

m
ed
iu
m

43
0.
83

3
1.
00

0
1.
00

0
1.
00

0
cr
s

21
6

98
39

13
60

64
0

27
26

39
71

C
en
tr
al

la
rg
e

51
0.
27

9
0.
73

5
1.
00

0
0.
78

4
ir
s

24
1

13
47

0
97

0
36

79
58

72
82

57
C
en
tr
al

la
rg
e

39
0.
38

1
1.
00

0
0.
95

2
0.
28

0
dr
s

25
2

31
72

6
31

30
14

94
58

08
10

03
7

C
en
tr
al

la
rg
e

60
0.
28

4
0.
83

1
0.
87

1
0.
90

7
cr
s

29
3

11
79

9
10

00
18

00
21

46
47

03
C
en
tr
al

la
rg
e

54
1.
00

0
1.
00

0
1.
00

0
1.
00

0
cr
s

31
4

13
12

3
10

60
17

00
24

06
83

00
C
en
tr
al

la
rg
e

57
1.
00

0
1.
00

0
1.
00

0
1.
00

0
cr
s

36
8

49
02

69
5

91
7

13
67

72
3

C
en
tr
al

m
ed
iu
m

27
0.
11

5
0.
80

6
1.
00

0
0.
64

8
cr
s

41
5

36
61

41
0

16
64

53
1

17
50

C
en
tr
al

m
ed
iu
m

55
0.
75

6
1.
00

0
0.
78

4
0.
85

6
cr
s

A
ve
ra
ge

64
34

.1
03

11
88

.1
39

20
45

.6
54

23
69

.7
76

57
03

.8
52

0.
66

2
0.
82

9
0.
87

0
0.
73

6

214 Journal of Productivity Analysis (2022) 58:203–220



additional insights to managers compared to those of the
DEA model. This should be expected for the first two MPS
choices, as they are based on influential DMUs appearing as
peers for a large proportion of farms. For the other choices,
it is explained by the fact that the farms chosen as MPSs
have an input/output bundle that is close to that of most of
the sample farms. Note also that when the non-terminal
DMU is the MPS, all inputs are important for the estimation
of efficiency, in the sense that all farms assign a positive
value to the weights attached to each input.

On the other hand, when the MPS is an (interior or
exterior) self-evaluator there are statistically significant (see
Table 5) differences between the VEA and the DEA dis-
tributions of efficiency scores, and the same holds with
VRS for the minimum “average CV” choice. In these cases,
we observe the largest left ward shifts in the VEA dis-
tribution of efficiency scores compared to that of DEA. This
is expected to occur in most cases where the MPS is either
an interior self-evaluator that is located “alone in the
crowd”, or an exterior self-evaluator located on an “end-
point” of the frontier, as these DMUs appear as peers only
for themselves. It also occurs in our case for the VRS VEA
model with the minimum “average CV” MPS choice as
well, as the chosen farm is also an interior self-evaluator
(see Table 2). In all three cases, the correlation between the
VEA and the DEA efficiency scores is particularly low.11 In

addition, when an exterior self-evaluator farm is the MPS,
some of the inputs are irrelevant for the estimation of effi-
ciency. More specifically, a zero value is assigned to the
weights attached to land and capital by all farms.

Large leftward shifts in the VEA distribution of effi-
ciency scores compared to DEA are observed for a series
of other MPS choices. These are (i) the best-in-input farm
and the farm for which the VRS super-efficiency model
results in an infeasible solution (which in this case is the
same farm), (ii) the farm with the minimum average CV
with CRS, (iii) the IDMU peers, (iv) an interior terminal
farm when CRS is assumed, and (iv) an exterior active
farm with VRS. In all these cases, the VEA efficiency
scores decrease, on average, by more than 30% compared
to DEA (see Table 4). This suggests that the input/output
bundle used by the MPS in each case is quite dissimilar
from the bundles used by most of the farms. For MPSs
with infeasible super-efficiency scores or the IDMU peers,
this may often be expected, as the former are usually
located at an “end-point” of the frontier, while the latter
uses a rather extreme input/output bundle. In these two
cases some of the inputs are irrelevant for the estimation
of efficiency. This is true for capital in the case of the
MPS with infeasible super-efficiency score and for land in
the case of the IDMU peers, indicating that the farms are
assessed by means of non-well defined marginal rates. For
the remaining choices in this group, large differences
between the DEA and the VEA efficiency scores may or
may not be the case. For example, in our case there are
large differences between the VEA and DEA distributions

Table 4 Efficiency scores for alternative MPS choices

Model Average Minimum Median Standard deviation Efficient farms

CRS VRS CRS VRS CRS VRS CRS VRS CRS VRS

DEA 0.562 0.598 0.091 0.091 0.575 0.607 0.207 0.225 12 33

VEA MPS choice

1 Most times as peer in DEA 0.555 0.586 0.090 0.091 0.565 0.593 0.206 0.219 11 23

2 Maximum finite
superefficiency

0.551 0.576 0.091 0.091 0.559 0.580 0.205 0.219 12 26

3 Infeasible superefficiency – 0.363 – 0.043 – 0.346 – 0.188 – 5

4 Best-in-output 0.555 0.586 0.090 0.091 0.565 0.593 0.206 0.219 11 23

5 Best-in-input – 0.363 – 0.043 – 0.346 – 0.188 – 5

6 Minimum average CV 0.373 0.288 0.038 0.044 0.346 0.282 0.194 0.145 5 6

7 IDMU 0.373 – 0.039 – 0.351 – 0.192 – 4 –

8 Interior active 0.540 0.524 0.090 0.078 0.557 0.537 0.200 0.195 6 7

9 Interior self-evaluator – 0.208 – 0.016 – 0.168 – 0.159 – 5

10 Exterior active 0.508 0.417 0.077 0.060 0.520 0.416 0.190 0.185 4 4

11 Exterior self-evaluator – 0.201 – 0.027 – 0.194 – 0.118 – 4

12 Interior terminal 0.415 0.524 0.046 0.078 0.391 0.537 0.202 0.195 6 7

13 Exterior terminal 0.508 0.498 0.077 0.087 0.520 0.515 0.190 0.196 4 6

14 Non-terminal 0.540 0.477 0.090 0.061 0.557 0.463 0.200 0.210 6 11

15 MPSS 0.508 0.524 0.077 0.078 0.520 0.537 0.190 0.195 4 7

16 APU 0.498 0.499 0.079 0.078 0.513 0.514 0.184 0.186 4 5

17 FDEF 0.482 0.497 0.071 0.078 0.494 0.514 0.184 0.185 4 5

11 Simple and Spearman rank correlations between the DEA model
and VEA models with alternative MPS specifications are given in
Table A1 in the online supplementary material of this paper.
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of efficiency scores not only when the chosen best-input
farm is the MPS, but also if some of the other three best-
in-input farms (which have similar economic and socio-
demographic characteristics to the chosen farm) are used
as the MPS instead. This however may not occur in a
different sample and/or model specifications.

Lastly, the VEA distribution of efficiency scores differs
only moderately from DEA for the following MPS choi-
ces: (i) an exterior active farm in the CRS model, (ii)
either an interior active or an interior terminal farm with
VRS, (iii) the MPSS choice for both model specifications,
(iv) an exterior terminal and a non-terminal farm with
VRS, (v) common weights and (vi) the APU peers with

CRS and VRS. In the first three of these cases, the same
farm #130 is used as the MPS, while in all of them the
differences between the DEA and the VEA distributions
of efficiency scores are significant in a statistical sense
(see Table 5). This indicates that, even though the changes
in efficiency are moderate, the use of VEA does result in
additional insights to management with respect to the
results obtained from the DEA model. Among those cases,
significant differences between the DEA and the VEA
efficiency scores may be expected when the APU’s peers
are used as the MPS and in common weights VEA, but not
necessarily for the other cases. In common weights VEA,
only 21 (with CRS) and seven farms (with VRS) have

Fig. 2 DEA and VEA distributions of efficiency scores
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efficiency scores equal to their corresponding DEA
scores, while for the remaining farms VEA efficiency
scores decrease at least slightly compared to their DEA
counterparts. The differences are moderate as the farms
forming the chosen combination have input/output bun-
dles that are similar to those of most DMUs in the sample
but could be larger if a farm with a somewhat extreme
bundle was chosen in the combination. When the APU’s
peers are the MPS, farms with an input/output structure
that is close to the average, i.e., that of the APU, exhibit
slight or no decreases in efficiency in the VEA model,
while the scores of farms with extreme bundles decrease
considerably. In addition, in the case of a non-terminal
MPS, no inputs are irrelevant for the for the estimation of
efficiency, while when an (interior or exterior) terminal
farm is the MPS (either with CRS or with VRS) some
farms assign a zero weight to one or more of the land,
labor, and/or capital inputs.

5.3 Comparative results among VEA models

Comparing the efficiency distributions among VEA
models with alternative MPSs can provide additional
insights.12 No doubt, the VEA distributions of efficiency
scores are the same among those MPS choices for which
the same farm is used as the MPS. In our case, these are (i)
a farm with an infeasible super-efficiency score and a
best-in-input farm, (ii) an exterior active, an exterior
terminal and an MPSS farm with CRS, (iii) an interior
active, an interior terminal and an MPSS farm with VRS,
(iv), an interior active and a non-terminal farm with CRS,
and (v) the farm appearing the most times as a peer in
DEA and the best-in-output farm, for both model speci-
fications (see Table 2).

Fig. 2 (continued)

12 We thank an anonymous reviewer for suggesting this part of the
discussion.
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In addition, based on Banker’s test (see Supplementary
Tables A2 and A3 in the online Supplementary Mate-
rial),13,14 we can infer that there are no significant differ-
ences among the efficiency scores of VEA models when the
MPS is either (i) the farm appearing the most times as a peer
in DEA, (ii) the farm with the maximum finite super-
efficiency score, (iii) the best-in-output farm (both with
CRS and with VRS), (iv) an interior active or (v) a non-
terminal farm with CRS. This is to be expected in our case,
as the VEA distributions of efficiency scores for these MPS
choices do not differ significantly from that of DEA. In our
case, the best-in-output farm appears also as a peer for most
farms, and the interior active and the non-terminal farms
used as MPS are the in fact same farm. Also, the VEA
efficiency scores do not differ in a statistically significant
sense when the chosen MPS is based either on (i) the APU,
(ii) an MPSS farm, or (iii) common weights. This is

explained by the fact that the combinations of farms in the
common weights and the APU choices in our case are
similar to each other and include in most cases the MPSS
farm #130, which however may not be the case with other
datasets.

On the other hand, the VRS VEA distributions of effi-
ciency scores differ in a statistically significant way from
one another when the MPS is either (i) an interior self-
evaluator farm, (ii) an exterior self-evaluator farm or (iii) a
farm for which the super-efficiency score is infeasible. This
indicates that statistically significant differences between
VEA distributions of efficiency scores were found when the
MPS choices reflect DMUs with a rather extreme input/
output bundles. In these cases, as we have seen before, the
VEA efficiency scores for each of these MPS choices are
significantly different from those of DEA.

6 Concluding remarks

VEA can be a very useful tool for performance evaluation,
providing guidance towards informed decision-making. The
efficient frontier against which the DMUs are assessed in
VEA depends on the chosen MPS. In this paper, we first
reviewed several MPS choices previously used in the litera-
ture. For some of these, there is a difficulty to intuitively

Table 5 Statistical tests between DEA and VEA

Average
rank shift

Mann–Whitney Banker F1a Banker F2

VEA MPS choice CRS VRS CRS VRS CRS VRS CRS VRS

1 Most times as peer in DEA 9.167 12.522 0.639 0.814 1.021 1.03 1.031 1.032

2 Maximum finite superefficiency 11.579 17.512 0.959 1.600 1.032 1.062 1.046 1.081

3 Infeasible superefficiency – 78.899 – 16.262***b – 1.915*** – 2.847***

4 Best-in-output 9.167 12.522 0.639 0.814 1.021 1.03 1.031 1.032

5 Best-in-input – 78.899 – 16.262*** – 1.915*** – 2.847***

6 Minimum average CV 75.662 55.558 13.865*** 20.985*** 1.714*** 2.264*** 2.507*** 3.686***

7 IDMU 75.579 – 14.283*** – 1.709*** – 2.488*** –

8 Interior active 16.924 49.307 1.675* 5.512*** 1.061 1.212*** 1.086 1.279***

9 Interior self-evaluator – 99.032 – 23.529*** – 3.027*** – 6.655***

10 Exterior active 40.820 68.930 4.455*** 13.209*** 1.153** 1.631*** 1.223** 2.107***

11 Exterior self-evaluator – 62.406 – 24.320*** – 2.864*** – 5.589***

12 Interior terminal 68.685 49.307 11.418*** 5.512*** 1.528*** 1.212*** 2.051*** 1.279***

13 Exterior terminal 40.820 60.338 4.455*** 7.359*** 1.153** 1.314*** 1.223** 1.472***

14 Non-terminal 16.924 58.622 1.675* 8.909*** 1.061 1.415*** 1.086 1.706***

15 MPSS 40.820 49.307 4.455*** 5.512*** 1.153** 1.212*** 1.223** 1.279***

16 APU 39.169 55.605 5.329*** 7.452*** 1.183*** 1.294*** 1.265*** 1.401***

17 FDEF 41.169 55.442 6.647*** 7.564*** 1.236*** 1.298*** 1.365*** 1.409***

aF1 (F2) test compares the DEA and VEA distributions of efficiency scores, assuming an exponential (half-normal) distribution of the efficiency
scores (see Banker and Natarajan 2011)
bThree, two and one stars denote statistical significance at 1%, 5% and 10% respectively

13 In the case of pairwise comparisons among different VEA models,
the Banker test statistics are calculated by placing in the numerator the
VEA model for which the sum of the logarithms of its inefficiency
scores is the largest. This guarantees that the test statistic is always
greater than or equal to one.
14 Results from correlation analysis, shifts in rank and Man-Whitney
tests of equality among the VEA efficiency scores with alternative
MPS choices are given in Supplementary Tables A4–A7 in the online
supplementary material of this paper.
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explain the DMs’ choice, as they do not explicitly consider
some overall organizational objective, while others may
compare DMUs against exceptionally performing bench-
marks or inappropriate MRSs and MRTs. We then made four
new suggestions for choosing the MPS: First, to make a more
informed personal choice by explicitly considering the rela-
tive position of efficient DMUs on the DEA frontier. Second,
choose a DMU with MPSS as the MPS, which results in
assessing the DMUs against the technically optimal scale in
DM’s view. Third, choose the set of APU’s peers as the MPS.
In this case the resulting VEA scores resemble the extent of
efficiency from the perspective of fully centralized manage-
ment, and can be useful for DMs who coordinate resource
allocation and pursue the objective of structural efficiency
maximization. Fourth, to evaluate all DMUs based on com-
mon and strictly positive (i.e., well defined) weights, by
choosing as the MPS a unique combination of DMUs gen-
erating an FDEF. This results in evaluating the DMUs against
a common standard, which may be a prerequisite when
management wishes to fully limit the assessed DMUs’
autonomy in setting their own objectives.

The empirical comparative analysis using data on Greek
cotton farmers provides useful results on how MPS choice
may affect the VEA efficiency scores: First, the use of an
influential peer as the MPS (the DMU appearing the most
times as a peer and the one with the maximum finite super-
efficiency score) does not offer additional insights to man-
agers compared to the results obtain from the DEA model.
Second, MPSs that are frequently located on “end-points” of
the DEA frontier (those with an infeasible super-efficiency
score and interior- or exterior-self-evaluators) appear to result
in large differences on efficiency scores between the DEA
and VEA models and in some of the inputs being irrelevant
for the estimation of the VEA efficiency scores. Third, the
use of both an (interior or exterior) terminal as well as a non-
terminal DMU as MPS may result in significant differences
between the DEA and VEA efficiency scores, but in the latter
case all inputs were important for the estimation of efficiency
while in the former case, zero optimal weights were assigned
to some inputs. Fourth, both MPS choices pursuing mini-
mum variability among the DMUs’ optimal weights (mini-
mum average CV and common weights) resulted in
significant differences between the DEA and VEA efficiency
scores. This may often be the case for the common weights
choice. Fifth, the VEA scores when the MPS is either the
APU or an MPSS DMU differ significantly, in a statistical
sense, from that of the DEA model, which may often be the
case for the APU.

On the other hand, the same VEA efficiency scores were
obtained from different MPS choices for which the same
DMU was used as the MPS, while similar scores were
obtained from alternative MPS choices in which an influ-
ential peer is the MPS, namely the DMU appearing the most

times as a peer and the DMU with the maximum finite
super-efficiency score. Similarly, the VEA efficiency scores
when the MPS was chosen based either on the APU, an
MPSS farm, or common weights were not statistically dif-
ferent from each other. However, choices in which the MPS
may often be a DMU with a rather extreme input/output
bundle, namely self-evaluators and DMUs with infeasible
super-efficiency scores, resulted in significantly different
VEA scores with one another.

The empirical analysis conducted in this study provided
the first thorough overview on the effect of MPS choice on
the VEA scores. As our empirical findings may be data
specific, a promising task for future research would to
empirically assess the effect of MPS choice on VEA scores
using data from other sectors and countries. Such studies
could provide valuable insights that would complement
those of the present study. Furthermore, as the incorporation
of the MPS in VEA models restricts the assessed DMUs’
choice of optimal values of input/output weights in a
manner similar to that of introducing weight restrictions in
DEA models, another avenue for future research would be
to explore the relationship between VEA and weight-
restricted DEA models in more detail.
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