
 

 

 

On VEA, production trade-offs and weights restrictions 

 

 

 

 

 

 

 

 

Panagiotis Ravanos1 and Giannis Karagiannis2 

 

 
1PhD candidate, University of Macedonia, Department of Economics, 156 Egnatia 

Str, 54636, Thessaloniki, GREECE; email address: ravanos@uom.edu.gr, ORCID: 

0000-0001-8929-4057. 

 
2Professor, University of Macedonia, Department of Economics, 156 Egnatia Str, 

54636, Thessaloniki, GREECE; email address: karagian@uom.edu.gr 

 

 

 

ABSTRACT: In this paper we explore the relationship between Value Efficiency 

Analysis (VEA) and Data Envelopment Analysis (DEA) models including production 

trade-offs or weights restrictions. In particular, we show that the VEA model is 

equivalent to a DEA model including production trade-offs for which the trade-off 

coefficient vectors are equal to either (i) the negative of the input and output 

quantities of the Decision Making Units (DMUs) chosen as the Most Preferred 

Solution (MPS) in VEA, under constant returns to scale, or (ii) the deviations of all 

evaluated DMUs’ input and output quantities from those of the DMUs chosen as the 

MPS, irrespectively of the returns-to-scale assumption.  These trade-offs are the dual 

forms of type II Assurance Region weight restrictions.  We then show that a similar 

equivalence holds between pure output or input VEA and DEA models including 

trade-offs, if the above trade-offs are respectively considered only for outputs or only 

for inputs.  In this case the trade-offs are the dual forms of type I Assurance Region 

weight restrictions.  
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1. Introduction 

 

Production trade-offs, their dual weights restrictions, and Value Efficiency Analysis 

(VEA) are alternative ways of incorporating preference information in Data 

Envelopment Analysis (DEA).  In particular, Decision Maker’s (DM) preferences are 

used to restrict the admissible values of the input/output multipliers in a DEA model.  

Production trade-offs reflect acceptable marginal changes in inputs and/or outputs that 

modify their target values for each evaluated Decision Making Unit (DMU) in the 

envelopment form of DEA models (Podinovski, 2004).  Their dual counterpart are the 

well-known weights restrictions, namely additional linear inequalities in the multiplier 

form of DEA models that restrict the flexibility of input/output weights based on 

DM’s knowledge, value judgements or in general, holding views for their relative 

importance (see e.g., Allen et al, 1997).  DEA models including production trade-offs 

have been used, among others, for the assessment of efficiency in healthcare (Amado 

and Dyson, 2009), education (Khalili et al., 2010a), electricity distributors (Santos et 

al., 2011), and farmers (Atici and Podinovski, 2015).  On the other hand, in VEA, the 

performance of each DMU is assessed relative to the Most Preferred Solution (MPS), 

namely a non-dominated (i.e., efficient) DMU or a combination of DMUs that has the 

most desirable input/output bundle by view of a DM or reflects DM’s preferences 

about input/output mixes (Halme et al., 1999).  In such a case, each DMU’s 

input/output weights are restricted to values among only those that are optimal for the 
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MPS in DEA. This in turn results in extending the DEA efficient facets generated by 

it.  Recent applications of VEA include, but are not limited to, the evaluation of 

hospital departments (Halme and Korhonen, 2000), academic institutions (Korhonen 

et al., 2001), retail stores (Korhonen et al., 2002) as well as bank branches (Halme et 

al., 2014). 

Several studies in the literature have examined the effect of including 

production trade-offs or their dual weight restrictions in DEA models.  For example, 

Podinovski (2005) demonstrated the effects of using additional restrictions such as 

weight bounds in the evaluation results of DEA models, Asmild et al. (2006) 

investigated the potential relation of DEA models with trade-offs to models assessing 

economic (i.e., cost, revenue, or profit) efficiency, and Podinovski (2007a) developed 

a procedure for obtaining efficient targets in DEA models with production trade-offs.  

Also, Podinovski and Forsund (2010) assessed the effects of introducing production 

trade-offs in the quantitative and qualitative returns-to-scale estimates of DMUs, 

while Podinovski and Bouzdine-Chameeva (2013) developed linear programs for 

testing whether the use of a particular set of production trade-offs in DEA models 

results in violating production assumptions.  On the other hand, the similarities 

between VEA and various forms of weight restrictions have been noted in the 

literature, but not yet thoroughly examined.  For instance, Sarrico and Dyson (2004, p. 

18) considered VEA as ‘’another alternative to incorporating the decision maker’s 

preferences into the assessment of DMUs’’, while Kao and Hung (2005, p. 1197) 

noted that VEA is ‘’essentially an approach of weight restrictions’’.  Angulo-Meza 

and Estellita-Lins (2002, p. 225) viewed VEA and weights restrictions as 

methodologies incorporating “information provided by a decision maker or expert 

into the model”, while Adler et al. (2002) referred to VEA as one of the methods that 

use “preference information to further refine the discriminatory power of DEA 

models”.1  Nevertheless, none of these studies have explicitly related VEA to DEA 

models including weights restrictions, as well as their dual production trade-offs.  

Such explicit relationships, if any, have, to the best of our knowledge, not yet been 

investigated.  

The purpose of this paper is to explore the relation between VEA and DEA 

models including production trade-offs and their dual weights restrictions in a detailed 

manner.  More specifically, we show that, under constant returns to scale, the VEA 

model is equivalent to a DEA model including production trade-offs, for which the 
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trade-off coefficient vectors are given by the negative of the input and output 

quantities of the DMUs chosen as the MPS in VEA.  We also show that, regardless of 

the nature of returns to scale, the VEA model is equivalent to a DEA model with 

production trade-offs, for which the trade-offs coefficient vectors are given by the 

deviations of every DMU’s input and output quantities from those of the MPS.  These 

production trade-offs result in extending certain facets of the DEA frontier and in both 

cases are dual to Type II Assurance Region (AR-II) weight restrictions (see 

Thompson et al., 1990). Considering the above trade-offs only for the inputs or the 

outputs we can prove a similar equivalence between pure input or output VEA and 

DEA models.  The dual form of these trade-offs, which refer only to the inputs or the 

outputs, are type I Assurance Region (AR-I) weight restrictions (Thompson et al., 

1986). 

The rest of the paper unfolds as follows:  In the second section we discuss 

VEA and DEA models with production trade-offs.  The papers’ main results are 

presented in the third section, while an empirical application follows in the fourth 

section.  Concluding remarks follow in the last section. 

 

2. Materials and methods 

 

Production trade-offs are the dual form of weights restrictions that are usually 

appended in the multiplier form of DEA models. They refer to marginal changes 

between inputs and/or outputs that take place at some point at the conventional DEA 

frontier and enlarge the feasible space with additional input/output possibilities 

(Podinovski, 2004).  These changes represent perceptions regarding the normative 

substitution rates between inputs or transformation rates between outputs, or simply 

judgements about the relative importance of different inputs and outputs.  They are 

considered as acceptable by all evaluated DMUs, in the sense that it is unanimously 

agreed that they result in feasible (technologically possible) input/output 

combinations.  Then, one may argue that the targets identified for inefficient DMUs 

on the enlarged parts of the DEA frontier are in principle technologically realistic or 

feasible (Podinovski, 2007b). 

Let us consider a set of K DMUs (k=1,…,K) using the same technology and 

producing a set of J (j=1,…,J) outputs utilizing I (i=1,…,I) inputs.  Assume further 

that there exists a set of R (r=1,…,R) trade-off relations among inputs and/or outputs, 

which may be represented as:  
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𝑃𝑟 = [𝑝1

𝑟, … , 𝑝𝑖
𝑟, … , 𝑝𝐼

𝑟]𝑇 ,   𝑟 = 1, … , 𝑅

𝑄𝑟 = [𝑞1
𝑟, … , 𝑞𝑗

𝑟, … , 𝑞𝑗
𝑟]

𝑇
,    𝑟 = 1, … , 𝑅

                                             (1) 

 

Each of the trade-offs in (1) refers to an agreed postulate among DMUs that by 

changing the level of each of a DMU’s inputs by the trade-off coefficient 𝑝𝑖
𝑟 and each 

of its outputs by the trade-off coefficient 𝑞𝑗
𝑟 results in a new unobserved input/output 

combination that is feasible.  Thus, the vectors 𝑃𝑟 and 𝑄𝑟 modify respectively the 

target values of inputs and outputs in the envelopment form of a DEA model, which 

in turn results in enlarging the DEA efficient frontier with additional linear segments, 

i.e., facets.   

The multiplier and envelopment form of an input-oriented, constant returns to 

scale (CRS) DEA model including trade-offs as in (1) is given as (Podinovski, 2004):2 

 

   max
𝑢𝑗

𝑘,𝑣𝑖
𝑘

  ∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

≤ 0    ℎ = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑘𝑞𝑗

𝑟

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑝𝑖

𝑟

𝐼

𝑖=1

≤ 0      𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑘 ≥ 0                                       𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑘 ≥ 0                                       𝑖 = 1, … , 𝐼

 

min
𝜃𝑇𝑂

𝑘 ,𝜆ℎ
𝑘
𝜃𝑇𝑂

𝑘

  𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦𝑗

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘𝑞𝑗

𝑟

𝑅

𝑟=1

≥ 𝑦𝑗
𝑘            𝑗 = 1, … , 𝐽 

            ∑ 𝜆ℎ
𝑘 𝑥𝑖

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘𝑝𝑖

𝑟

𝑅

𝑟=1

≤ 𝜃𝑇𝑂
𝑘 𝑥𝑖

𝑘     𝑖 = 1, … , 𝐼

     

       𝜆ℎ
𝑘 ≥ 0                                               ℎ = 1, … , 𝐾

      𝜋𝑟
𝑘  ≥ 0                                               𝑟 = 1, … , 𝑅

       𝜃𝑇𝑂
𝑘  𝑓𝑟𝑒𝑒

  (2) 

 

where x and y are respectively the quantities of inputs and outputs, v and u are their 

input and output weights, θ is the efficiency score, λ are the intensity variables, and π 

are the proportions by which each of the trade-offs is applied to modify the input and 

output targets.  On the other hand, the variable returns to scale (VRS) counterpart of 

(2) is given as:  
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max
𝑢𝑗

𝑘,𝑣𝑖
𝑘 ,𝑢𝑘

 ∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘

𝐽

𝑗=1

+ 𝑢𝑘

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0    ℎ = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑘𝑞𝑗

𝑟

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑝𝑖

𝑟

𝐼

𝑖=1

≤ 0                𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑘 ≥ 0                                                  𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑘 ≥ 0                                                  𝑖 = 1, … , 𝐼

              𝑢𝑘  𝑓𝑟𝑒𝑒

 

min
𝜃𝑇𝑂

𝑘 ,𝜆ℎ
𝑘
𝜃𝑇𝑂

𝑘

  𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦𝑗

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘𝑞𝑗

𝑟

𝑅

𝑟=1

≥ 𝑦𝑗
𝑘            𝑗 = 1, … , 𝐽 

            ∑ 𝜆ℎ
𝑘 𝑥𝑖

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘𝑝𝑖

𝑟

𝑅

𝑟=1

≤ 𝜃𝑇𝑂
𝑘 𝑥𝑖

𝑘     𝑖 = 1, … , 𝐼

            ∑ 𝜆ℎ
𝑘

𝐾

ℎ=1

= 1

     

       𝜆ℎ
𝑘 ≥ 0                                               ℎ = 1, … , 𝐾

      𝜋𝑟
𝑘  ≥ 0                                               𝑟 = 1, … , 𝑅

       𝜃𝑇𝑂
𝑘  𝑓𝑟𝑒𝑒

  (3) 

 

in which the free variable 𝑢𝑘 is dual to the convexity constraint in the envelopment 

form of (3).  

From (2) and (3) we can see that incorporation of trade-offs such as in (1) into 

the envelopment form of the DEA model is equivalent to including the following set 

of homogeneous weight restrictions in its multiplier form:3 

 

                                                        ∑ 𝑢𝑗
𝑘𝑞𝑗

𝑟

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑝𝑖

𝑟

𝐼

𝑖=1

≤ 0,   𝑟 = 1, … , 𝑅                                     (4) 

 

The weight restrictions in (4) concern value judgments regarding (i) only inputs, if 

𝑞𝑗
𝑟 = 0 for 𝑗 = 1, … , 𝐽, (ii) only outputs, if 𝑝𝑖

𝑟 = 0 for 𝑖 = 1, … , 𝐼, or (iii) both inputs 

and outputs, if 𝑞𝑗
𝑟 ≠ 0 for at least one 𝑗 = 1, … , 𝐽 and 𝑝𝑖

𝑟 ≠ 0 for at least one 𝑖 =

1, … , 𝐼.4  In the former two cases they are referred to as AR-I (Thompson et al., 1986), 

while in the latter case as AR-II weight restrictions (Thompson et al., 1990). 

On the other hand, in VEA, a DM expresses his/her preferences over the 

desirable input/output bundle or mix by choosing a DMU or a combination of DMUs 

as the MPS (Halme et al., 1999).  This might be a more appealing way of expressing 

preferences, as DMs are usually more keen to choose desirable values for the inputs 

and the outputs rather that weight bounds (Korhonen et al., 2002).  The VEA frontier 

is then constructed as the lower envelope of the extended DEA efficient facets 

intercepting at the MPS.  As the facets of the DEA efficient frontier are generated by 

extreme-efficient DMUs, the MPS will in essence be either a single extreme-efficient 

DMU or a combination of extreme-efficient DMUs that are jointly efficient, in the 
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sence that they generate at least one common facet.5  VEA then extends only these 

common facets among the DMUs comprising the MPS.   

The input-oriented CRS VEA model in its multiplier and envelopment form is 

given as:  

 

   max
𝑢𝑗

𝑘,𝑣𝑖
𝑘

  ∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘

𝐽

𝑗=1

   𝑠. 𝑡.     ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

≤ 0    ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

               ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

= 0    ℎ =  𝑟 = 1, … , 𝑅

               ∑ 𝑣𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

= 1 

                𝑢𝑗
𝑘 ≥ 0                                     𝑗 = 1, … , 𝐽

                𝑣𝑖
𝑘 ≥ 0                                     𝑖 = 1, … , 𝐼   

 

min
𝜃𝑉𝐸𝐴

𝑘 ,𝜆ℎ
𝑘
 𝜃𝑉𝐸𝐴

𝑘                                                 

    𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦𝑗

ℎ

𝐾

ℎ=1

≥ 𝑦𝑗
𝑘           𝑗 = 1, … , 𝐽 

             ∑ 𝜆ℎ
𝑘 𝑥𝑖

ℎ

𝐾

ℎ=1

≤ 𝜃𝑉𝐸𝐴
𝑘 𝑥𝑖

𝑘   𝑖 = 1, … , 𝐼

     

        𝜆ℎ
𝑘 ≥ 0                         ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

        𝜆ℎ
𝑘      𝑓𝑟𝑒𝑒                    ℎ =  𝑟 = 1, … , 𝑅

        𝜃𝑉𝐸𝐴
𝑘  𝑓𝑟𝑒𝑒

 (5) 

 

 

 

where the set R contains the DMUs comprising the MPS.  On the other hand, the 

input-oriented VRS VEA model in its multiplier and envelopment form is given as:    

 

max
𝑢𝑗

𝑘,𝑣𝑖
𝑘,𝑢𝑘

 ∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘 +

𝐽

𝑗=1

𝑢𝑘

    𝑠. 𝑡.    ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0   ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

               ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

+ 𝑢𝑘 = 0   ℎ =  𝑟 = 1, … , 𝑅

               ∑ 𝑣𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

= 1

               𝑢𝑗
𝑘 ≥ 0                                              𝑗 = 1, … , 𝐽

               𝑣𝑖
𝑘 ≥ 0                                             𝑖 = 1, … , 𝐼

               𝑢𝑘  𝑓𝑟𝑒𝑒

 

min
𝜃𝑉𝐸𝐴

𝑘 ,𝜆ℎ
𝑘
 𝜃𝑉𝐸𝐴

𝑘

    𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦𝑗

ℎ

𝐾

ℎ=1

≥ 𝑦𝑗
𝑘           𝑗 = 1, … , 𝐽

              ∑ 𝜆ℎ
𝑘 𝑥𝑖

ℎ

𝐾

ℎ=1

≤ 𝜃𝑉𝐸𝐴
𝑘 𝑥𝑖

𝑘  𝑖 = 1, … , 𝐼

              ∑ 𝜆ℎ
𝑘

𝐾

ℎ=1

= 1 

     

         𝜆ℎ
𝑘 ≥ 0                         ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

         𝜆ℎ
𝑘      𝑓𝑟𝑒𝑒                   ℎ =  𝑟 = 1, … , 𝑅

         𝜃𝑉𝐸𝐴
𝑘  𝑓𝑟𝑒𝑒                 

 (6) 

 

where the free variable 𝑢𝑘 and the convexity constraint for the intensity variables are 

added in the multiplier and envelopment form, respectively.  In the envelopment form 

of (5) and (6), the non-negativity restrictions are removed from the intensity variables 

of the DMUs comprising the MPS (Halme et al., 1999).  This in turn implies that the 

inequalities referring to these DMUs should change into strict equalities in the 

multiplier form of the model, essentially restricting each evaluated DMU to choose 
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input and output weights only among those that are optimal (in the conventional DEA 

model) for the DMU or the combination of DMUs chosen as the MPS. 

 

3. Main results 

 

3.1. Production trade-offs dual to AR-II type of weight restrictions 

 

To relate the VEA models in (5) and (6) to the DEA models with production-trade-

offs and their dual weight restrictions in (2) and (3), notice that each of the side 

equality restrictions in (5) and (6) can be broken up into the following equivalent pair 

of inequalities: ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑘𝑥𝑖
ℎ𝐼

𝑖=1 ≤ 0 and ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑘𝑥𝑖
ℎ𝐼

𝑖=1 ≥ 0 for (5) 

and ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑘𝑥𝑖
ℎ𝐼

𝑖=1 + 𝑢𝑘 ≤ 0 and ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑘𝑥𝑖
ℎ𝐼

𝑖=1 + 𝑢𝑘 ≥ 0 for (6).  

Based on these, (5) and (6) may be rewritten as: 

 

   max
𝑢𝑗

𝑘,𝑣𝑖
𝑘

 ∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

≤ 0               ℎ = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑘(−𝑦𝑗

𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘(−𝑥𝑖

𝑟)

𝐼

𝑖=1

≤ 0  𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑘 ≥ 0                                                  𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑘 ≥ 0                                                 𝑖 = 1, … , 𝐼

 

min
𝜃𝑉𝐸𝐴

𝑘 ,𝜆ℎ
𝑘
 𝜃𝑉𝐸𝐴

𝑘                                                                          

     𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦𝑗

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘(−𝑦𝑗

𝑟)

𝑅

𝑟=1

≥ 𝑦𝑗
𝑘           𝑗 = 1, … , 𝐽 

              ∑ 𝜆ℎ
𝑘 𝑥𝑖

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘(−𝑥𝑖

𝑟)

𝑅

𝑟=1

≤ 𝜃𝑉𝐸𝐴
𝑘 𝑥𝑖

𝑘  𝑖 = 1, … , 𝐼

     

         𝜆ℎ
𝑘 ≥ 0                                                      ℎ = 1, … , 𝐾

        𝜋𝑟
𝑘  ≥ 0                                                     𝑟 = 1, … , 𝑅

         𝜃𝑉𝐸𝐴
𝑘  𝑓𝑟𝑒𝑒

 (7) 

 

 

 

and as: 

 

max
𝑢𝑗

𝑘,𝑣𝑖
𝑘 ,𝑢𝑘

∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘 + 𝑢𝑘

𝐽

𝑗=1

     𝑠. 𝑡.  ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0                 ℎ = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑘(−𝑦𝑗

𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘(−𝑥𝑖

𝑟)

𝐼

𝑖=1

− 𝑢𝑘 ≤ 0   𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑘 ≥ 0                                                             𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑘 ≥ 0                                                             𝑖 = 1, … , 𝐼   

              𝑢𝑘 𝑓𝑟𝑒𝑒

 

 

min
𝜃𝑉𝐸𝐴

𝑘 ,𝜆ℎ
𝑘
 𝜃𝑉𝐸𝐴

𝑘

     𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦𝑗

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘(−𝑦𝑗

𝑟)

𝑅

𝑟=1

≥ 𝑦𝑗
𝑘           𝑗 = 1, … , 𝐽 

               ∑ 𝜆ℎ
𝑘 𝑥𝑖

ℎ

𝐾

ℎ=1

+ ∑ 𝜋𝑟
𝑘(−𝑥𝑖

𝑟)

𝑅

𝑟=1

≥ 𝜃𝑉𝐸𝐴
𝑘 𝑥𝑖

𝑘   𝑖 = 1, … , 𝐼

               ∑ 𝜆ℎ
𝑘

𝐾

ℎ=1

− ∑ 𝜋𝑟
𝑘

𝑅

𝑟=1

= 1

     

          𝜆ℎ
𝑘 ≥ 0                                                     ℎ = 1, … , 𝐾

         𝜋𝑟
𝑘  ≥ 0                                                    𝑟 = 1, … , 𝑅

          𝜃𝑉𝐸𝐴
𝑘  𝑓𝑟𝑒𝑒

 (8) 
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Then one can easily verify that (5) and (7) and (6) and (8) are equivalent to each 

other. 

The additional restrictions in the multiplier form of (7) and (8) result in new 

terms in the left-hand sides of the inequalities in the envelopment form.  These terms 

contain the negative of the input and output quantities of the DMUs constituting the 

MPS.  We may thus view (7) and (8) as models with (𝐾 + 𝑅) DMUs, where inputs 

and outputs take negative values for the DMUs in the set of the MPS (the R additional 

ones) and positive values for the sample DMUs.  By using Emrouznejad et al. (2010) 

data transformations, (7) and (8) may be seen as semi-oriented DEA models with 

(𝐾 + 𝑅) DMUs. Specifically, we may redefine the input and output variables in (7) 

and (8) as: 

 

𝑥1𝑖
ℎ = {

𝑥𝑖
ℎ,   ℎ = 1, … , 𝐾

0 ,   𝑟 = 1, … , 𝑅
  𝑎𝑛𝑑 𝑥2𝑖

ℎ = {
  0,     ℎ = 1, … , 𝐾
−𝑥𝑖

𝑟,   𝑟 = 1, … , 𝑅
   𝑖 = 1, . . , 𝐼 

 

and: 

 

𝑦1𝑗
ℎ = {

𝑦𝑗
ℎ ,   ℎ = 1, … , 𝐾

0 ,   𝑟 = 1, … , 𝑅
  𝑎𝑛𝑑 𝑦2𝑗

ℎ = {
  0,     ℎ = 1, … , 𝐾
−𝑦𝑗

𝑟,   𝑟 = 1, … , 𝑅    𝑗 = 1, . . , 𝐽 

 

Then, (7) and (8) are respectively be written as: 

 

max
𝑢𝑗

𝑘,𝑣𝑖
𝑘 ,𝑢𝑘

∑ 𝑢1𝑗
𝑘 𝑦1𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑘 𝑦2𝑗

𝑘

𝐽

𝑗=1

     𝑠. 𝑡.  ∑ 𝑢1𝑗
𝑘 𝑦1𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑘 𝑦2𝑗

ℎ

𝐽

𝑗=1

−

            − ∑ 𝑣1𝑖
𝑘 𝑥1𝑖

ℎ

𝐼

𝑖=1

+ ∑ 𝑣2𝑖
𝑘 𝑥2𝑖

ℎ

𝐼

𝑖=1

≤ 0         ℎ = 1, … , 𝐾 + 𝑅

              ∑ 𝑣1𝑖
𝑘 𝑥1𝑖

ℎ

𝐼

𝑖=1

− ∑ 𝑣2𝑖
𝑘 𝑥2𝑖

ℎ

𝐼

𝑖=1

= 1

              𝑢1𝑗
𝑘 ≥ 0                                               𝑗 = 1, … , 𝐽

              𝑢2𝑗
𝑘 ≥ 0                                               𝑗 = 1, … , 𝐽

              𝑣2𝑖
𝑘 ≥ 0                                                𝑖 = 1, … , 𝐼   

              𝑣2𝑖
𝑘 ≥ 0                                                 𝑖 = 1, … , 𝐼

 

 

min
𝜃𝑉𝐸𝐴

𝑘 ,𝜆ℎ
𝑘
 𝜃𝑉𝐸𝐴

𝑘                                                                          

     𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦1𝑗

ℎ

𝐾+𝑅

ℎ=1

≥ 𝑦1𝑗
𝑘              𝑗 = 1, … , 𝐽 

              ∑ 𝜆ℎ
𝑘 𝑦2𝑗

ℎ

𝐾+𝑅

ℎ=1

≤ 𝑦2𝑗
𝑘              𝑗 = 1, … , 𝐽

              ∑ 𝜆ℎ
𝑘 𝑥1𝑖

ℎ

𝐾+𝑅

ℎ=1

≤ 𝜃𝑉𝐸𝐴
𝑘 𝑥1𝑖

𝑘    𝑖 = 1, … , 𝐼

              ∑ 𝜆ℎ
𝑘 𝑥2𝑖

ℎ

𝐾+𝑅

ℎ=1

≥ 𝜃𝑉𝐸𝐴
𝑘 𝑥2𝑖

𝑘    𝑖 = 1, … , 𝐼

     
         𝜆ℎ

𝑘 ≥ 0                              ℎ = 1, … , 𝐾 + 𝑅

         𝜃𝑉𝐸𝐴
𝑘  𝑓𝑟𝑒𝑒

 (9) 

 

 

 

and  
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max
𝑢𝑗

𝑘,𝑣𝑖
𝑘 ,𝑢𝑘

∑ 𝑢1𝑗
𝑘 𝑦1𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑘 𝑦2𝑗

𝑘 + 𝑢𝑘

𝐽

𝑗=1

     𝑠. 𝑡.  ∑ 𝑢1𝑗
𝑘 𝑦1𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑘 𝑦2𝑗

ℎ

𝐽

𝑗=1

−

            − ∑ 𝑣1𝑖
𝑘 𝑥1𝑖

ℎ

𝐼

𝑖=1

+ ∑ 𝑣2𝑖
𝑘 𝑥2𝑖

ℎ

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0       ℎ = 1, … , 𝐾 + 𝑅

              ∑ 𝑣1𝑖
𝑘 𝑥1𝑖

ℎ

𝐼

𝑖=1

− ∑ 𝑣2𝑖
𝑘 𝑥2𝑖

ℎ

𝐼

𝑖=1

= 1

              𝑢1𝑗
𝑘 ≥ 0                                                       𝑗 = 1, … , 𝐽

              𝑢2𝑗
𝑘 ≥ 0                                                       𝑗 = 1, … , 𝐽

              𝑣2𝑖
𝑘 ≥ 0                                                        𝑖 = 1, … , 𝐼   

              𝑣2𝑖
𝑘 ≥ 0                                                        𝑖 = 1, … , 𝐼

              𝑢𝑘 𝑓𝑟𝑒𝑒

 

 

min
𝜃𝑉𝐸𝐴

𝑘 ,𝜆ℎ
𝑘
 𝜃𝑉𝐸𝐴

𝑘                                                                          

     𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘 𝑦1𝑗

ℎ

𝐾+𝑅

ℎ=1

≥ 𝑦1𝑗
𝑘              𝑗 = 1, … , 𝐽 

              ∑ 𝜆ℎ
𝑘 𝑦2𝑗

ℎ

𝐾+𝑅

ℎ=1

≤ 𝑦2𝑗
𝑘              𝑗 = 1, … , 𝐽

              ∑ 𝜆ℎ
𝑘 𝑥1𝑖

ℎ

𝐾+𝑅

ℎ=1

≤ 𝜃𝑉𝐸𝐴
𝑘 𝑥1𝑖

𝑘    𝑖 = 1, … , 𝐼

              ∑ 𝜆ℎ
𝑘 𝑥2𝑖

ℎ

𝐾+𝑅

ℎ=1

≥ 𝜃𝑉𝐸𝐴
𝑘 𝑥2𝑖

𝑘    𝑖 = 1, … , 𝐼

              ∑ 𝜆ℎ
𝑘

𝐾+𝑅

ℎ=1

= 1

     
         𝜆ℎ

𝑘 ≥ 0                              ℎ = 1, … , 𝐾 + 𝑅

         𝜃𝑉𝐸𝐴
𝑘  𝑓𝑟𝑒𝑒

 (10) 

 

 

 

where h is used to index all DMUs, i.e., h=1,…,K+R.  

We can now provide sufficient conditions under which the DEA model 

including production trade-offs or their dual weight restrictions is equivalent to the 

VEA model.  Under CRS, a comparison of (2) and (7) shows that the two models are 

equivalent to each other if the number of trade-offs in the former is equal to the 

number of DMUs constituting the MPS in the latter and the trade-off coefficient 

vectors are given as:  

 

                                            
𝑃𝑟 = [−𝑥1

𝑟, … , −𝑥𝑖
𝑟, … , −𝑥𝐼

𝑟]𝑇 ,   𝑟 = 1, … , 𝑅

𝑄𝑟 = [−𝑦1
𝑟, … , −𝑦𝑗

𝑟, … , −𝑦𝑗
𝑟]

𝑇
,    𝑟 = 1, … , 𝑅

                                   (11) 

 

where (𝑥𝑖
𝑟, 𝑦𝑗

𝑟) correspond to the inputs and outputs of each of the DMUs (r=1,…,R) 

constituting the MPS.  The trade-offs in (11) are dual to the following set of AR-II 

type weight restrictions: 

 

                                              ∑ 𝑢𝑗
𝑘(−𝑦𝑗

𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘(−𝑥𝑖

𝑟)

𝐼

𝑖=1

≤ 0,   𝑟 = 1, … , 𝑅                            (12) 

 

which are essentially the same as the second set of restrictions in the multiplier form 

of (7).  Thus, we have: 

 

PROPOSITION 1: Under constant returns to scale, the VEA model is equivalent to a 

DEA model including production trade-offs, for which the trade-off coefficient 
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vectors contain the negative of the input and output quantities of the DMUs 

constituting the MPS in VEA. 

 

When VRS is assumed, substituting (11) or its dual (12) into (3) will not result in a 

model equivalent to (8), since the convexity constraints in the envelopment form of 

(3) and (8) are different from each other.   

However, we can show that the VEA model is related to the DEA model 

including another form of trade-offs: 

 

PROPOSITION 2: Regardless of the nature of the returns to scale, the VEA model is 

equivalent to a DEA model including production trade-offs, for which the trade-off 

coefficient vectors contain the deviations of each DMU’s input and output quantities 

from those of each of the DMUs constituting the MPS. 

 

To show this, consider the following trade-offs: 

 

                    
𝑃𝑟

ℎ = [(𝑥1
ℎ − 𝑥1

𝑟), … , (𝑥𝐼
ℎ − 𝑥𝐼

𝑟)]
𝑇

,   ℎ = 1, … , 𝐾,   𝑟 = 1, … , 𝑅 

𝑄𝑟
ℎ

= [(𝑦1
ℎ − 𝑦1

𝑟), … , (𝑦𝐽
ℎ − 𝑦𝐽

𝑟)]
𝑇

,   ℎ = 1, … , 𝐾,   𝑟 = 1, … , 𝑅
                           (13) 

 

which are dual to the following set of AR-II type of weight restrictions: 

 

              ∑ 𝑢𝑗
𝑘(𝑦𝑗

ℎ − 𝑦𝑗
𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑘(𝑥𝑖

ℎ − 𝑥𝑖
𝑟)

𝐼

𝑖=1

≤ 0,   ℎ = 1, … , 𝐾,   𝑟 = 1, … , 𝑅                     (14) 

 

Let’s assume, initially, that 𝑟 = 1, i.e., the MPS is a single DMU.  Then, (13) consists 

of K trade-off coefficient vectors given as the deviations of each DMU’s (h=1,…,K) 

input and output quantities of from those of the MPS.  That is, 𝑝𝑖
ℎ = (𝑥𝑖

ℎ − 𝑥𝑖
𝑟), 𝑖 =

1, … , 𝐼, ℎ = 1, … , 𝐾 and 𝑞𝑗
ℎ = (𝑦𝑗

ℎ − 𝑦𝑗
𝑟), 𝑗 = 1, … , 𝐽, ℎ = 1, … , 𝐾. In such a case, the 

envelopment form of the VRS DEA model in (3) is given as:  
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min
𝜃𝑇𝑂

𝑘 ,𝜆ℎ
𝑘 ,𝜋ℎ

𝑘
  𝜃𝑇𝑂

𝑘

      𝑠. 𝑡.   ∑ 𝜆ℎ
𝑘𝑦𝑗

ℎ

𝐾

ℎ=1

+ ∑ 𝜋ℎ
𝑘(𝑦𝑗

ℎ − 𝑦𝑗
𝑟)

𝐾

ℎ=1

≥ 𝑦𝑗
𝑘            𝑗 = 1, … , 𝐽 

                ∑ 𝜆ℎ
𝑘𝑥𝑖

ℎ

𝐾

ℎ=1

+ ∑ 𝜋ℎ
𝑘(𝑥𝑖

ℎ − 𝑥𝑖
𝑟)

𝐾

ℎ=1

≤ 𝜃𝑇𝑂
𝑘 𝑥𝑖

𝑘    𝑖 = 1, … , 𝐼

                ∑ 𝜆ℎ
𝑘

𝐾

ℎ=1

= 1

     

           𝜆ℎ
𝑘 ≥ 0                                                               ℎ = 1, … , 𝐾

          𝜋ℎ
𝑘  ≥ 0                                                               ℎ = 1, … , 𝐾

          𝜃𝑇𝑂
𝑘     𝑓𝑟𝑒𝑒

                          (15) 

 

or equivalently as:  

 

                   

min
𝜃𝑇𝑂

𝑘 ,𝛿ℎ
𝑘,𝛾𝑘

 𝜃𝑇𝑂
𝑘

       𝑠. 𝑡.  ∑ 𝛿ℎ
𝑘𝑦𝑗

ℎ

𝐾

ℎ=1

+ 𝛾𝑘(−𝑦𝑗
𝑟) ≥ 𝑦𝑗

𝑘            𝑗 = 1, … , 𝐽

                ∑ 𝛿ℎ
𝑘𝑥𝑖

ℎ

𝐾

ℎ=1

+ 𝛾𝑘(−𝑥𝑖
𝑟) ≤ 𝜃𝑇𝑂

𝑘 𝑥𝑖
𝑘    𝑖 = 1, … , 𝐼

                 ∑ 𝛿ℎ
𝑘

𝐾

ℎ=1

− 𝛾𝑘 = 1

     

            𝛿ℎ
𝑘 ≥ 0                                                 ℎ = 1, … , 𝐾

           𝛾𝑘  ≥ 0

           𝜃𝑇𝑂
𝑘       𝑓𝑟𝑒𝑒

                                        (16) 

 

where 𝛿ℎ
𝑘 = (𝜆ℎ

𝑘 + 𝜋ℎ
𝑘) ≥ 0 and ∑ 𝜋ℎ

𝑘𝐾
ℎ=1 = 𝛾𝑘 ≥ 0.  Then (16) is equivalent to the 

envelopment form in (8) if the rth DMU is chosen as the MPS.  If 𝑟 > 1, namely that 

the MPS is a combination of several DMUs, then (13) consists of 𝐾 × 𝑅 trade-off 

coefficient vectors given as the deviations of each DMU’s (h=1,…,K) input and 

output quantities from those of each DMU (r=1,…,R) comprising the MPS.  As a 

result, the second term in the left hand side of the first two inequality restrictions in 

(15) reflect summations over both h (h=1,…,K) and r (r=1,…,R) and 𝜋ℎ
𝑘 should be 

changed to 𝜋ℎ𝑟
𝑘 .  Moreover, by defining 𝛿ℎ

𝑘 = (𝜆ℎ
𝑘 + ∑ 𝜋ℎ𝑟

𝑘𝑅
𝑟=1 ) ≥ 0 and 𝛾𝑟

𝑘 =

∑ 𝜋ℎ
𝑘𝐾

ℎ=1 ≥ 0 we may obtain a model similar to (16) in which the second term in the 

left hand side of the first two inequality restrictions reflect summations over r 

(r=1,…,R) and the third restriction is stated as ∑ 𝛿ℎ
𝑘𝐾

ℎ=1 − ∑ 𝛾𝑟
𝑘𝑅

𝑟=1 = 1.  This model is 

equivalent to the envelopment form in (8) if the set of R (r=1,…,R)  DMUs comprise 
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the MPS.  In a similar fashion, if increasing (decreasing) returns to scale are assumed, 

then the equality sign in the third restriction of the envelopment forms in (3) and (8) 

and in (15) and (16) is simply changed to a less-than-or-equal (greater-than-or-equal) 

sign, while if constant returns to scale are assumed, the third restriction in the 

envelopment forms in (3) and (8) and in (15) and (16) should be dropped.   

From the above, it is also clear that, under CRS, the DEA model with R trade-

off coefficient vectors, given as the negative of the input and output quantities of the 

DMUs selected as the MPS in VEA, is equivalent to the DEA model with (𝐾 × 𝑅) 

trade-off coefficient vectors, given as the deviations of each DMU’s (h=1,…,K) input 

and output quantities from those of each of the DMUs selected as the MPS in VEA.  

This is evident as long as the trade-off coefficient vectors in (2) are given as in either 

(11) or (13).  Let’s assume, initially, that 𝑟 = 1, i.e., the MPS is a single DMU.  Then, 

the envelopment form of (2) when the trade-off coefficient vectors are given by (13) 

is:  

 

                       

min
𝜃𝑇𝑂

𝑘 ,𝜆ℎ
𝑘 ,𝜋ℎ

𝑘
  𝜃𝑇𝑂

𝑘

      𝑠. 𝑡.   ∑ 𝜆ℎ
𝑘𝑦𝑗

ℎ

𝐾

ℎ=1

+ ∑ 𝜋ℎ
𝑘(𝑦𝑗

ℎ − 𝑦𝑗
𝑟)

𝐾

ℎ=1

≥ 𝑦𝑗
𝑘            𝑗 = 1, … , 𝐽 

                ∑ 𝜆ℎ
𝑘𝑥𝑖

ℎ

𝐾

ℎ=1

+ ∑ 𝜋ℎ
𝑘(𝑥𝑖

ℎ − 𝑥𝑖
𝑟)

𝐾

ℎ=1

≤ 𝜃𝑇𝑂
𝑘 𝑥𝑖

𝑘    𝑖 = 1, … , 𝐼

     

           𝜆ℎ
𝑘 ≥ 0                                                               ℎ = 1, … , 𝐾

          𝜋ℎ
𝑘  ≥ 0                                                               ℎ = 1, … , 𝐾

          𝜃𝑇𝑂
𝑘     𝑓𝑟𝑒𝑒

                          (18) 

 

while when the trade-off coefficient vectors are given by (11), it is as follows: 

 

                   

min
𝜃𝑇𝑂

𝑘 ,𝜁ℎ
𝑘,𝛾𝑘

 𝜃𝑇𝑂
𝑘

       𝑠. 𝑡.  ∑ 𝜁ℎ
𝑘𝑦𝑗

ℎ

𝐾

ℎ=1

+ 𝛽𝑘(−𝑦𝑗
𝑟) ≥ 𝑦𝑗

𝑘            𝑗 = 1, … , 𝐽

                 ∑ 𝜁ℎ
𝑘𝑥𝑖

ℎ

𝐾

ℎ=1

+ 𝛽𝑘(−𝑥𝑖
𝑟) ≤ 𝜃𝑇𝑂

𝑘 𝑥𝑖
𝑘     𝑖 = 1, … , 𝐼

     

            𝜁ℎ
𝑘 ≥ 0                                                 ℎ = 1, … , 𝐾

           𝛽𝑘  ≥ 0

           𝜃𝑇𝑂
𝑘       𝑓𝑟𝑒𝑒

                                        (19) 

 

If 𝜁ℎ
𝑘 = (𝜆ℎ

𝑘 + 𝜋ℎ
𝑘) ≥ 0 and ∑ 𝜋ℎ

𝑘𝐾
ℎ=1 = 𝛽𝑘 ≥ 0, then (18) is equivalent to (19).  If 𝑟 >

1, then (13) consists of (𝐾 × 𝑅) trade-off coefficient vectors given as  𝑝𝑖
ℎ𝑟 =
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(𝑥𝑖
ℎ − 𝑥𝑖

𝑟), 𝑖 = 1, … , 𝐼, ℎ = 1, … , 𝐾, 𝑟 = 1, … , 𝑅 and 𝑞𝑗
ℎ𝑟 = (𝑦𝑗

ℎ − 𝑦𝑗
𝑟), 𝑗 = 1, … , 𝐽, ℎ =

1, … , 𝐾, 𝑟 = 1, … , 𝑅.  Thus, the second terms in the left hand side of the first two 

inequality restrictions in (18) reflect summations over both h (h=1,…,K) and r 

(r=1,…,R) and 𝜋ℎ
𝑘 should be changed to 𝜋ℎ𝑟

𝑘 .  Furthermore, (11) consists of 𝑅 trade-

off coefficient vectors given by the negative of the input and output quantities of the 

DMUs chosen as the MPS in VEA.  Thus, the second terms in the left hand side of the 

first two inequality restrictions in (19) reflect summations over r (r=1,…,R) and 𝛽𝑘 

should be changed to 𝛽𝑟
𝑘.  Then, by defining 𝜁ℎ

𝑘 = (𝜆ℎ
𝑘 + ∑ 𝜋ℎ𝑟

𝑘𝑅
𝑟=1 ) ≥ 0 and 𝛽𝑟

𝑘 =

∑ 𝜋ℎ
𝑘𝐾

ℎ=1 ≥ 0, (18) is equivalent to (19).  Consequently, a CRS DEA model augmented 

with the trade-offs as in (11) and a CRS DEA model augmented with the trade-offs as 

in (13) are equivalent to each other. 

The above results indicate that, under certain circumstances, the DM 

preferences underlying the evaluation of DMUs in the VEA model may be seen as a 

particular form of trade-offs or AR-II type of weight restrictions and vice versa.  This 

provides an alternative interpretation of the efficiency scores obtained from both the 

VEA model and the DEA model including production trade-offs.  

The production trade-offs in (11) and (13) and their dual weight restrictions in 

(12) and (14) enlarge the DEA efficient frontier by extending certain of its existing 

facets, in particular, those associated with the DMU or the combination of DMUs 

comprising the MPS, instead of introducing new linear segments.6  The implications 

of this are: (i) (11) and (13) do not introduce additional information in the 

envelopment form of the DEA model other than that already implicit in the data, 

namely the rates of substitution between inputs, the rates of transformation among 

outputs, and the marginal products between inputs and outputs that are reflected in 

each of the extended facets, and (ii) the efficiency scores from the multiplier form of 

the DEA models with (12) and (14) do not underestimate the true efficiency of the 

evaluated DMUs, as may occur in several other cases where additional restrictions of 

the general form in (4) are imposed in DEA models (see Tracy and Chen, 2005; 

Khalili et al., 2010b).  This is because each facet of the DEA frontier enlarged with 

(12) or (14) is already tangent to the conventional DEA frontier at some point. 

 

3.2. Production trade-offs dual to AR-I type of weight restrictions 
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In the previous section we considered production trade-offs related to both inputs and 

outputs, which are dual to AR-II type of weight restrictions.  In this section we 

consider weight restrictions of the AR-I type, and we restrict our attention to pure 

input or output models, i.e., models that contain respectively no outputs and no inputs.  

Consider first the DEA model without inputs, which is equivalent to a DEA 

model with a single or multiple constant (unitary) inputs (Lovell and Pastor, 1999).7  

The latter is known as the Benefit-of-the-Doubt model (BoD) and its multiplier and 

envelopment form are given as (Cherchye et al., 2007): 

 

   max
𝑢𝑗

𝑘,𝑣𝑖
𝑘

  ∑ 𝑢𝑗
𝑘𝑦𝑗

𝑘

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

≤ 1    ℎ = 1, … , 𝐾

              𝑢𝑗
𝑘 ≥ 0                 𝑗 = 1, … , 𝐽

 

min
𝜆ℎ

𝑘
∑ 𝜆ℎ

𝑘

𝐾

ℎ=1

  𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘𝑦𝑗

ℎ

𝐾

ℎ=1

≥ 𝑦𝑗
𝑘         𝑗 = 1, … , 𝐽 

     
       𝜆ℎ

𝑘 ≥ 0                       ℎ = 1, … , 𝐾

       𝜃𝑘  𝑓𝑟𝑒𝑒

         (20) 

 

The model in (20) is obtained from (2) by dropping the terms associated with the 

(input and output) trade-offs or their dual weight restrictions, and by considering that 

𝑖 = 1, 𝑥ℎ = 1, ℎ = 1, … , 𝐾 which implies that 𝑣𝑘 = 1.8  The BoD model has 

recently been adapted to a VEA framework (see Ravanos and Karagiannis, 2021) and 

its multiplier and envelopment form are given as:  

 

   max
𝑢𝑗

𝑘
  ∑ 𝑢𝑗

𝑘𝑦𝑗
𝑘

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

≤ 1    ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

              ∑ 𝑢𝑗
𝑘𝑦𝑗

ℎ

𝐽

𝑗=1

= 1    ℎ = 𝑟 = 1, … , 𝑅

              𝑢𝑗
𝑘 ≥ 0                 𝑗 = 1, … , 𝐽

 

min
𝜆ℎ

𝑘
  ∑ 𝜆ℎ

𝑘

𝐾

ℎ=1

  𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘𝑦𝑗

ℎ

𝐾

ℎ=1

≥ 𝑦𝑗
𝑘        𝑗 = 1, … , 𝐽 

    
       𝜆ℎ

𝑘 ≥ 0                      ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

       𝜆ℎ
𝑘  𝑓𝑟𝑒𝑒                    ℎ = 𝑟 = 1, … , 𝑅

 (21) 

 

where the set R contains the DMUs comprising the MPS.   

For 𝑖 = 1 and 𝑥ℎ = 1, ℎ = 1, … , 𝐾, (𝑥ℎ − 𝑥𝑟 ) = 0, ℎ = 1, … , 𝐾, 𝑟 = 1, … , 𝑅,  

and thus the vector 𝑃𝑟
ℎ in (13) is a scalar with a value equal to zero.  Consequently, 

the associated weight restrictions in (14) consider only outputs, i.e., are of the AR-I 

type, as the second component in each of the relations in (14) is equal to zero. In a 
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similar fashion, the vector 𝑃𝑟  in (11) is a scalar with a value equal to −1 and the 

second component in each of the associated weight restrictions in (12) is also equal to 

−1, namely (12) considers only outputs.  Thus, we can show the following: 

 

PROPOSITION 3: The VEA BoD model is equivalent to a BoD model including 

production trade-offs, for which the trade-off coefficient vectors contain either (i) the 

negative of the output quantities of the DMUs constituting the MPS, or (ii) the 

deviations of each DMU’s output quantities from those of each of the DMUs 

constituting the MPS. 

  

Next, consider the DEA model without outputs, which is equivalent to a DEA 

model with a single or multiple constant (unitary) outputs (Lovell and Pastor, 1999).9  

The latter is known as the Inverted BoD model and its multiplier and envelopment 

form are given as (Färe and Karagiannis, 2014): 10 

 

   min
𝑣𝑖

𝑘
  ∑ 𝑣𝑖

𝑘𝑥𝑖
𝑘

𝐼

𝑖=1

    𝑠. 𝑡.   ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

≥ 1    ℎ = 1, … , 𝐾

              𝑣𝑖
𝑘 ≥ 0                 𝑖 = 1, … , 𝐼

 

max
𝜆ℎ

𝑘
∑ 𝜆ℎ

𝑘

𝐾

ℎ=1

  𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘𝑥𝑖

ℎ

𝐾

ℎ=1

≤ 𝑥𝑖
𝑘            𝑖 = 1, … , 𝐼 

            𝜆ℎ
𝑘 ≥ 0                        ℎ = 1, … , 𝐾

           (22) 

 

The model in (22) is obtained from the output-oriented counterpart of (2) by dropping 

the terms associated with the (input and output) trade-offs or their dual weight 

restrictions, and by assuming that 𝑗 = 1, 𝑦ℎ = 1, ℎ = 1, … , 𝐾, which implies that 

𝑢𝑘 = 1.  Compared to the BoD model, the Inverted BoD model provides a 

pessimistic perspective of performance evaluation (Karagiannis, 2021).  Consider 

now a set of R DMUs reflecting the most desirable input bundle from DM’s point of 

view.  Then, the multiplier and envelopment form of the Inverted VEA BoD model 

will be given as: 
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   min
𝑣𝑖

𝑘
  ∑ 𝑣𝑖

𝑘𝑥𝑖
𝑘

𝐼

𝑖=1

    𝑠. 𝑡.   ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

≥ 1    ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

              ∑ 𝑣𝑖
𝑘𝑥𝑖

ℎ

𝐼

𝑖=1

= 1    ℎ = 𝑟 = 1, … , 𝑅

              𝑣𝑖
𝑘 ≥ 0                 𝑖 = 1, … , 𝐼

 

max
𝜆ℎ

𝑘
∑ 𝜆ℎ

𝑘

𝐾

ℎ=1

  𝑠. 𝑡.  ∑ 𝜆ℎ
𝑘𝑥𝑖

ℎ

𝐾

ℎ=1

≤ 𝑥𝑖
𝑘     𝑖 = 1, … , 𝐼 

     
      𝜆ℎ

𝑘 ≥ 0                   ℎ = 1, … , 𝐾,   ℎ ≠ 𝑟

      𝜆ℎ
𝑘  𝑓𝑟𝑒𝑒                 ℎ = 𝑟 = 1, … , 𝑅

   (23) 

 

Then for 𝑗 = 1 and 𝑦ℎ = 1, ℎ = 1, … , 𝐾, we have that (𝑦ℎ − 𝑦𝑟 ) = 0, ℎ =

1, … , 𝐾, 𝑟 = 1, … , 𝑅 and thus the vector 𝑄𝑟
ℎ in (13) is a scalar than takes the value of 

zero.  Thus, the weights restrictions dual to the production trade-offs in (13) are AR-I, 

as the first component in each of the relations in (14) is equal to zero.  Similarly, the 

vector 𝑄𝑟  in (11) is a scalar with a value equal to −1 and the same holds for the first 

component in each of the associated weight restrictions in (12).  Thus, we can show 

that:  

 

PROPOSITION 4: The Inverted BoD VEA model is equivalent to an Inverted BoD 

model including production trade-offs, for which the trade-off coefficient vectors 

contain either (i) the negative of the input quantities of the DMUs constituting the 

MPS, or (ii) the deviations of each DMU’s input quantities from those of each of the 

DMUs constituting the MPS. 

 

4. An empirical application 

 

To illustrate the usefulness of our findings, we consider the case of a DM evaluating 

alternatives in a technology selection problem, using the dataset of 27 industrial 

robots in Khouja (1995) and Baker and Talluri (1997).11  For the purposes of the 

present paper, we may consider the DM assessing these 27 DMUs as either a potential 

buyer, i.e., the manager of an industrial plant, or a technology manufacturer, namely 

the owner of a company producing one of the assessed DMUs. 

Data for the 27 DMUs are given in columns 2 to 5 of Table 1.  Four among the 

most important performance features of industrial robots are considered, which are (i) 

the robots’ cost (in 10.000$), (ii) repeatability, namely a measure of the distance (in 

mm) covered by the robot in repeated trials, (iii) the robot’s payload capacity (in kg) 

and (iv) its minimum possible velocity (in m/s).  For the former two features lower 

values indicate better performance, and hence they are treated as inputs, while larger 
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values are more preferable for capacity and velocity and these are treated as outputs 

(Khouja, 1995).  Efficiency estimates based on the input-oriented CRS and VRS DEA 

models are given in columns 6 and 9 of Table 1.  From these, we can see that nine 

DMUs are efficient with CRS, while other two DMUs are added to the list of efficient 

DMUs in the VRS model.  The assumption of VRS results in a noticeable increase in 

average efficiency (0.801 compared to 0.725 in the CRS model).  

For our purposes let’s assume that DMU #19 is chosen as the MPS.  The DM 

in this case may be the manager of a manufacturing plant that operates using this 

particular robot, or be a potential buyer for which this robot has an attractive 

combination of low cost and low repeatability. The CRS and VRS VEA efficiency 

scores when DMU #19 is chosen as the MPS are given in columns 7 and 10 of Table 

1. In the CRS case, five DMUs drop from the list of efficient DMUs compared to 

DEA, while when VRS is assumed the efficient DMUs are reduced to eight, 

compared to 11 in DEA.  By Proposition 2, the same efficiency scores would result 

from respectively a CRS and a VRS DEA model including the following set of weight 

restrictions: 
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50.000𝑢1
𝑘 +1.050𝑢2

𝑘 −6.260𝑣1
𝑘 −0.100𝑣2

𝑘 ≤ 0 (DMU #1)

−4.000𝑢1
𝑘 +0.800𝑢2

𝑘 −3.860𝑣1
𝑘 ≤ 0 (DMU #2)

35.000𝑢1
𝑘 +0.970𝑢2

𝑘 −4.060𝑣1
𝑘 −1.220𝑣2

𝑘 ≤ 0 (DMU #3)

−8.500𝑢1
𝑘 +0.360𝑢2

𝑘 −6.260𝑣1
𝑘 +0.025𝑣2

𝑘 ≤ 0 (DMU #4)

40.000𝑢1
𝑘 −0.250𝑢2

𝑘 −8.660𝑣1
𝑘 −0.200𝑣2

𝑘 ≤ 0 (DMU #5)

−9.000𝑢1
𝑘 −0.130𝑣1

𝑘 −0.050𝑣2
𝑘 ≤ 0 (DMU #6)

−5.000𝑢1
𝑘 +0.700𝑢2

𝑘 −0.820𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #7)

5.000𝑢1
𝑘 +0.700𝑢2

𝑘 −2.260𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #8)

+0.800𝑢2
𝑘 −5.780𝑣1

𝑘 −0.150𝑣2
𝑘 ≤ 0 (DMU #9)

−4.000𝑢1
𝑘 +0.700𝑢2

𝑘 −1.460𝑣1
𝑘 ≤ 0 (DMU #10)

20.000𝑢1
𝑘 +0.600𝑢2

𝑘 −1.940𝑣1
𝑘 −0.450𝑣2

𝑘 ≤ 0 (DMU #11)

3.600𝑢1
𝑘 −0.150𝑢2

𝑘 −5.960𝑣1
𝑘 −0.950𝑣2

𝑘 ≤ 0 (DMU #12)

0.900𝑢2
𝑘 −2.260𝑣1

𝑘 ≤ 0 (DMU #13)

20.000𝑢1
𝑘 +0.900𝑢2

𝑘 −3.060𝑣1
𝑘 ≤ 0 (DMU #14)

37.000𝑢1
𝑘 +0.700𝑢2

𝑘 −2.740𝑣1
𝑘 −0.950𝑣2

𝑘 ≤ 0 (DMU #15)

70.000𝑢1
𝑘 +0.700𝑢2

𝑘 −5.940𝑣1
𝑘 −0.950𝑣2

𝑘 ≤ 0 (DMU #16)

5. 000𝑢1
𝑘 +1.700𝑢2

𝑘 −7.060𝑣1
𝑘 −1.950𝑣2

𝑘 ≤ 0 (DMU #17)

0.700𝑢2
𝑘 −5.360𝑣1

𝑘 −0.150𝑣2
𝑘 ≤ 0 (DMU #18)

−8.500𝑢1
𝑘 +0.500𝑢2

𝑘 +0.780𝑣1
𝑘 −1.950𝑣2

𝑘 ≤ 0 (DMU #20)

17.000𝑢1
𝑘 +1.400𝑢2

𝑘 −1.870𝑣1
𝑘 −1.950𝑣2

𝑘 ≤ 0 (DMU #21)

−9.100𝑢1
𝑘 +0.700𝑢2

𝑘 −2.860𝑣1
𝑘 ≤ 0 (DMU #22)

−7.500𝑢1
𝑘 +0.200𝑢2

𝑘 −0.310𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #23)

−7.500𝑢1
𝑘 +0.200𝑢2

𝑘 −0.430𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #24)

0.700𝑢2
𝑘 −2.690𝑣1

𝑘 −0.150𝑣2
𝑘 ≤ 0 (DMU #25)

60.000𝑢1
𝑘 +0.950𝑢2

𝑘 −4.360𝑣1
𝑘 −1.220𝑣2

𝑘 ≤ 0 (DMU #26)

195.000𝑢1
𝑘 +0.450𝑢2

𝑘 −3.060𝑣1
𝑘 −1.980𝑣2

𝑘 ≤ 0 (DMU #27)

                              

 

The figures attached to the input and output weights in each of the above restrictions 

are equal to the deviations of the input and output quantities corresponding to the 

evaluated DMU listed in parentheses, from those of DMU #19.  This set of 

restrictions forces the marginal rates of substitution and transformation for the 

evaluated DMUs to take values only within the range of marginal rates prevailing on 

the efficient frontier in the neighborhood of DMU #19.  Note that by Proposition 1 the 

CRS VEA efficiency scores could also be obtained through a DEA model including 

the following weight restriction: 

 
                            −10. 000𝑢1

𝑘 −0.300𝑢2
𝑘 +0.940𝑣1

𝑘 +0.050𝑣2
𝑘 ≤ 0                                     

 

the coefficients of which are the negative of the input and output quantities of DMU 

#19. 

Let us now assume that the following trade-off is included in the envelopment 

form of the CRS DEA model in (1): 
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𝑃 = [−0.160, −2.000]𝑇

𝑄 = [−1.500, −0.800]𝑇                                                            

 

This trade-off implies that, if the DM is willing to accept a decrease in load capacity 

by 1.500 kg and in velocity by 0.800 m/s, then the robot’s cost and repeatability could 

be decreased by at most 1600$ and 2.000 mm respectively.  The above trade-off 

coefficient vectors are equal to the negative of the input and output quantities of the 

DEA-efficient DMU #20.  Thus, by Proposition 1, a CRS DEA model augmented 

with this trade-off is equivalent to a CRS VEA model in which DMU #20 is chosen as 

the MPS.  The resulting efficiency scores when either the above trade-off is included 

in the CRS DEA model, or DMU #20 is the MPS in the CRS VEA model are given in 

column 8 of Table 1.  Compared to the DEA results, we see that only three DMUs 

remain efficient in the VEA model, while average efficiency decreases to 0563.  

The efficiency scores from a VRS VEA model in which DMU #20 is used as 

the MPS are given in column 11 of Table 1.  By Proposition 2, these scores can be 

obtained via a DEA model including production trade-offs the coefficient vectors of 

which contain the deviations of each DMU’s input and output quantities from those of 

DMU #20. 

 

5. Concluding remarks 

 

In this paper, we have examined the links between DEA models with weights 

restrictions or their dual production trade-offs and VEA and we showed that VEA 

may be viewed as a class of DEA models with particular trade-offs.  More 

specifically, we showed that, irrespective of the nature of the returns to scale, the 

VEA model is equivalent to the DEA model including production trade-offs, for 

which the trade-off coefficient vectors are given by the deviations of the input and 

output quantities of each sample DMU from those of DMUs chosen as the MPS.  In 

addition, with CRS, the VEA model is equivalent to the DEA model with trade-off 

coefficient vectors given by the negative of the input and output quantities of the 

DMUs chosen as the MPS in VEA. These trade-offs are dual to AR-II weight 

restrictions.  In addition, we showed that, when we are considering these particular 

trade-offs only for the inputs or the outputs, a similar equivalence results between the 

pure output or input VEA models and their DEA counterparts including trade-offs.  In 

these cases, the dual forms of the trade-offs are AR-I weight restrictions.  
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The results in this paper indicate that the DM preferences about the most 

preferred input/output bundle as reflected in the MPS in the VEA model may be seen 

as a particular form of trade-offs or their dual AR-II or AR-I type of weight 

restrictions and vice versa.  This provides an alternative interpretation of the 

efficiency scores obtained from both the VEA model and its equivalent DEA model 

including production trade-offs.  In particular, the VEA efficiency scores can also be 

interpreted as including restrictions in the acceptable values of the marginal rates of 

substitution and transformation, while it may be said that the efficiency scores 

obtained from the DEA model including production trade-offs reflect the DM’s 

judgements about the most preferred input/output bundle. Promising avenues for 

future research would be to investigate the potential relationships between VEA and 

other forms of introducing restrictions in DEA models, such as cone-ratio DEA, as 

well as other types of performance evaluation models that take preferences into 

account, such as cross efficiency formulations. 
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Table 1: Data and efficiency estimates for the illustrative example.  

 
DMU inputs outputs  CRS models  VRS models 

 

Cost  

(in 10.000$) 

Repeatability  

(in mm) 

Load capacity  

(in kg) 

Velocity  

(in m/s) 

 

DEA  

VEA  

(MPS: #19) 

VEA  

(MPS: #20) 

 

DEA 

VEA  

(MPS: #19) 

VEA  

(MPS: #20) 

1 7.200 0.150 60.000 1.350  1.000 0.871 0.479  1.000 1.000 0.512 

2 4.800 0.050 6.000 1.100  0.904 0.511 0.417  0.907 0.868 0.437 

3 5.000 1.270 45.000 1.270  0.529 0.465 0.529  0.667 0.507 0.568 

4 7.200 0.030 1.500 0.660  1.000 0.195 0.167  1.000 1.000 0.196 

5 9.600 0.250 50.000 0.050  0.592 0.392 0.108  0.594 0.594 0.177 

6 1.070 0.100 1.000 0.300  0.482 0.414 0.482  0.865 0.865 0.865 

7 1.760 0.100 5.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

8 3.200 0.100 15.000 1.000  0.783 0.783 0.618  0.783 0.783 0.618 

9 6.720 0.200 10.000 1.100  0.378 0.362 0.306  0.383 0.376 0.315 

10 2.400 0.050 6.000 1.000  1.000 0.891 0.758  1.000 1.000 0.759 

11 2.880 0.500 30.000 0.900  0.671 0.671 0.669  0.677 0.677 0.677 

12 6.900 1.000 13.600 0.150  0.102 0.099 0.069  0.142 0.142 0.142 

13 3.200 0.050 10.000 1.200  1.000 0.874 0.701  1.000 0.990 0.744 

14 4.000 0.050 30.000 1.200  1.000 1.000 0.658  1.000 1.000 0.691 

15 3.680 1.000 47.000 1.000  0.613 0.561 0.613  0.624 0.607 0.623 

16 6.880 1.000 80.000 1.000  0.604 0.592 0.437  0.604 0.604 0.441 

17 8.000 2.000 15.000 2.000  0.405 0.272 0.405  1.000 0.362 0.525 

18 6.300 0.200 10.000 1.000  0.365 0.355 0.299  0.367 0.367 0.299 

19 0.940 0.050 10.000 0.300  1.000 1.000 0.733  1.000 1.000 1.000 

20 0.160 2.000 1.500 0.800  1.000 0.169 1.000  1.000 1.000 1.000 

21 2.810 2.000 27.000 1.700  0.852 0.397 0.852  1.000 0.774 1.000 

22 3.800 0.050 0.900 1.000  0.829 0.509 0.476  0.913 0.906 0.477 

23 1.250 0.100 2.500 0.500  0.694 0.648 0.694  0.923 0.923 0.923 

24 1.370 0.100 2.500 0.500  0.636 0.606 0.636  0.847 0.847 0.847 

25 3.630 0.200 10.000 1.000  0.553 0.553 0.511  0.556 0.556 0.511 

26 5.300 1.270 70.000 1.250  0.581 0.581 0.577  0.771 0.582 0.613 

27 4.000 2.030 205.000 0.750  1.000 1.000 1.000  1.000 1.000 1.000 

average 4.224 0.589 28.315 0.929  0.725 0.584 0.563  0.801 0.753 0.628 

Note: The data are taken from Baker and Talluri (1997). 
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Endnotes 
                                                           
1 This is also one of the main reasons motivating the incorporation of weights 

restrictions 

2 We focus on the input-oriented model, but our results can be straightforwardly 

extended to the output-oriented model.  

3 Podinovski (2004) has shown that non-homogeneous linear weight restrictions, i.e., 

those for which the right-hand side of (4) is non-zero, can also be represented in the 

form of production trade-offs in the envelopment form of the DEA model.  

4 Cases (i) and (ii) may also refer to a subset of inputs and outputs if respectively 

𝑝𝑖
𝑟 = 0 for some i in Case (i) and  𝑞𝑗

𝑟 = 0 for some j in Case (ii).  

5 In Charnes et al. (1991) the DMUs with a DEA efficiency score of one are classified 

into three categories: (i) extreme-efficient DMUs that reside at a point of the convex 

DEA frontier where more than one facets intercept, (ii) non-extreme-efficient DMUs, 

namely DMUs located on the interior of a facet, and (iii) weakly-efficient DMUs that 

have at least one positive optimal value for an input or output slack.  An MPS chosen 

by the DMUs in (ii) can be expressed as a linear combination of DMUs in (i).  If the 

DM chooses a dominated (i.e., DEA-inefficient or weakly-efficient) DMU as the 

MPS, then his/her DM preferences can be stated equivalently by using as the MPS the 

combination of the extreme-efficient DMUs that are identified as peers of the chosen 

DMU, as the MPS (see Halme et al., 1999). 

6 Weight restrictions that result in extending facets of the DEA frontier are discussed 

in Portela and Thanassoulis (2006), but are not related to VEA. 

7 Note that when we consider only outputs it makes no sense to have an input-oriented 

model.  Also, as Lovell and Pastor (1999) have shown, a pure-output CRS output-

oriented DEA model rates all DMUs as infinitely inefficient, while an input-oriented 

VRS DEA model with a single constant input rates all DMUs as efficient. 

8 Variants of (20) including weight restrictions have been employed in, among others, 

the construction of composite indicators of environmental performance (Zanella et al., 

2013), the re-estimation of the Technology Achievement Index (Cherchye et al., 

2008), and the aggregation of several measures of money into a synthetic indicator 

(Sahoo and Acharya, 2010). 

9 Note that when we consider only inputs it makes no sense to have an output-oriented 

model.  Also, as Lovell and Pastor (1999) have shown, a pure-input CRS input-
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oriented DEA model rates all DMUs as infinitely inefficient, while an output-oriented 

VRS DEA model with a single constant output rates all DMUs as efficient. 

10 Variants of (22) including weight restrictions have been used by, among others, 

Zhou et al. (2007) to construct a sustainable energy index, and Rogge (2012) to re-

estimate the Environmental Performance Index. 

11 The applications of DEA and other multi-criteria decision-making methods in 

technology selection are nowadays voluminous and include, but are not limited to, the 

selection of flexible manufacturing systems, industrial robots, and dispatching rules.  

A review of such applications is a task out of the scope of the present paper, and the 

interested reader is referred to Hamzeh and Xu (2019), for a recent review. 


