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The purpose of this article is to derive an endogenous growth and cycles model that integrates the 

general law of capital accumulation, the reserve army of labor, technological change, devaluation 

of capital, and the law of the tendential fall in the rate of profit. The phase space of this model is 

analyzed by estimating its equilibrium solutions and exploring its economically meaningful 

stability properties. The so derived endogenous growth cum cycles model is then simulated with 

realistic parameter values. The solutions of our model display periodicity, which may be treated 

as long cycles like attractors conditioned by the long–run movement of profitability. The salient 

feature of our model is the growth of the rate of surplus value, which becomes the regulating 

variable of our system for it explains both the deviations from equilibrium and at the same time 

provides a realistic solution to Harrodian instability. 

 

Keywords: capital accumulation, falling profitability, technological change, devaluation of capital, 

reserve army of labor, economic growth, long cycles 

 

JEL Classification: C61, E11, E32, O41 

 

 

 
 

----------------------------------------------------------------------------------------------------------------- 

We are grateful to the reviewers of this journal Mark Klinedinst, Alfredo R. Rosete and Rudiger 

von Armin for their insightful, critical but constructive comments that helped us to present more 

clearly our arguments. 
 
 
 
 

 
* Department of Economics, Aristotle University of Thessaloniki, Greece, chatzarn@econ.auth.gr 

** Department of Economics, Aristotle University of Thessaloniki, Greece, ptsaliki@econ.auth.gr 

*** Department of Economics, University of Macedonia, Thessaloniki, Greece, Lnt@uom.edu.gr 

 

 

 

Declarations of interest: The research work was supported by the Hellenic Foundation for 
Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 1522). 

 

mailto:chatzarn@econ.auth.gr
mailto:ptsaliki@econ.auth.gr
mailto:lnt@uom.edu.gr


2 
 

1. Introduction 

The Harrod–Domar and Solow–Swan growth models took for granted that saving, investment, and 

technological change are exogenously determined variables. In particular, the first growth models 

assumed either that investment in combination with capacity utilization gives rise to optimal 

economic growth (Harrod 1939; Domar 1948) or a given rate of technological change such that to 

determine the level of utilized labor and capital (Solow 1957, 1960; Phelps 1961). Since then, there 

have been many models that endogenize saving, investment, and technological progress, however 

with little or no success, as this can be judged by the number of issues raised among contending 

narratives echoing the diverse conceptualizations of the variables involved. 

 

More specifically, neoclassical and neo–Keynesian approaches attempt to endogenize savings 

through either households’ preferences, firms’ choices with respect to alternative production 

techniques, or even government policies. However, as Darity (2009) argues, the introduction of 

these features in a Solow–like growth model may give rise to instability and chaotic behavior. 

Moreover, mainstream economists, in their effort to explain Solow’s residual, introduce 

technological change and investment behavior by bringing in their analysis features such as R&D 

expenditures, human capital, and shocks of innovation. However, in doing so, they fail to explain 

both, theoretically and empirically, the widening gap in the development between countries let 

alone the modeling of economic growth and long cycles (Parente 2001). The post–Keynesian 

approaches, in modelling economic growth, emphasized the effects of profitability on investment, 

productivity, and capacity utilization, while Robinson (1965) discussed the effects of innovations 

on labor productivity. Kaldor (1957), on the other hand, examined how technological change 

affects the “productivity” of capital. Furthermore, a central issue in the growth literature is 
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Harrod’s “knife–edge” solution; the efforts to resolve it ended up within a comparative static 

framework parting with the dynamic features of growth and real time (Bellais 2004).  

 

The modeling of economic growth and cycles continued within the static general equilibrium 

framework; by contrast, Kalecki (1954) and Robinson (1965) introduced, for the first time, the 

idea of integrating dynamic elements into a single model. However, Goodwin (1967) was the first 

to apply a genuine dynamic analysis featuring capital accumulation and employment in a predator–

prey scheme. More specifically, he managed to integrate important aspects of the Harrod–Domar 

growth model with the Phillips curve and in so doing to generate endogenous cycles in the level 

of economic activity, as these are reflected in the movement of the strategic economic variables; 

namely, output, employment, and wages. In most of the follow up models, we cannot discern any 

that mimics, satisfactorily well, the actual process of capital accumulation. On the contrary, these 

models, by and large, rely on short–run dynamics and market clearance seeking to describe long–

run tendencies and “disequilibrium” strangely enough in a–historical framework (Boldrin et 

al.  2001; Galor 2011; Fatás–Villafranca, Jarne, and Sánchez–Chóliz 2012).  

 

From the broad classical perspective, Greiner and Semmler (1996) and Blatt (2019), by introducing 

Keynesian assumptions, offer short–run solutions while Desai (1973), Korpinen (1987), and 

Jarsulic (1991) discuss the effects of monetary policy, credit, and inflation on the growth cycle and 

conclude that equilibrium is unattainable. The general feature of all these models is that they do 

not integrate the internally generated growth and cycles into a single model. However, the Great 

Recession (2008–2009) and the slowdown in economic activity up until this writing show 

overwhelmingly that economic downturns tend to persist for long after a deep recession. 
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Consequently, they rendered compelling the need for the joint theorization of both economic 

growth and long cycles.  

 

The salient feature of our study is the theorization of the relationship between long cycles cum 

economic growth by exploring their interaction, rather than by examining them in line with the 

conventional traditional dichotomy of neoclassical economics. In recent decades, within the broad 

classical tradition, there are many studies in the direction of a unified model of growth and cycles. 

For example, Glombowski and Krüger (1987), in dealing with various forms of technological 

change, examine their effects on employment, wage share, labor productivity, and capital/output 

ratio. Sato (1985) combines Goodwin’s conceptualization of the labor market dynamics with 

Marx’s schemes of reproduction and discusses the stability and viability of the equilibrium 

properties of his model. Shaikh (1989) focuses on effective demand and attempts a synthesis of 

classical and Keynesian ideas while Shaikh (2016) grapples with other related issues and models 

the unemployment rate in an alternative explanation of the Phillips curve, which he also subjects 

to empirical testing. Semmler (1984), Goodwin (1990), and Flaschel (2008) introduce 

Schumpeter’s ideas on technological change to provide a synthesis in line with the 

Classical/Marxian and Schumpeterian traditions. Sasaki (2013), following post–Keynesian and 

Kaleckian ideas, introduces the effects of capacity utilization and profit share linking capitalists’ 

propensity to invest on the level of employment. It is important to note that most Goodwin type 

models usually downplay the importance of fundamental aspects of the Classical and Marxian 

tradition, such as the law of the falling rate of profit and some other related to that features of 

capital accumulation, and instead place their emphasis on variables like income distribution, 

technology, and investment. However, the treatment of such key variables is derived not through 
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their interactions within the same model but rather as isolated aspects of alternative models. 

Finally, Chatzarakis and Tsaliki (2021) utilize a dynamic system to explore the interaction of the 

organic composition of capital (OCC) and the rate of profit (RoP), and they show that the rise of 

the former leads to the decline of the latter, which sets the system to an overaccumulation mode 

and profitability crisis. 

 

In this article, we develop a model designed to capture the dynamics of economic growth and 

cycles by incorporating into the analysis the interaction of profitability, investment, employment, 

technological change, and capital devaluation. The remainder of the article is structured as follows: 

Section 2 outlines the premises of Marx’s theory of economic growth and formulates them in a 

system of differential equations. Section 3 presents and analyzes, qualitatively and through 

simulations, the interaction of profitability with the four key variables, namely, investment, 

employment, technological change, and devaluation of capital. Finally, section 4 concludes and 

makes some remarks for future research efforts. 

 

 

2. “Stylized Facts” in Marx’s Theory of Economic Growth 

In what follows, our focus is on what we characterize “stylized facts” in Marx’s theory of economic 

growth; that is, the rising OCC and rate of surplus value, which in combination lead to a falling 

RoP. Associated with these are the technological change and rising mechanization, which give rise 

to devaluation of capital, the cyclical movement in the reserve army of labor, and the relationship 

between saving and investment.1 

                                                           
1 For the symbols used in the paper see appendix A.  
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2.1 The dynamics of capital accumulation and profitability 

The definition of OCC is very difficult to operationalize and its details as well as intricacies have 

been analyzed in Shaikh (1990). In order to have a functional definition of the capital intensity or 

a proxy for Marx’s OCC as discussed in the Schemes of Expanded Reproduction (SER) (Capital 

2: 509–514), we employ the following formula: 

𝛾 =
𝐶

𝐶 + 𝑉
 (1) 

where 𝛾 stands for a proxy to OCC, 𝐶 is the constant capital and 𝑉 is the variable capital. In this 

formulation, we essentially normalize the OCC so as its maximum; that is, in the hypothetical case 

in which “workers live on thin air” or the complete mechanization of the labor process, is equal to 

one. In both cases, wages are equal to zero, and the OCC reaches its maximum, is equal to one. 

The idea behind this selection is to help us identify the complex interrelations among the variables 

involved. The OCC increases over time because of competition between capitals, which eventually 

leads to technological change and the displacement of the old by the new capital. The introduction 

of more fixed capital increases the OCC and the productivity of labor, which decreases the average 

cost and makes possible the reduction in price and the expansion of market share for those firms 

that survive the competition. The rising tendency of OCC is a “stylized fact” of what Marx calls 

the “General Law of the Capital Accumulation” which over time is manifested by the rising labor 

productivity and rate of surplus value, both being the result of the increasing mechanization of the 

labor process. 
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The rising OCC is the result of the self–expanded inner nature of capital, which is driven by the 

profit motive. According to Marx “[s]ince the ratio of the mass of surplus value to the value of the 

invested total capital forms the rate of profit, this rate must constantly fall” (Capital 3: 154). This 

is Marx’s “General Law of the Falling Tendency of the Rate of Profit.” which in combination with 

the general law of capital accumulation constitutes the fundamental macroeconomic laws that 

govern a capitalist economy and shape its evolution. We want to stress from the beginning the 

negative effect of the OCC on the RoP. Τhis is the reason why we start with a circulating capital 

model reminiscent of Marx’s SER and the RoP, 𝜋, or rather the profit margin on costs. In this way, 

we can disentangle the interaction of the relevant variables shaping the economy’s movement in 

the very long run. The RoP employed in most empirical studies, including those dealing with long 

cycles, is introduced in the next paragraphs and includes both the profit margin on costs, as well 

as the OCC, 𝛾. Hence, we introduce the RoP on cost, 𝜋, defined as follows: 

𝜋 =
𝑆

𝐶 + 𝑉
=
𝑆

𝑉
(
𝑉

𝐶 + 𝑉
+

𝐶

𝐶 + 𝑉
−

𝐶

𝐶 + 𝑉
) = 𝑒(1 − 𝛾) (2) 

where 𝑆 is the surplus value and 𝑒 = 𝑆 𝑉⁄  is the rate of surplus value. From equation (2) it follows 

that 𝜋 is directly related to 𝑒 and inversely to 𝛾.2 The growth rate of constant capital, 𝑔𝐶, is defined 

as:3  

𝑔𝐶 = 𝐶̂ =
𝐶̇

𝐶
= 𝑠𝐶

𝜋

𝛾
− 𝛿 

                                                           
2 The long–run falling tendency in the RoP can be shown by taking its elasticities with respect to the rate of surplus 

value and OCC. That is, 
𝜕𝜋

𝜕𝑒

𝑒

𝜋
= (1 − 𝛾)

𝑒

𝑒(1−𝛾)
= 1 and  

𝜕𝜋

𝜕𝛾

𝛾

𝜋
= −

𝛾

(1−𝛾)
= −

𝐶

𝑉
, respectively. For 𝐶 > 𝑉, it follows that 

the effect of OCC on profitability is higher than that of the rate of surplus value leading to a long–run falling RoP. 

The same results with respect to elasticities are derived from the definition of the rate of profit as 𝑟 = 𝑆/𝐶 =
(𝑆/𝑌)/(𝐶/𝑌) that we utilize below, where 𝑌 = 𝑆 + 𝑉 (Tsoulfidis 2017). For further discussion and empirical results 

on the evolution of the RoP for the United States and other economies see Shaikh (1992 and 2016), Tsoulfidis and 

Paitaridis (2019), Tsoulfidis and Tsaliki (2014 and 2019). 
3 A hat over a variable denotes its growth rate while a dot denotes its time rate of change; furthermore, we set d𝑡 ≅
∆𝑡 = 1 year.   
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where: 

𝑠𝐶 =
Δ𝐶

𝑆
 (3) 

 

stands for the share of surplus value that potentially can be invested in constant capital. The idea 

for the inclusion of the devaluation rate, 𝛿, is that some money must be set aside to replace the 

fixed capital which gradually loses value. Similarly, the growth rate of variable capital, 𝑔𝑉, is the 

investment in variable capital plus the rate of technological change, 𝜏, thus we have: 

𝑔𝑉 = 𝑉̂ =
𝑉̇

𝑉
= 𝑠𝑉

𝜋

1 − 𝛾
+ 𝜏 

where: 

𝑠𝑉 =
Δ𝑉

𝑆
 (4) 

is the share of surplus value that potentially can be invested in variable capital and it is no different 

than the change in employment; 𝜏 stands for the technological change defined as the rate of change 

in labor productivity.  

 

The two differential equations determine the combined dynamics of the OCC and RoP and form 

the following system of equations that expresses the dynamic interaction between the OCC and 

RoP (for details see appendix B1): 

𝛾 =
𝛾̇

𝛾
= 𝑠𝐶

1 − 𝛾

𝛾
𝜋 − 𝑠𝑉𝜋 − (1 − 𝛾)(𝛿 + 𝜏) 

𝜋̂ =
𝜋̇

𝜋
= 𝑒̂ − 𝑠𝐶𝜋 + 𝑠𝑉

𝛾

1 − 𝛾
𝜋 + 𝛾(𝛿 + 𝜏) 

(5) 
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As long as 𝑠𝐶, 𝛿 and 𝜏 remain positive (to preserve their economic meaning),4 the trajectories of 

system (5) are attracted to a growth path, described by the following equation: 

𝑠𝐶
𝜋

𝛾
− 𝛿 = 𝑠𝑉

𝜋

1 − 𝛾
+ 𝜏 + 𝑒̂ (6) 

According to equation (6) as with Marx’s SER, a constant rate of surplus value (𝑒̂ = 0) results in 

a steady–state growth path quite similar to the Harrodian warranted growth path. However, if 𝑒 

and 𝑠𝑉 change, we end up with three distinct cases:5  

- A rising 𝑒̂, and falling 𝑠𝑉 drive the system to a stationary state equilibrium, where 𝛾∗ = 1 

(full mechanization of the production process) and 𝜋∗ = 0 (zero net investment).  

- Both 𝑒 and 𝑠𝑉 are rising and bringing the OCC to a limit at which the RoP increases without 

bounds and the system is driven further and further away from equilibrium.  

- A negative 𝑒̂ implies an increase in the wage share greater than that of the profit share 

driving the economy to an equilibrium akin to the Smithian “rude stage of society.” where 

there are only self–employed workers and no capital; thus, we have 𝛾∗ = 0 and 𝜋∗ = 0.  

 

The last two cases are in Marx’s list of countertendencies and, as such, their effect evaporates over 

time. In contrast, the first case is fully consistent with the nature of capital, and it has been 

repeatedly empirically long–established for many countries. 

 

                                                           
4 We do not exclude negative technological change as in the "dark ages", although they were not as dark as they are 

habitually thought, at least, concerning technology. Negative technological change is rare (e.g., wars, environmental 

or other disasters). However, these phenomena have been transitory, and the internal logic of capitalism is to expand 

in the long run through technological change, that is, the means to acquire profits as a purpose in itself. 
5 These results are obtained by solving equation (5), where the changes in the sign of 𝑒̂ and 𝑠𝑉  shape the behavior of 

the solutions. Chatzarakis and Tsaliki (2021: 153—157) discuss in more detail these three distinct cases.  
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Marx’s law of the falling tendency of the rate of profit shapes the path not only of capital 

accumulation but also tracks down the conditions of over accumulation and economic crisis 

(Capital 3: 177). Profitability is the variable that regulates the upturns and downturns of the 

capitalist production by providing the motivation for innovative investment and forming the 

material basis for rising workers’ demands for higher wages (Shaikh 2016; Tsoulfidis and Tsaliki 

2019). 

 

The system (5) can be simplified by redefining the rate of profit, 𝑟, to become comparable to the 

usual empirical studies for the estimation of the profit rate maintaining, at the same time, the 

fundamental macroeconomic variables, and their features. Thus, we may write: 

𝑟 =
𝑆

𝛫
=
𝑆/𝜑(𝐶 + 𝑉)

𝜑𝐶/𝜑(𝐶 + 𝑉)
=
𝜋

𝛾𝜑
 (7) 

where 𝐾 = 𝜑 𝐶 the fixed capital and 𝜑 the stocks–over–flows ratio, which is found to be more or 

less constant over time.6 Moreover, 𝜋 captures the short–run analysis found in SER, while 𝑟 is 

designed to capture the long–run movement of capital accumulation. Nevertheless, the 

fundamental properties in the definitions of the rate of profit, 𝜋 and 𝑟, are the same; a rising OCC 

leads to a fall of both 𝜋 and 𝑟; however, this inverse relation is more general and straightforwardly 

expressed in the latter. The dynamics can be described by a reverse logistic equation derived by 

taking the growth rate of equation (7): 

                                                           
6 In fact, we estimated the ratio of capital stock to the intermediate inputs and wages of the US economy from 1995 

to 2009 (source: WIOD 2013) and we found that this ratio does not vary by much (from 4.216 to 4.129) with slight 

fluctuations in the years between, while the results for the period 2000—2014 (WIOD 2016) were quite similar. We 

can therefore safely argue that our 𝜑 symbol pretty much can be assumed as a very slowly changing variable and for 

all practical purposes may be treated parametrically. Consequently, the variables 𝑠𝐶  and 𝑔𝐶  capture, at the same time, 

both the changes in 𝐶 and 𝐾. 
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𝑟̂ = 𝜋̂ − 𝛾 

In combination with the differential equations of system (5), this relation gives:7 

𝑟̂ =
𝑟̇

𝑟
= −(𝑠𝐶 − 𝑠𝑉)𝑟 + (𝛿 + 𝜏 + 𝑒̂) 

 

According to Capital 1, the change in the rate of surplus value, 𝑒̂, is inversely related to 𝑠𝑉.8 The 

idea is that with the progress of capitalism more and more of surplus value is spent on fixed capital 

and, therefore, less remains to be spent on variable capital, and so the share of variable capital 

diminishes as a condition for the rising productivity and falling unit cost of production. 

Consequently, we may rewrite the above equation as: 

𝑟̂ =
𝑟̇

𝑟
= −𝑎1(𝑠𝐶 − 𝑠𝑉)𝑟 + 𝑎2(𝛿 + 𝜏 − 𝑠𝑉) (8) 

where 𝑎1 and 𝑎2 are relatively small positive parameters that help us to scale 𝑟 appropriately. 

Equation (8) holds when 𝑎2 < 𝑎1 ≪ 1, so that the RoP will fall as long as 𝑠𝐶 > 𝑠𝑉 > 0 or 𝑠𝑉 <

0.9 It is worth noting that the term (𝑠𝐶 − 𝑠𝑉)𝑟 measures the difference of the actual investment in 

constant (or fixed) and variable capital, while 𝑠𝑉, 𝛿 and 𝜏 in the second term in parenthesis account 

for the distributional, devaluation and technological effects on profitability, respectively. In that 

way, 𝑎1 and 𝑎2 may be seen as the elasticities of the rate of profit with respect to technological 

and distributional parameters, respectively. 

                                                           
7 See appendix B2 for a detailed proof. 
8 This substitution is the usual practice applied in similar studies. For instance, Glombowski (1983) sets 𝑒̂ = 𝑐0 −
𝑐1𝑠𝑉, where 𝑐0 and 𝑐1 are small positive constants. In our case, we simplify the analysis by setting 𝑒̂ ≈ −𝑠𝑉 and in so 

doing absorb any difference in the scaling by dispending with the parameters 𝑎1 and 𝑎2. 
9 To formulate properly Marx’s argument on accumulation and the falling tendency of the RoP, some further 

conditions must be added on system (5) and subsequently on equation (8). First, 𝑠𝐶 ≥ 0 indicating that the gross capital 

formation is always positive; second, 𝑠𝐶 + 𝑠𝑉 ≤ 1 so that the economy is selfsustained; and third, 𝑠𝐶 > 𝑠𝑉 so that 

capital formation exceeds the rise of employment, which implies the introduction of capital using and labor saving 

techniques. 
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2.2 The reserve army of labor 

The mechanization of the production process leads to a rising OCC and increases the productivity 

of labor, which, in turn, reduces the unit value of commodities. Consequently, the value of 

commodities that workers purchase with their money wage falls and with that the variable capital 

decreases. An additional reason for the reduction in variable capital is the displacement of labor 

by machines and, therefore, the rising unemployment rate. The latter, if measured appropriately, 

displays a slowly rising trend with the progress of capitalism as this can be judged by the neologism 

“jobless growth.” which is a prima facie recognition that employment does not necessarily keep 

pace with economic growth (Katrakilidis and Tsaliki 2008; Alexiou and Tsaliki 2009). Marx argued 

that “it is capitalistic accumulation itself that constantly produces, and produces in the direct ratio 

of its own energy and extent, a relatively redundant population of laborers, i.e., a population of 

greater extent than suffices for the average needs of the self–expansion of capital, and therefore a 

surplus population” (Capital 1: 443), and at the same time “[i]ndependently of the limits of the 

actual increase of population, it creates, for the changing needs of the self–expansion of capital, 

a mass of human material always ready for exploitation” (Capital 1: 444). In other words, the 

accumulation of capital in and of itself gives rise to the formation of the reserve army of labor, 

which, on the one hand, exerts downward pressure on wages and, on the other hand, through the 

mechanization enables the further division of labor, disciplines workers and increases their 

productivity. Hence, lower wages, higher productivity and a more disciplined labor force increase 

profitability and enhance the process of capital accumulation (Botwinick 1993; Tsaliki 2009). 

Similarly, the dynamics of employment are paced by the evolution of OCC and RoP; as we 
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explained above, a falling share of investment in variable capital reflects the incessant 

mechanization of the production process. 

 

Goodwin (1967) was the first to endogenize the dynamics of employment in a simple Harrod–like 

growth framework in an attempt to model the fluctuations of the reserve army of labor and their 

effect on destabilizing the steady–state growth path. In subsequent models (Desai 1973; Semmler 

1984; Glombowski and Krüger 1987; Goodwin 1990; Flaschel 2008), the evolution of employment 

was examined in relation to the wage share, technological change, and capital/output ratio. The 

key idea permeating all the above models is that as profitability rises beyond a certain threshold, 

capital accumulation accelerates and so employment rises and the economy finds itself on its 

upturn phase; the converse will be true, if profitability falls below this threshold. Goodwin 

identified this threshold in the Harrodian “natural” growth rate as the growth rate of employment: 

𝑔𝑛 = 𝑛 + 𝜏 

where, 𝑛, is the growth rate of population and 𝜏  the rate of technological change. As long as the 

“actual” growth rate of capital accumulation: 

𝑔𝐶 = 𝑠𝐶𝑟 − 𝛿 

differs from 𝑔𝑛, the employment diverges from its equilibrium state. 

 

The idea of fluctuating employment trailing the movement in capital accumulation is in the right 

direction. However, most of the literature deals with the fixed effect of technological change on 

productivity and, in so doing, limit the analysis to the distributional aspects and the circulation 

sphere of the economy. Glombowski and Krüger (1987) are in deviation from this literature 

because in their analysis take into account the dynamics of capital–output ratios as well as 
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productivity; in a similar vein, Goodwin (1990) addresses the issue of the diffusion of innovations. 

Nevertheless, a complete picture of the movement in employment or what amounts to the 

“industrial reserve army of labor” should include the dynamics of technological change and the 

way in which it affects profitability. Moreover, it is important to emphasize that the technological 

change in Marxian analysis is capital using and labor saving. Following Goodwin’s (1967) seminal 

work, we stipulate that the movement in employment follows the difference between 𝑔𝐶 from 𝑔𝑛. 

As 𝑠𝑉 by definition (equation (4)) is the share of surplus value invested in variable capital and it is 

no different from the rate of change in employment, the dynamics of employment can be 

represented by the following differential equation (see appendix B3 for the proof): 

𝑠̇𝑉 = 𝑠𝐶𝑟 − 𝛿 − 𝜏 − 𝑛 (9) 

Equation (9) shows that employment increases, whenever profitability is high enough so as to 

ensure that:  

𝑔𝐶 = 𝑠𝐶𝑟 − 𝛿 > 𝜏 + 𝑛 = 𝑔𝑛 

indicating that the growth rate in capital accumulation is greater than the economy’s natural growth 

rate.  

 

In Goodwin’s model, the dynamics of the employment rate combined with those of the wage share 

give rise to the interaction between those two quantities in a manner similar to the prey–predator 

scheme; that is, employment “predates” on wages generating a cyclical movement of the two 

variables. However, this model relies on Harrodian growth theory, which eventually veils the fact 

that the driving force of cycles is the accumulation of capital. From a short–run perspective, 

Goodwin’s model is proved quite effective in describing the cyclical nature of capitalist dynamics. 

However, if the time span is long enough the immanent “laws of motion” of capitalist dynamics 
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shaped by the interplay of profitability and growth should be accounted for. The reason is that as 

Marx explains “… the rise of wages therefore is confined within limits that not only leave intact 

the foundations of the capitalistic system, but also secure its reproduction on a progressive scale” 

(Capital 1: 537). This is equivalent to saying that the wage share is a dependent variable while 

profitability and growth are the independent ones; that is, the variables that set in motion the course 

of the entire system. From the above it follows that the evolution of the wage share can always be 

estimated from the movement of the independent variables of the system, that is, profitability and 

growth.  

 

2.3 Saving, investment and capital accumulation 

Marx does not have a fully developed theory of effective demand; he does not even raise the 

question except for some hints, here and there, especially in the schemes of reproduction (Capital 

2). However, his analysis contains the required elements to develop such a theory of effective 

demand; in particular, by setting the conditions for balanced growth in his SER (Capital 2), where 

aggregate demand and supply are put into action by the following equilibrium conditions: 

𝐶I + 𝑉I + 𝑆I⏟        
aggregate supply

= 𝐶I + ∆𝐶I + 𝐶II + ∆𝐶II⏟            
aggregate demand

 

where subscripts denote the two Departments and ∆𝐶 the formation of new capital (for details see 

Trigg 2006: chs. 3 and 5; Tsoulfidis and Tsaliki 2019: ch. 2). This equilibrium condition is rarely 

met at any particular time, since surplus value is not always and automatically capitalized. 

Following the pace of capital accumulation, surplus value is either invested, when the prospects 

for profits are promising, and in so doing, enhances the production of new surplus value, or it is 

hoarded leaking out of the circuit of capital; thereby, diminishing the potential for the creation of 

new surplus value. Thus, in modeling economic growth one should take into consideration that 
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profits and, by extent, savings are not automatically invested, as in Say’s law, or through variation 

in interest rate, as in neoclassical economics. Savings through hoarding may lead to a mismatch 

between aggregate demand and supply potentially triggering an economic crisis. 

 

We hypothesize that investment depends on the availability of new techniques, 𝜏, so that the units 

of capital adopting them manage to enhance productivity of labor, to reduce unit costs making 

possible through the undercutting of price, to eliminate competitors and expand their market share 

rendering credible the anticipations for higher profitability. On the other hand, hoarding is related 

to the cost of investing in variable capital, 𝑠𝑉𝑟, which is the share of profits invested in wages. The 

following differential equation describes this relation: 

𝑠𝐶̂ =
𝑠̇𝐶
𝑠𝐶
= (𝜏 − 𝑠𝑉𝑟) (10) 

according to which so long as 𝑠𝑉𝑟 > 𝜏, that is, the cost of investing in variable capital exceeds the 

improvements in productivity and reductions in unit costs associated with the technological 

change, 𝜏, there is no motivation whatsoever to invest in new techniques and thus hoarding 

becomes the next best available option. In contrast, when 𝜏 > 𝑠𝑉𝑟, labor saving techniques are 

available and investment in fixed capital increases. 

 

2.4 Devaluation of capital 

According to Marx, the speed and intensity of capital devaluation depend on the productivity of 

labor, which is induced by technological change (Capital 3: 83). When capital accumulation 

increases to an extent that threatens the reproduction of the entire system, the stock of capital is 

disposed of and, if possible, replaced; that is, capital devaluates rapidly and massively. The 

fixation of the rate of depreciation does not fully account for the extent of the devaluation of capital 
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dependent upon technological change and its diffusion throughout the economy. As the OCC rises 

at a rate superseding that of the rising rate of surplus value and the RoP falls, the economy enters 

a downturn phase, and capitalists, upon extinction, are forced to “choose” new and more efficient 

techniques of production. Consequently, the devaluation and replacement of the old capital takes 

place sooner than expected according to its nominal or accounting rate of depreciation. The idea 

is that so long as the economy is growing, there is no pressing need on businesses for the 

introduction of new innovations. In the downturn of economic activity, where businesses are facing 

more challenging issues and their sheer survival might be at stake, the pressure to innovate 

increases to the point that it becomes compelling. This feature is stressed particularly by 

Kondratiev (1926: 39–42) but also by Schumpeter’s (1942: ch. 8) “swarm of innovations” which 

are introduced, by and large, in the depressionary stage of the economy and by so doing become 

the fuel in the engine of economic growth. On the other hand, Gordon’s (1980) “social structure 

accumulation” integrate the reorganization of the labor process to the newly created requirements 

for the accumulation of capital and lasting economic growth. According to Schumpeter (1939: 

169–172), the length of each cycle depends on the type and relative importance of the innovations; 

hence the innovations that change drastically the infrastructure, equipment and organization of the 

labor process are related to the Kondratiev long cycles. The empirical evidence with respect to 

basic innovations lends support to the view that they come in swarms during the depressionary 

state of the long cycle of the economy (Kleinknecht 2016; Tsoulfidis and Papageorgiou 2019). It 

is important to stress that Marx is among the very few economists who paid particular attention to 

the devaluation of capital as a basic feature of the reorganization of the production process and 

reduction of unit cost induced by technological change. 
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From the above it follows that a growth model should be designed in a way such that to account 

for the trajectory of capital devaluation during the long cycle with two distinct components. The 

first refers to the ordinary process of devaluation over time and it can be depicted by a linear trend 

𝑏0. The second or specific component refers to the devaluation of capital that depends on the phase 

of capital accumulation. If the threshold growth rate, 𝑔𝑤, falls short of the 𝑠𝑐𝑟, (𝑔𝑤 < 𝑠𝑐𝑟) the 

devaluation rate decreases while the economy keeps growing in its upturn phase during which the 

motivation to innovate is relatively weak. The converse is true when, 𝑔𝑤 > 𝑠𝑐𝑟; the economy 

enters in its recessionary stage making imperative the introduction of innovations which accelerate 

the process of capital devaluation. Innovations are introduced massively in this stage because the 

risk involved in them is lower than the risk of default. The threshold 𝑔𝑤 is akin to Harrod’s 

“warranted” growth rate according to which aggregate demand equals aggregate supply and the 

utilization of capacity is therefore at its normal level, a hypothesis consistent with Marx’s analysis 

of Capital 3 (pp. 189–190). The following differential equation is designed to capture these 

developments: 

𝛿̇ = 𝑏0 + 𝛿(𝑔𝑤 − 𝑠𝑐𝑟) (11) 

In other words, equation (11) describes the way in which technological change is introduced 

through the rate of capital accumulation and the concomitant devaluation. If 𝑠𝑐𝑟 is relatively low, 

the devaluation of capital increases setting the stage for a new phase of capital accumulation to 

begin. The latter, by and large, is associated with the introduction of labor–saving techniques, 

which lower the per unit cost of production, increase productivity and eventually increase the RoP 

paving the way for a new rising phase of capital accumulation. 
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2.5 Technological change and mechanization of production process 

Marx’s view on innovation and technological change is based on profit seeking capitals, whose 

competition with each other drives them to introduce new capital–intensive techniques that lead to 

rising mechanization of production and labor process, increase in productivity and decreasing costs 

and eventually in lower prices. Mechanization is the way through which the units of capital survive 

in real competition and, in general, it is a built–in mechanism characterizing the capitalist mode of 

production.10 Furthermore, profitability is the motive behind mechanization, not the innovative 

spirit of heroic entrepreneurs, and shapes both the cyclical but upward trending path of capital 

accumulation and the reserve army of labor (Tsaliki 2006). The two cycles are intertwined because 

of the introduction of labor–saving techniques. Higher investment in the prospect of higher 

profitability accelerates the devaluation of current capital and forces the adoption of new labor–

saving techniques that lead to a rising reserve army of labor; eventually, profitability will increase, 

and the necessary conditions for a new phase of accumulation will be in place. 

 

Having made the profit rate our key economic variable, we can explain the dynamics of capital 

accumulation as well as the movement of the other related variables. Starting by hypothesizing the 

economy in crisis, where the RoP is too low and many firms are in the brink of default, the 

devaluation rate 𝛿 exceeds a threshold and massive technological changes take place (𝜏̇ > 0) until 

the attainment of a maximum. The accelerated devaluation of capital enhances profitability and, 

in so doing, accelerates investment setting up the stage for a new phase of capital accumulation. 

                                                           
10 We do not exclude cases where business schemes with active workers’ participation may improve efficiency. A 

referee pointed the example of Mondragon in Spain, a workers’ cooperative with an extremely good performance 

record showing that people and not machines (alone) may make the difference in the competitive struggle for survival. 

Today at least twelve percent of world population is employed in one of the three million cooperatives 

https://www.ica.coop/en/cooperatives/facts–and-figures. However, we must note that this form of workers 

organization faces too many challenges, which make their further expansion quite difficult.  

https://www.ica.coop/en/cooperatives/facts-and-figures
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Tsoulfidis and Papageorgiou (2019), by utilizing actual data of the number of basic innovations in 

a long cycle framework have shown that a logistic curve describes quite accurately the process of 

technological change, which is more intense during the depressionary stage of the long cycle and 

so is the devaluation of capital. The proposed Error Function (Erf), introduced in the following 

differential equation, purports to model this expected and empirically ascertained regularity: 

𝜏̇ = 𝑏1Erf(𝛿 − 𝑏2) (12) 

where 𝑏2 is the threshold and 𝑏1 is a small positive constant (reaction coefficient) that help us scale 

appropriately the equation whose behavior is depicted in figure 1.  

 

 

Figure 1: The Error Function of equation (12) 

 

In figure 1, we observe that so long as 𝛿 < 𝑏2, the pace of introduction of technological change is 

in the negative area and following the discussion in section 2.1, we arrive at a stage of stagnant 

productivity. So long as 𝛿 > 𝑏2, the pace of introduction of technological change becomes positive 

and signifies rising productivity. It goes without saying that if 𝛿 = 𝑏2, then we have a constant 𝜏, 

which takes us to the usual assumptions of the standard growth models, which hypothesize both 

constant rate of devaluation as well as of technological change. Moreover, from figure 1, we 
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observe that −𝑏1 < 𝜏̇ < 𝑏1, which is another way to say that technological change is bounded 

between two limits; that is, the lower and upper asymptotes of the error function, which are 

reflected to each other and both are related to the point of overaccumulation. Consequently, the 

size of 𝑏1 defines the amplitude of technological change in the sense that the higher its value the 

higher the potential of an economy to enter into a new growth path through the introduction of 

technological change.   

 

3. Modelling the Growth Path 

For the sake of simplicity, we present our growth model in three steps. Specifically, the first step 

deals with the interactions of investment and employment with profitability, while the second step 

continues with the interplay of technological progress and devaluation of capital with profitability; 

the third and final step integrates the effects of all the aforementioned variables into a single growth 

and cycle model. In so doing, we trace the equilibrium solution of the three models, and we study 

their behavior illustrated with simulations along with the trajectories of the growth rates of both 

variable and constant capital. 

 

3.1 First model: investment, employment and profitability 

The first model consists of equations (8), (9) and (10). Setting their derivatives equal to zero (𝑟̇ =

𝑠̇𝐶 = 𝑠̇𝑉 = 0) and for 𝑛 = 0.015, 𝛿 = 0.05 and 𝜏 = 0.02, we estimate the equilibrium point: 

{
  
 

  
 𝑟∗ =

𝑎2𝜏

𝑎1(𝑛 + 𝛿) − 𝑎2(𝛿 + 𝜏)
=

0.02𝑎2
0.065𝑎1 − 0.07𝑎2

𝑠𝐶
∗ =

𝑎1(𝑛 + 𝛿) − 𝑎2(𝛿 + 𝜏)

𝑎2

𝑛 + 𝛿 + 𝜏

𝜏
= 0.27625

𝑎1
𝑎2
− 0.2975

𝑠𝑉
∗ =

𝑎1(𝑛 + 𝛿) − 𝑎2(𝛿 + 𝜏)

𝑎2
= 0.065

𝑎1
𝑎2
− 0.07

}
  
 

  
 

 (13) 
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where * indicates the equilibrium value of the respective variable. For 𝑎1 = 0.04 and 𝑎2 = 0.01,11 

the coordinates of the equilibrium point are:  

{𝑟∗ = 0.1053 , 𝑠𝐶
∗ = 0.8075 , 𝑠𝑉

∗ = 0.19 } 

Hence, the variables under investigation take on values within a reasonable range, since 𝑟∗ < 1 

and 𝑠𝐶
∗ + 𝑠𝑉

∗ ≤ 1 indicating that investment cannot exceed surplus value in the long run.  

 

By linearizing equations (8), (9) and (10) in the neighborhood of equilibrium,12 we arrive at the 

following system of equation written in matrix form: 

[
Δ𝑟̇
Δ𝑠𝐶̇

Δ𝑠𝑉̇
] =

[
 
 
 
 
 
−𝑎1(𝑛 + 𝛿) 𝑗12 𝑗13

−
𝑛 + 𝜏 + 𝛿

𝜏 𝑗32
2 0 −(𝑛 + 𝜏 + 𝛿)

𝑛 + 𝜏 + 𝛿

𝜏 𝑗32
𝑗32 0

]
 
 
 
 
 

[
Δ𝑟
Δ𝑠𝐶
Δ𝑠𝑉

] 

where: 

𝑗12 = −
𝑎1𝑎2

2𝜏2

(𝑎1(𝑛 + 𝛿) − 𝑎2(𝜏 + 𝛿))
2  

         
   
𝑗
13
=
𝑎1𝑎2

2𝜏2 + 𝑎2
2𝜏(𝑎1(𝑛 + 𝛿) − 𝑎2(𝜏 + 𝛿))

(𝑎1(𝑛 + 𝛿) − 𝑎2(𝜏 + 𝛿))
2  

                                                           
11 The values of 𝑛, 𝛿 and 𝜏 are taken from the available in the literature statistical values (for details see Sasaki 2013). 

The parameters 𝑎1 and 𝑎2 are used for scaling the values of our variables and their possible change in these parameters 

results in a slight relocation of the equilibrium point without affecting qualitatively the behavior of the system. If, 

however, the condition 𝑎2 < 𝑎1 ≪ 1 is not fulfilled, the behavior of the system would change dramatically and it will 

impose results, such as 𝑠𝐶 > 1 and 𝑠𝑉 > 1, which indicate a no self—sustained economy in the long run. 
12 According to the theory of dynamical systems, small linear perturbations around an equilibrium point provide 

information about the local stability properties of the system. The eigenvalues of the linearized system are the time 

exponents of a linearized solution in the vicinity of the equilibrium. A negative real part of the eigenvalues means 

attraction towards the equilibrium, a positive real part of the eigenvalues denotes repellence, while the presence of an 

imaginary part indicates oscillatory behavior; the respective eigenvectors denote the direction of attraction or 

repellence towards equilibrium according to the sign of the real part of the eigenvalue. Moreover, the real part of the 

eigenvalue indicates the pace of attraction, while the imaginary part measures the period of oscillations in the vicinity 

of equilibrium (see Verhulst 2000). 
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𝑗32 =
𝑎2𝜏

𝑎1(𝑛 + 𝛿) − 𝑎2(𝜏 + 𝛿)
 

 

The characteristic polynomial of the above linearized system is: 

𝜆3 + 𝑎1(𝑛 + 𝛿)𝜆
2 − (𝑛 + 𝜏 + 𝛿)((𝑎1𝜏 + 𝑎2) −

𝑎2(1 − 𝑎1)𝜏

𝑎1(𝑛 + 𝛿) − 𝑎2(𝜏 + 𝛿)
) 𝜆 + 𝑎2𝜏(𝑛 + 𝜏 + 𝛿) = 0 

whose solutions, by the use of the Routh–Hurwitz criterion, are proved to have negative real parts 

provided that 𝑎1(𝑛 + 𝛿) > 0 and 𝑎2𝜏(𝑛 + 𝜏 + 𝛿) > 0, both of which are true for economically 

meaningful values of 𝑎1, 𝑎2, 𝑛, 𝜏 and 𝛿, and: 

(1 − 𝑎1)𝑎2𝜏

(𝑎1𝜏 + 𝑎2)(𝑎1(𝑛 + 𝛿) − 𝑎2(𝜏 + 𝛿))
> 1 

The latter can be true if and only if 𝑎1 > 𝑎2 and given that 𝛿 > 𝑛 > 𝜏 as is usually set. Thus, the 

equilibrium point is stable for the above defined economically meaningful values of the 

parameters. 

 

For the values of the parameters given above, the system provides one real and two complex 

conjugate eigenvalues, whose real parts are negative, deeming the equilibrium a stable node–focus. 

The real eigenvalue is 𝜆1 = −0.0022 whose eigenvector is 𝑣⃗1 = {−0.1258, 0.9595, 0.252} and 

represents the monotonically attracting direction towards equilibrium. The complex conjugate 

eigenvalues are 𝜆2 = −0.00019 + 0.0876ⅈ and 𝜆3 = −0.00019 − 0.0876ⅈ whose respective 

eigenvectors are 𝑣⃗2 = {−0.0032 − 0.0123ⅈ,   0.023 + 0.6933ⅈ,   0.7202 } and 𝑣⃗3 = {−0.0032 +

0.0123ⅈ,   0.023  − 0.6933ⅈ, 0.7202} and define an attracting surface; due to imaginary parts of 

𝜆2 and 𝜆3, the attracting surface displays oscillating behavior.13 

                                                           
13 Since one of the eigenvalues is real and negative, there is a direction of monotonic attraction towards the equilibrium 

point, denoting the behavior of a “stable node.” The two complex eigenvalues with negative real parts denote damping 
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The real eigenvalue, 𝜆1, indicates the presence of a unique trajectory monotonically attracted 

towards the equilibrium point. This trajectory can be traced by solving equations (9) and (10) for 

𝑠̇𝐶 = 𝑠̇𝑉 = 0 with respect to 𝑟. That is: 

𝑟 =
𝑛 + 𝛿 + 𝜏

𝑠𝐶
=
0.085

𝑠𝐶
 

and: 

𝑟 =
𝜏

𝑠𝑉
=
0.02

𝑠𝑉
 

 

From the above, it follows that there is an inverse relationship between the rate of profit and the 

share of surplus value invested in constant (fixed) and variable capital, which must be fulfilled in 

order to attain the equilibrium point. The trajectory of this relationship is structurally unstable, and 

the system oscillates until the attainment of its equilibrium point. The reason is that the 

linearization of the system of equations (8), (9) and (10) gives eigenvalues two of which are 

imaginary driving the solution to oscillate around the trajectory. The system can move along the 

trajectory only when the following conditions hold: 

𝑟 =
𝑛 + 𝛿 + 𝜏

𝑠𝐶
=
𝜏

𝑠𝑉
 (14) 

That is, 𝑠𝐶 and 𝑠𝑉 must change accordingly so that equation (14) holds. The conditions described 

in equation (14) coincide with Harrod’s “knife–edge” equilibrium (Harrod 1939) and with Marx’s 

balanced growth conditions derived from the SER (Capital 2). The instability of this balanced 

                                                           
oscillations on surfaces orthogonal to this attracting direction, that is, characteristic of a “stable focus” (see Verhulst 

2000). Such an equilibrium is called “stable node—focus.” as it combines the two results. It is worth noting that the 

attraction is expected to be slow, as the magnitudes of the eigenvalues are generally small for the range of economically 

meaningful values of the parameters; hence, the system will stabilize after many oscillations. 
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growth path reflects also Domar’s “disinvestment problem” (Domar 1948) as well as Luxemburg’s 

(1913) together with Grossman’s (1929) earlier analyses on the long–run stability of equilibrium.14 

 

In figure 2, the grey arrows denote the vector field of the system, the blue, orange, and green curves 

denote different solutions, the black curve denotes the unstable “steady–state” trajectory (equation 

(14)) and the red point stands for the equilibrium point. The trajectories of the system for randomly 

chosen various initial conditions of 𝑟, 𝑠𝐶 and 𝑠𝑉 oscillate while maintaining a certain long–run 

trend (the black solid line) towards equilibrium (red point) at the end of the skewed cone that 

stands for the falling tendency of the RoP. Moreover, the period of oscillations, although differs 

slightly depending on the initial conditions, is very specific; as obtained from the simulations, the 

average number of steps required for each full cycle is about 40 and each step we may set it equal 

to one year. A time period consistent with Kondratiev’s long cycles and what historically has been 

observed for the United States and other major economies (Shaikh 1992 and 2016; Tsoulfidis and 

Papageorgiou 2019; Tsoulfidis and Tsaliki 2019).15 

                                                           
14 It is interesting to note that to the extent this relation holds (and contains the equilibrium point), the RoP may 

decrease, but it never reaches zero, unless 𝑠𝐶  and 𝑠𝑉 explode to infinity, or the parameters 𝑛, 𝛿 and 𝜏 are set to zero. 
15 The amplitude (range) but not the period of oscillations is affected by slight changes in the values of parameters 

while the period of oscillations remains fast. It is worth noticing that for the cycles near the equilibrium point, their 

period can be obtained from the imaginary part of the eigenvalues, ⅈ, as follows 2𝜋/ⅈ; however, if the initial conditions 

are distant from the equilibrium, as in our case, the length of the cycle is measured approximately by the period of the 

simulations. 



26 
 

 

 

Figure 2: The phase space of equations (8), (9) and (10) 

 

In figure 3, we present the simulated time series of 𝑠𝐶, 𝑠𝑉 and 𝑟 for three hundred years (steps), 

where the approximate 40–year cycles are clearly observed. 

 

 

Figure 3: Time series for 𝑠𝐶, 𝑠𝑉 and 𝑟 derived from numerical integrations (simulations) of  

                 equations (8), (9) and (10) utilizing different initial conditions 
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Furthermore, in figure 3, we present three different cases with different initial conditions for each 

variable so as to show that their evolution remains the same. The trend in 𝑠𝐶 is rising indicating 

that the mechanization increases the intensification of the labor process, the 𝑠𝑉 oscillates reflecting 

the circular nature of the reserve army of unemployed while the evolution of 𝑟 is as one would 

expect from the law of the long–run falling RoP.16 

 

It is interesting to note that investment and employment oscillate around the falling trajectory of 

the RoP. For a constant RoP, equations (9) and (10) constitute a dynamical system for 𝑠𝐶 and 𝑠𝑉 

whose equilibrium point is given by equation (14) and the solutions are counterclockwise 

oscillations around it, as stated by the lower–right 2 × 2 submatrix of the Jacobian. These 

oscillations indicate cycles where investment “leads.” hence an increase (decrease) in investment 

leads to an increase (decrease) in employment. Following Goodwin (1967), several studies explore 

the presence of such cycles (e.g., Flaschel, Franke, and Semmler 2007; von Armin, and Barrales 

2015; Setterfield 2021) whose periods are found to be less than twenty years. The difference in the 

length of our cycles may be attributed to the choice of the “investment function” in equation (10), 

which is related to the availability of new techniques and the drastic change in both the 

mechanization and organization of the labor process, rather than to changes in the expectations of 

the investors (Schumpeter 1939).  

 

                                                           
16 The simulations were carried out with the use of Mathematica programming language and the initial conditions as 

well as the code to reproduce the trajectories of variables are available on request. 
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3.2 Second model: technology, devaluation and profitability 

Equations (8), (11) and (12) for 𝑔𝑤 = 0.03, 𝑏2 = 0.05 and 𝑠𝐶 = 0.5 form a dynamical system that 

describes the interaction of technological change, devaluation of capital and profitability.17 Setting 

the time derivatives on the left–hand side of the above equations equal to zero (𝑟̇ = 𝜏̇ = 𝛿̇ = 0), 

we estimate the unique equilibrium point, which is:  

{
 
 

 
 𝑟∗ =

𝑏0 + 𝑏2𝑔𝑤
𝑏2𝑠𝐶

= 0.06 + 40𝑏0

𝜏∗ =
𝑎1
𝑎2

(𝑏0 + 𝑏2𝑔𝑤)(𝑠𝐶 − 𝑠𝑉)

𝑏2𝑠𝐶
− 𝑏2 − 𝑠𝑉 =

𝑎1
𝑎2
(0.06 + 40𝑏0)(0.5 − 𝑠𝑉) − 0.05 − 𝑠𝑉

𝛿∗ = 𝑏2 = 0.05 }
 
 

 
 

 (15) 

For 𝑎1 = 0.04, 𝑎2 = 0.01 and 𝑏0 = 0.004,
18 the coordinates of the equilibrium point are:  

{𝑟∗ = 0.22 , 𝜏∗ = 0.39  − 1.88𝑠𝑉 , 𝛿∗ = 0.05 } 

From the above, we observe that 𝜏∗ is a function of 𝑠𝑉, that is, it depends on the portion of surplus 

value invested on variable capital. Interestingly, if 𝑠𝑉 < 𝑠𝐶
𝑎1𝑏0+𝑏2(𝑎1𝑔𝑤−𝑎2𝑏2)

𝑎1𝑏0+𝑎1𝑏2𝑔𝑤+𝑎2𝑏2𝑠𝐶
= 0.208, then 𝜏∗ >

0.19 Hence, the condition of 𝑠𝑉 < 0.208 forms an upper boundary beyond which technological 

change is no longer labor saving.   

 

Subsequently, we linearize the system in the neighborhood of the equilibrium point (see relation 

15) and we get: 

 

                                                           
17 The value of 𝑔𝑤 is chosen so as to be in line with the available econometric evidence (Bergeaud, Cette, and Lecat 

2015), while 𝑏2 takes on the usual values employed in growth models (see footnote 9 concerning  𝛿). Finally, 𝑠𝐶 =
0.5 is in line with the results (on an average) reported in the previous section. Suffice it to say that the overall behavior 

of the model is robust to variations in the parameters.  
18 For the numerical values of parameters 𝑎1 and 𝑎2, see footnote 9. The parameter 𝑏0 denotes the intertemporal trend 

of devaluation of capital, which is slow. Our experimentations with slightly different values of  𝑏0 resulted in a similar 

overall behavior of the system. 
19 For different values of 𝑠𝑉 (= 0.1, 0 and − 0.1) the 𝜏∗ takes on values (= 0.266, 0.47 and 0.674, respectively) 
lower than one, indicating that the growth rate of labor productivity remains within reasonable rates.  
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[
Δ𝑟̇
Δ𝜏̇
Δ𝛿̇

] =

[
 
 
 
 
 
 

⁠

−
𝑎1(𝑏0 + 𝑏2𝑔𝑤)(𝑠𝐶 − 𝑠𝑉)

𝑏2𝑠𝐶

𝑎2(𝑏0 + 𝑏2𝑔𝑤)

𝑏2𝑠𝐶

𝑎2(𝑏0 + 𝑏2𝑔𝑤)

𝑏2𝑠𝐶

0 0
2𝑏1

√𝜋

−𝑏2𝑠𝐶 0 −
𝑏0
𝑏2 ]

 
 
 
 
 
 

[
Δ𝑟
Δ𝜏
Δ𝛿
] 

from which we get one real and two complex conjugate eigenvalues. From the characteristic 

polynomial: 

𝜆3 + (
𝑏0
𝑏2
+
𝑎1(𝑏0 + 𝑏2𝑔𝑤)

𝑏2𝑠𝐶
)𝜆2 + (𝑎2 −

𝑎1𝑏0
𝑏2

𝑠𝐶 − 𝑠𝑉
𝑠𝐶

) (𝑏0 − 𝑏2𝑔𝑤)𝜆 +
2

√𝜋
𝑎2𝑏1(𝑏0 + 𝑏2𝑔𝑤) = 0 

and applying the Routh–Hurwitz stability criterion, we notice that all three eigenvalues have 

negative real parts, hence the equilibrium point is stable, when 𝑠𝐶 > 𝑠𝑉, which is assumed to be 

always true, and: 

𝑏1 <
√𝜋

2
(1 −

𝑎1𝑏0
𝑎2𝑏2

𝑠𝐶 − 𝑠𝑉
𝑠𝐶

) 

which is not necessarily true for all possible value of 𝑎1, 𝑎2, 𝑏0 and 𝑏2. Specifically, the real 

eigenvalue is always negative, denoting the existence of a monotonically attracting direction, while 

the sign of the real parts of the complex eigenvalues alternates. For the values of the parameters 

given above, the real part of the complex eigenvalues is negative when 𝑏1 < 0.009, hence the 

system converges to equilibrium via dampening oscillations (as in figure 4), and it is positive when 

𝑏1 > 0.009, so the solutions diverge from the equilibrium via increasing oscillations (as in figure 

6). It is worth noting that changes in 𝑠𝑉 do not affect the eigenvalues and, therefore, the behavior 

of the system. In table 1, we illustrate the above by experimenting with different values for 𝑠𝑉 and 

𝑏1. 
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Table 1: Properties of the equilibrium point  

 

 

Parameters values Eigenvalues Characterization20 

 

For 𝒃𝟏 < 0.009, stable equilibrium 

𝑏1 = 0.004 and 𝑠𝑉 = 0.1 

𝜆1 = −0.8126 

𝜆2 = −0.0113 + 0.1231ⅈ 

𝜆3 = −0.0113 − 0.1231ⅈ 

Stable node–focus 

𝑏1 = 0.004 and 𝑠𝑉 = 0 

𝜆1 = −0.8127 

𝜆2 = −0.0156 + 0.1226ⅈ 

𝜆3 = −0.0156 − 0.1226ⅈ 

Stable node–focus 

𝑏1 = 0.004 and 𝑠𝑉 = −0.1 

𝜆1 = −0.8129 

𝜆2 = −0.0199 + 0.1219ⅈ 

𝜆3 = −0.0199 − 0.1219ⅈ 

Stable node–focus 

 

For 𝒃𝟏 = 𝟎. 𝟎𝟎𝟗, degenerate equilibrium 

𝑏1 = 0.009 and 𝑠𝑉 = 0.1 

𝜆1 = −0.8349 

𝜆2 = 0.1829ⅈ 

𝜆3 = −0.1829ⅈ 

Degenerate node–focus 

𝑏1 = 0.009 and 𝑠𝑉 = 0 

𝜆1 = −0.8353 

𝜆2 = 0.1828ⅈ 

𝜆3 = −0.1828ⅈ 

Degenerate node–focus 

𝑏1 = 0.009 and  𝑠𝑉 = −0.1 

𝜆1 = −0.8357 

𝜆2 = 0.1826ⅈ 

𝜆3 = −0.1826ⅈ 

Degenerate node–focus 

 

For 𝒃𝟏 > 0.009, unstable equilibrium 

𝑏1 = 0.01 and 𝑠𝑉 = 0.1 

𝜆1 = −0.8392 

𝜆2 = 0.00198  + 0.1923ⅈ 

𝜆3 = 0.00198 − 0.1923ⅈ 

Generalized saddle 

𝑏1 = 0.01 and 𝑠𝑉 = 0 

𝜆1 = −0.8396 

𝜆2 = 0.00223 + 0.1922ⅈ 

𝜆3 = 0.00223 − 0.1922ⅈ 

Generalized saddle 

𝑏1 = 0.01 and 𝑠𝑉 = −0.1 

𝜆1 = −0.8399 

𝜆2 = 0.00643  + 0.1921ⅈ 

𝜆3 = 0.00643 − 0.1921ⅈ 

Generalized saddle 

                                                           
20 For the definition of “stable node—foci” see footnote 10. “Saddles” are equilibrium points combining both stable 

and unstable characteristics. In this sense, any equilibrium with both attracting and repelling directions is characterized 

as a “saddle.” If some of these directions are associated with oscillations (e.g., a monotonic attraction or repellence 

along one direction combined with increasing or dampening oscillations orthogonal to it), then the equilibrium is 

known as a “generalized saddle.” 
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The phase space of equations (8), (11) and (12) for b1 = 0.004 is depicted in figure 4 

 

 

 

Figure 4: The phase space of equations (8), (11) and (12) for 𝑏1 = 0.004. 

 

In figure 4, the grey arrows denote the vector field of the system, that is, the direction of their 

trajectories; the blue, orange, and green curves denote the trajectories of the system for different 

initial conditions –chosen randomly; the red point stands for the equilibrium point of the system. 

We observe that all solutions converge to equilibrium following oscillating paths.  
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In figure 5, we present the simulated time series of 𝜏, δ and 𝑟 in four hundred steps or years. Given 

the eigenvalues in table 1, we estimate that the dampening oscillations display a period of 
2𝜋

0.123
≈

51 years.  

 

 

Figure 5: Time series for 𝜏, 𝛿 and 𝑟 derived from simulations of equations (8), (11) and (12) for 

different initial conditions and 𝑏1 = 0.004. 

 

The dampening oscillations are explained by the low value of 𝑏1. In subsection 2.5, we argued that 

the phase of capital accumulation is confined between 𝑏1 and −𝑏1 reflecting the maximum positive 

and negative, respectively, pace of technological change approximating its asymptotes; hence, a 

low 𝑏1 = 0.004 indicates a low rate of introduction of new techniques in the production process 

and thus a slower rate of capital accumulation which fails to restart the economy. Thus, the 

amplitude of the cycle reduces and eventually dies out. 

 

A more interesting case appears when the value of 𝑏1 increases so long as the equilibrium becomes 

unstable (see table 1). In this case, the asymptotic stability analysis followed so far is insufficient 

to undress the dynamics of the system, as the nonlinearities –especially those born by the Error 

function in equation (12)– become significant. More specifically, when the equilibrium shifts from 

stable to unstable while the solutions oscillate around it, an Andronov–Hopf bifurcation occurs 
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and it is manifested in a closed periodic solution around the equilibrium point, known as a “limit 

cycle” (Verhulst 2000). The existence of a “limit cycle” can be proved by means of the generalized 

Bendixson’s criterion (Li and Muldowney 1993), according to which the infinima of:  

𝑋 =
𝜕𝑟̇

𝜕𝑟
+
𝜕𝜏̇

𝜕𝜏
+ |
𝜕𝑟̇

𝜕𝜏
| + |

𝜕𝑟̇

𝜕𝛿
| + |

𝜕𝜏̇

𝜕𝑟
| + |

𝜕𝜏̇

𝜕𝛿
| 

𝑌 =
𝜕𝑟̇

𝜕𝑟
+
𝜕𝛿̇

𝜕𝛿
+ |
𝜕𝑟̇

𝜕𝜏
| + |

𝜕𝑟̇

𝜕𝛿
| + |

𝜕𝛿̇

𝜕𝑟
| + |

𝜕𝛿̇

𝜕𝜏
| 

𝑍 =
𝜕𝜏̇

𝜕𝜏
+
𝜕𝛿̇

𝜕𝛿
+ |
𝜕𝜏̇

𝜕𝑟
| + |

𝜕𝜏̇

𝜕𝛿
| + |

𝜕𝛿̇

𝜕𝑟
| + |

𝜕𝛿̇

𝜕𝜏
| 

must be positive (essentially, the minimum of 𝑋, 𝑌 and 𝑍 with respect to the parameters must be 

positive).21 It is proved that when: 

𝑏1 >
√𝜋

2 − 𝑠𝐶√𝜋

𝑏0
𝑏2
  (16) 

the above stated criterion for positive infinima of 𝑋, 𝑌 and 𝑍 holds; this inequality depends solely 

on the values of 𝑏1 so long as 𝑠𝐶 <
2
√𝜋
⁄  and all other parameters (except for 𝑠𝑉) are positive. 

Subsequently, the solutions of the system converge to a “limit cycle.” which can be traced via 

simulations of the system for several initial conditions as illustrated in figure 6. 

 

                                                           
21 Usually, the existence of a “limit cycle” is proved by means of the Poincaré—Bendixson theorem, according to 

which we must consider the sign of the divergence of the dynamical system 

∇⃗⃗⃗𝑓 =
𝜕𝑟̇

𝜕𝑟
+
𝜕𝜏̇

𝜕𝜏
+
𝜕𝛿̇

𝜕𝛿
 

If this divergence is positive, the system is explosive (hence, solutions diverge); if it is negative, the system is 

dissipative (hence, solutions converge); whenever the divergence alternates sign, the behavior of the system changes 

from explosive to dissipative and vice versa (Verhulst 2000). Attractors, such as “limit cycles.” lie in areas where 

these changes take place. However, this theorem is solidly stated only for two—dimensional dynamical systems. 

Hence, we are compelled to use a generalization given by Li and Muldowney (1993). 

 



34 
 

 

 

 

Figure 6: The phase space of Eqs. (8), (11) and (12) for 𝑏1 = 0.01. 

 

 

In figure 6, the grey arrows denote the vector field of the system, essentially the direction of their 

trajectories; the blue, orange, and green curves denote the trajectories of the system for different 

initial conditions while the red point, as before, stands for the equilibrium point of the system. The 

“limit cycle” solution is clearly visible. 
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In figure 7, we present the simulated solutions of 𝜏, 𝛿 and 𝑟 after four hundred steps (years). The 

estimated period of the oscillations close to the equilibrium is estimated by the ratio 
2𝜋

0.192
≅ 33 

years but stabilizes after an almost–40–year period as it reaches the “limit cycle.”  

 

 

Figure 7: Time series for 𝜏, 𝛿 and 𝑟 derived from simulations of Eqs. (8), (11) and (12) for different 

initial conditions and 𝑏1 = 0.01. 

 

In figure 7, we observe persistent oscillations; hence, in this case the value of 𝑏1 = 0.01 is large 

enough to introduce the necessary innovations and “reheat” the economy at the end of each cycle, 

so as to stimulate a new phase of accumulation.   

 

3.3 Third model: Putting all variables together 

The combined system is consisted of differential equations (8), (9), (10), (11) and (12) depicting 

the dynamic aspects of the variables involved in the analysis, that is, profitability, employment, 

investment, devaluation, and technological change, respectively. We opted to include all the above 

variables in our growth cum cycles model so as to capture, as comprehensively as possible, the 

complex dynamical nature of the capitalist economy. For the sake of simplicity, we limit the 

analysis to specific cases that reasonably describe the dynamic behavior of the system while using 

simulations we confirm its pattern. It is important to stress that we experimented with relatively 
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small variations in the parameters of our model, and we found no qualitatively different behavior 

strengthening our view that our proposed model of growth and cycles is robust to parameter 

changes. Furthermore, economically meaningful solutions require that the values of 𝑎1, 𝑎2, 𝑏0 and 

𝑏1 to be restricted to small intervals while the values for the remaining parameters are taken from 

those employed in the extant literature (Sasaki 2013). 

 

Setting all derivatives of equations (8), (9), (10), (11) and (12) equal to zero, that is, 𝑟̇ = 𝑠̇𝐶 =

𝑠̇𝑉 = 𝛿̇ = 𝜏̇ = 0, we obtain the equilibrium point: 

{
 
 
 
 
 

 
 
 
 
 𝑟∗ =

𝑎2(𝑏0 − 𝑏2(𝑏2 − 𝑔𝑤 + 𝑛))

𝑎1𝑏2(𝑏2 + 𝑛) − 𝑎2(𝑏0 + 𝑏2(𝑔𝑤 − 𝑛))

𝑠𝐶
∗ =

(𝑏0 + 𝑏2𝑔𝑤) (𝑎1𝑏2(𝑏2 + 𝑛) − 𝑎2(𝑏0 + 𝑏2(𝑔𝑤 − 𝑛)))

𝑎2𝑏2(𝑏0 − 𝑏2(𝑏2 − 𝑔𝑤 + 𝑛))

𝑠𝑉
∗ =

𝑎1
𝑎2
(𝑏2 + 𝑛) −

𝑏0
𝑏2
− 𝑔𝑤 + 𝑛

𝜏∗ =
𝑏0
𝑏2
− 𝑏2 + 𝑔𝑤 − 𝑛

𝛿∗ = 𝑏2 }
 
 
 
 
 

 
 
 
 
 

 (17) 

Replacing the values of 𝑎1 = 0.04, 𝑎2 = 0.01, 𝑏0 = 0.004, 𝑏1 = 0.005,22 𝑏2 = 0.05, 𝑛 = 0.015 

and 𝑔𝑤 = 0.03 in equation (17), the coordinates of the equilibrium point are: 

{𝑟∗ = 0.0947 , 𝑠𝐶
∗ = 0.8708 , 𝑠𝑉

∗ = 0.1188 , 𝜏∗ = 0.045 , 𝛿∗ = 0.05 } 

Surprisingly enough, these equilibrium points are quite close to those one expects and, in fact, 

finds for the US economy when it comes to the rate of profit (Shaikh 2016: 410; Tsoulfidis and 

Tsaliki 2019: 424; the Penn’s database rate of profit denoted by IRR), to technological change (the 

figure is consistent with the estimates used in theoretical analysis and it is found in the empirical 

                                                           
22 Since we are dealing with all variables of the system, the values of the parameters seem to be further restricted to 

economically meaningful equilibrium; however, the qualitative behavior of the system is consolidated and parameters, 

such as 𝑏1, may lie in a wider interval than that utilized in subsection 3.2. 
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literature, e.g., Sasaki 2013) and to depreciation (the Penn world tables give a delta for the United 

States and other countries not too different from our figure and also Shaikh 2016: 847). Finally, 

the shares of surplus value devoted to investment in constant and variable capital are not out of 

touch but in spirit with those found in Capital 2, namely 0.8 and 0.2 for constant and variable 

capital, respectively. We feel that our figures of 0.9 and 0.1 are more in line with the nature of 

capital in the present phase of capitalism. It is important to stress, at this point, that our simulations 

are quite robust to reasonable changes in the parameters. Equally important is to say that the 

imperative to “accumulate for accumulation’s shake” gives rise to capital using and labor saving 

technological change. In the analysis of Marx and the classical economists, there is no 

substitutability as in the neoclassical theory, where a slight increase in wages, for example, leads 

to the substitution of capital for labor. Wages can increase so long as they do not interfere with the 

process of capital accumulation.  

 

Small linear perturbations in the neighborhood of this equilibrium point yield the following 

linearized system:23 

[
 
 
 
 
 
Δ𝑟̇
Δ𝑠𝐶̇

Δ𝑠𝑉̇

Δ𝜏̇
Δ𝛿̇ ]
 
 
 
 
 

=

[
 
 
 
 

⁠

0. −0.0825 −0.1034 0.2177 0
0.1263 0 1.1611 −1 0
−0.00027 0.00122 −0.0021 0.00095 0.00095

0 0 0 0 0.00226
−0.0063 0 −0.05806 0 −0.08 ]

 
 
 
 

[
 
 
 
 
Δ𝑟
Δ𝑠𝐶
Δ𝑠𝑉
Δ𝜏
Δ𝛿 ]
 
 
 
 

 

The corresponding eigenvalues of the system are 𝜆1 = −0.07904, 𝜆2 = −0.0002 + 0.0947ⅈ, 

𝜆3 = −0.0002 − 0.0947ⅈ, 𝜆4 = −0.0014 + 0.0001ⅈ and  𝜆5 = −0.0014 − 0.0001ⅈ. The five 

                                                           
23 A referee of the journal suggested the Routh—Hurwitz criterion, which was applied as proposed in the previous 

models; however, applying this criterion in the current more complex model provides complicated and unclear results, 

unless we apply specific parameter values. In the interest of brevity and clarity of the presentation we opted to leave 

out of our analysis this particular criterion. Performing simulations for an economically meaningful range of the 

parameter values, we observe the same qualitative behavior of the model. One of these cases is presented in this 

subsection. 
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eigenvalues have negative real parts while four of them display an imaginary part; hence, the 

equilibrium is a stable node–focus. As figure 8 shows in two distinct subspaces, the solutions are 

attracted towards equilibrium with oscillations. The blue, orange and green curves denote 

trajectories of the system for different initial conditions; the red dot stands for the equilibrium point 

of the system.24 

 

 

 

Figure 8: The phase space of the complete system of equations (8), (9), (19), (11) and (12). 

 

The above system of equations, for realistic parameter values, gives rise to a long–run tendential 

fall in the RoP, which is consistent with the cyclical behavior of the key variables of the system; 

namely, investment (capital accumulation) in both constant and variable capital, technological 

                                                           
24 The five–dimensional phase space of the system cannot be shown. As a result, we present two distinct three–

dimensional projections while the entire solution is the combination of them. 

(a) (b) 
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change, and devaluation of capital. It is worth noting that in the so generated synthetic system of 

differential equations, 𝛿 and 𝜏 no longer follow limit cycle patterns and they adjust to the falling 

tendency of the RoP in such a way that 𝜏, as theoretically expected, increases over the long run. 

The simulated time series of our variables are presented in figure 9 whose salient feature is their 

long cycles of approximate length of 50 years. 

 

 

Figure 9: Time series for 𝑠𝐶, 𝑠𝑉,𝑟, 𝛿 and 𝜏 derived from simulations of equations (8), (9), (10), 

(11) and (12) utilizing different initial conditions. 

 

The trajectories of the variables displayed in each of the panel of five graphs in figure 9 are 

consistent with the anticipated of the classical/Marxian theory of the evolution of capitalism. More 

specifically, our model conveys the long–run tendency of the RoP to fall; this is accompanied by 

an increase in the ceiling of the fluctuation of 𝑠𝐶, which means that the share of surplus value 

intended for investment in fixed capital increases slightly over time as the RoP falls. We also 

confirm the oscillatory behavior of 𝑠𝑉, which during recessions takes on negative values; a result 

which is consistent with Goodwin’s (1967) description of a fluctuating labor market, and it has 
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been ascertained by the subsequent literature (Desai 1973; Glombowski and Krüger 1987; Flaschel 

2008; Sasaki 2013) and is consistent with Marx’s argument of a cyclical reserve army of labor. In 

regard to the long–run movement of the 𝑠𝑉 variable, we observe that, in the long run, the 

employment creating and destroying effects cancel each other out. Equation (14) of the rate of 

profit implies an increase in 𝑠𝑉 for constant technological change, while the increase of capital 

using and labor saving technological change should be higher than the decrease in 𝑟 in order to 

ensure a decrease in 𝑠𝑉. Finally, we notice that the 𝛿 ends up fluctuating around the threshold. All 

the results are consistent with the theoretical expectations and are in line with those found in the 

respective empirical literature. The empirical research of Korotayev and Tsirel (2010) has shown 

that the long wave frequency in the world economy is superimposed over all shorter economic 

fluctuations. Hence, the derivation of long cycles is not only an empirical curiosum as one could 

argue on the basis of Kondratiev’s (1926), Schumpeter’s (1942) or Gordon’s (1980) findings, 

among others but is based on solid theoretical underpinnings.  

 

By invoking equation (14), we can shed more light on the Harrodian “knife–edge” problem. The 

latter, in the neoclassical and the usual Keynesian discussions is dealt with the attainment of 

stability through either the market mechanism or government intervention, respectively. 

Consequently, no adequate attention is paid to explain the nature of instability as such. In some 

other Keynesian approaches, the instability is mainly addressed by means of the exogenously 

determined entrepreneurial “animal spirits.” By contrast, our model presents an analysis derived 

from the inner nature of capitalism and the associated with it built–in mechanisms. In figure 10, 

we display the movement of the growth rates for constant (fixed) and variable capital according to 

the following differential equations: 
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𝑔𝐶 = 𝑠𝐶𝑟 − 𝛿          and          𝑔𝑉 = 𝑠𝑉𝑟 + 𝜏 

It is interesting to note that these growth rates are characterized by the 50–year long cycles while 

their difference, 𝑔𝐶 − 𝑔𝑉 = 𝑒̂, estimated form equation (6) is also displayed in the right end of 

figure 10.  

 

 

Figure 10: The estimates of 𝑔𝐶, 𝑔𝑉 and 𝑒̂, derived from simulations 

 

The difference between 𝑔𝐶 and 𝑔𝑉 shows how far the system is from the “warranted” path, 𝑔𝑤. A 

positive difference indicates that 𝑒̂ increases at a rate slower than that of 𝑔𝐶; hence, the OCC rises 

faster than 𝑒 and eventually we end up with falling RoP. A negative difference reflects the counter 

tendencies that are at work (that have been already mentioned) and set a mechanism to restore 

profitability restarting a new phase of capital accumulation. Moreover, this difference reveals the 

fundamental mechanism underneath the so called “animal spirit” claims of Keynesian economists. 

It is clear from equation (6) that the term 𝑔𝐶 − 𝑔𝑉 “corrects” for the Harrodian notion of a “steady–

state” growth path by accounting for the causes and the countertendencies at work that give rise to 

a falling tendency of the RoP. Hence, it explains why and how constant (fixed) and variable 

capitals are disproportionately growing rendering the attainment of the “warranted” growth rate 

distant if not impossible. 
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It will be interesting to explore the classical economists’ assumption of a “stagnant economy.” 

according to which the rate of profit vanishes. Assuming 𝑟 = 0 as an initial condition for the 

model, equation (8) guarantees that 𝑟̇ = 0; furthermore, equations (9), (10), (11) and (12) indicate 

𝑠̇𝐶 > 0, 𝑠̇𝑉 < 0, 𝛿̇ > 0 and 𝜏̇ > 0, so the propensity to invest on fixed capital increases indefinitely, 

the propensity to invest in variable capital decreases indefinitely while the devaluation of capital 

and technological change rise unboundedly. This extreme state can be identified only with a fully 

automated economy, where labor is no longer employed in production, thus no surplus value is 

produced. However, the hypothetical case of zero profitability would imply zero investment and 

therefore the collapse of the capitalist system. However, in our model, 𝑟 may tend towards, but it 

does not become zero unless we fix the initial conditions and our parameters take on unrealistic 

values.25 

 

 

4. Conclusions 

Our growth cum cycle model presented in section 3.1 showed that the dynamics of investment and 

employment in and of themselves are sufficient to generate both the cyclical behavior of the system 

and the tendential fall in the RoP. At first sight, these cycles in the short run seem to be investment 

led; however, their long–run dynamics are dominated by declining profitability. The model 

presented in section 3.2 confirmed that the dynamics of technological change and subsequent 

devaluation of capital generate a cyclical behavior in the economy in the form of a “limit cycle.” 

but they do not give rise to a long–run falling tendency in the RoP. Finally, the fully integrated 

model presented in section 3.3 contains the dynamic interactions of all the stylized facts of capital 

                                                           
25 Simulations, performed with 𝑟 = 0 as an initial condition, produced the above—described behavior of the system. 
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accumulation presented in section 2. Furthermore, our model is consistent with Marx’s analysis 

in Capital 1 and 2 according to which economic growth is cyclical and in the long run is 

accompanied by a falling RoP (Capital 3). The qualitative analysis (yielding complex eigenvalues) 

confirms the cyclical nature of the system, while the simulations that we performed have shown 

that the system “stabilizes” in an approximately 50–year long cycle. The variable underneath all 

these phenomena is the long–run falling tendency in the RoP, a result consistent with the empirical 

regularity of long cycles (Korotayev and Tsirel 2010; Kleinknecht 2016; Shaikh 2016; Tsoulfidis 

and Tsaliki 2019). 

 

Our growth and cycle model is in sharp contrast to Harrod’s model in that the growth rate of 

surplus value defined as 𝑔𝐶 − 𝑔𝑉 = 𝑒̂ becomes the key variable that regulates the turbulent but 

cyclical dynamics of capitalism. In particular, the growth rate of surplus value impacts both forces 

of production (investment, technology) and relations of production (employment, wages, class 

struggle). By contrast, the analysis of the warranted path in the Harrodian and Keynesian tradition 

defined as 𝑔𝐶 = 𝑔𝑉, that is, the growth rate of capital is equal to the growth rate of employment 

(and by extension to the exogenous given natural growth rate) attributes the “knife–edge” problem 

to investors’ decisions and to the exogenously determined “animal spirits.” In our model, the 

growth of the rate of surplus value plays the role of the regulator that restores equilibrium once 

departing from it. More importantly, our answer to the “knife–edge” problem is also quite different 

to the Solovian solution based on substitutability and aggregate production functions of dubious 

validity and residually determined technology. 
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Lastly, our model considers various factors that affect profitability and economic growth, 

introducing them as equivalent dynamical variables and although it appears similar to the tradition 

of endogenous growth models, the conceptualization of the variables and their interaction with 

profitability and growth is generic and it is based on an overall systemic approach, rather than a 

specialized and unilateral treatment (such as the specific modelling of households’ consumption 

or of firms’ production profiles). In doing so, our model bridges an existing void in the literature 

that is the integration of a cycle and trend in a single overall model as it has been noted by Pasinetti 

(1960). The assumptions within a Harrodian or Solovian framework may be good enough to 

explain one “stylized fact” at a time, with the other needed to be exogenously introduced; this 

explains, to some extent, the poor explanatory power of these models over the years. In our model, 

the fusion of the key variables of capitalist growth and development leads inescapably to cyclical 

growth and to a simple but realistic explanation of the Harrodian “knife–edge” problem. 

Furthermore, the proposed model gives results which are robust to reasonable changes in 

parameters and maintains its qualitative features with respect to the trajectories of our variables.  
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Appendix A 

 

OCC: organic composition of capital  

RoP: rate of profit  

𝐶: constant capital stock 

𝑉: variable capital 

𝑆: surplus value  

𝛾: proxy to OCC  

𝜋: rate of profit on circulating capital or profit margin on cost 

𝜑: the ratio of stocks–over–flows 

𝑟: rate of profit, RoP 

𝑒 = 𝑆 𝑉⁄ : rate of surplus value 

𝛾: growth rate of OCC  

𝜋̂: growth rate of rate of profit on cost or profit margin 

𝑟̂: growth rate of RoP 

𝑒̂: growth rate of rate of surplus value  

𝐶̂: growth rate of constant capital,  

𝑉̂: growth rate of variable capital 

𝛿: devaluation 

𝑠𝐶: share of surplus value that potentially can be invested in capital 

𝑠𝐶̂: growth rate of 𝑠𝐶 

𝑠𝑉: share of surplus value that potentially can be invested in variable capital 

𝜏: rate of technological change 

𝑎1 and 𝑎2 are relatively small positive parameters that help us to scale𝑟 appropriately and may be 

seen as the elasticities of the RoP with respect to technological and distributional 

parameters, respectively 

𝑏1 is the intensity of introduction of innovations in the economy 

𝑏2 is the level of the devaluation rate where no technological ‘jump’ occurs and productivity 

rises steadily 

𝑔𝑛: ‘natural’ growth rate or growth rate of employment 

𝑛: growth rate of population 

𝑔𝑤: threshold growth rate 

𝜆𝑖: real eigenvalue  

𝑣⃗𝑖: eigenvector   

* : denotes equilibrium 
̇  : denotes derivative with respect to time 
̂  : denotes rate of change 
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Appendix B 

 

B1: Derivation of the relations for 𝜸̂ and 𝝅̂ (Eqs. 5) 

 

As in Chatzarakis and Tsaliki (2021), we consider the rate of change of the constant capital to be 

equal to the investment in constant capital minus the depreciation: 

𝑔𝐶 =
𝐶̇

𝐶
= 𝑠𝐶

𝜋

𝛾
− 𝛿  

and the rate of change of the variable capital to be equal to the investment in variable capital (hiring 

or firing of laborers) plus the rate of technological change: 

𝑔𝑉 =
𝑉̇

𝑉
= 𝑠𝑉

𝜋

1 − 𝛾
+ 𝜏 

From the definition of 𝛾, we have: 

𝛾 =
𝛾̇

𝛾
=
(𝐶 𝐶 + 𝑉⁄ )

.

𝐶
𝐶 + 𝑉⁄

=
𝐶̇

𝐶
−
𝐶̇ + 𝑉̇

𝐶 + 𝑉
=
𝐶̇

𝐶
(1 −

𝐶

𝐶 + 𝑉
) −

𝑉̇

𝑉

𝑉

𝐶 + 𝑉
 

Since 1 − 𝐶(𝐶 + 𝑉)−1 = 𝑉(𝐶 + 𝑉)−1 = 1 − 𝛾,  

𝛾 =
𝛾̇

𝛾
= (1 − 𝛾)(𝑔𝐶 − 𝑔𝑉) 

and substituting: 

𝛾̇ = 𝑠𝐶(1 − 𝛾)𝜋 − 𝑠𝑉𝛾 𝜋 − 𝛾(1 − 𝛾)(𝛿 + 𝜏) 
From the definition of 𝜋, we have: 

𝜋̂ =
𝜋̇

𝜋
=
(𝑆 𝐶 + 𝑉⁄ )

∙

𝑆
𝐶 + 𝑉⁄

=
𝑆̇

𝑆
−
𝐶̇ + 𝑉̇

𝐶 + 𝑉
=
(𝑒𝑉)∙

𝑒𝑉
−
𝐶̇

𝐶

𝐶

𝐶 + 𝑉
−
𝑉̇

𝑉

𝑉

𝐶 + 𝑉

= 𝑒̂ −
𝐶̇

𝐶

𝐶

𝐶 + 𝑉
+
𝑉̇

𝑉
(1 −

𝑉

𝐶 + 𝑉
) 

Similarly: 

𝜋̇ = 𝑒̂𝜋 − 𝑠𝐶𝜋
2 + 𝑠𝑉

𝛾

1 − 𝛾
𝜋2 + 𝛾 𝜋(𝛿 + 𝜏) 

 

 

B2: Derivation of the relation for 𝒓̂ (Eq. 8) 

 

Given equations (5), and the definition of 𝑟, we have: 

𝑟̂ =
𝑟̇

𝑟
=
(𝜋 𝛾⁄ )

∙

𝜋
𝛾⁄
=
𝜋̇

𝜋
−
𝛾̇

𝛾
 

and substituting: 

𝑟̂ =
𝑟̇

𝑟
= 𝑒̂ − 𝑠𝐶𝜋 + 𝑠𝑉

𝛾

1 − 𝛾
𝜋 + 𝛾(𝛿 + 𝜏) − 𝑠𝐶

1 − 𝛾

𝛾
𝜋 + 𝑠𝑉𝜋 + (1 − 𝛾)(𝛿 + 𝜏)

= 𝑒̂ − 𝑠𝐶
𝜋

𝛾
+ 𝑠𝑉

𝜋

𝛾
+ 𝛿 + 𝜏 

Consequently: 

𝑟̇ = −(𝑠𝐶 − 𝑠𝑉)𝑟
2 + (𝛿 + 𝜏 + 𝑒̂)𝑟 
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From Capital I, we know that the rate of surplus value changes inversely to the changes of the 

employment rate, hence 𝑒̂ ≈ −𝑠𝑉 (see Glombowski 1983). Using the direct analogy (𝑒̂ = −𝑠𝑉), 

we need to counterbalance for any deviations. In order to do so and to ensure that solutions are 

economically meaningful (0 < 𝑟 < 1), we multiply with two positive and smaller–than–unity 

parameters, 𝑎1 and 𝑎2, hence: 

𝑟̇ = −𝑎1(𝑠𝐶 − 𝑠𝑉)𝑟
2 + 𝑎2(𝛿 + 𝜏 − 𝑠𝑉)𝑟 

 

 

B3: Derivation of the relation for 𝒔̇𝑽 (Eq. 9) 

 

𝑠𝑉 is perceived as the change in employment, 𝜖. We can assume that it captures non–linear 

deviations of 𝜖 from its equilibrium value 𝜖∗, as computed by Goodwin (1967). A simple form of 

these non–linear deviations is the logarithmic change, hence: 

𝑠𝑉 = ln 𝜖 − ln 𝜖
∗ = ln (

𝜖

𝜖∗
) 

or in an integral form:  

𝑠𝑉 = ∫
d𝜖

𝜖

𝜖

𝜖∗
 

This form is chosen because its linear approximation is merely the linear deviation 𝑠𝑉 ≅
𝜖 − 𝜖∗

𝜖∗⁄ . 

From Goodwin (1967), we know that: 
𝜖̇

𝜖
= 𝑠𝐶

1 − 𝜔

𝜎
− 𝑛 + 𝜏 + 𝛿 

where 𝜔 the wage share, 1 − 𝜔 the profit share and 𝜎 the capital–output ratio; obviously: 
1 − 𝜔

𝜎
=
𝑆

𝑌
 
𝑌

𝐶
=
𝑆

𝐶
= 𝑟 

where 𝑌 = 𝑆 + 𝑉; hence: 
𝜖̇

𝜖
= 𝑠𝐶𝑟 − 𝑛 + 𝜏 + 𝛿 

Differentiating 𝑠𝑉 with respect to time: 

𝑠̇𝑉 =
d

𝑑𝑡
ln (

𝜖

𝜖∗
) =

𝜖̇

𝜖∗
 
𝜖∗

𝜖
=
𝜖̇

𝜖
 

so that: 

𝑠̇𝑉 = 𝑠𝐶𝑟 − 𝑛 + 𝜏 + 𝛿 
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