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Abstract The standard linear Granger causality test, based on the vector
autoregressive model (VAR), requires stationarity of the time series. A VAR
model is fitted to the first-differences of the time series, when they exhibit
trends and are not co-integrated. In the case of co-integration, the vector
error-correction model (VECM) is used instead. Alternatively, a nonlinear in-
formation causality measure is suggested, called partial transfer entropy on
rank vectors (PTERV), which uses locally ranked observations. It is model-
free and of a more general purpose, as it can be directly applied to the original
time series without pre-testing for stationarity or co-integration. The signifi-
cance test of the PTERV detects effectively the connectivity structure of com-
plex multivariate systems. In particular, the size and power of this test are
comparable to that of the standard linear Granger causality approach (VAR
or VECM) when applied to systems with only linear causal effects, while the
PTERV test outperforms the linear causality test when nonlinear causal effects
exist, as long as the sample size is large enough. The application of PTERV
to stock market data and interest rates illustrates that it can be a useful tool
in the causality analysis of financial time series.
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1 Introduction

Causality is the relationship between cause and effect. Granger causality is the
statistical concept of causality that is based on prediction (Granger, 1969). The
notion of Granger causality was first introduced by Clive Granger in the area
of economics, and nowadays it is developed and extended to various fields,
such as neuroscience (Ding et al., 2006; Porta and Faes, 2016), climatology
(Stern and Kaufmann, 2014) and physics (Paluš, 2007).

In financial time series, such as interest rates and stock market data, there
are strong indications for nonlinear dynamics in financial time series, such as
interest rates sand stock market data, both in the mean and in the variance
(Brock et al., 1991; Maki, 2003; Jones, 2006). For example, the US short-
term interest rate depends in a nonlinear way on the spread between long and
short-term interest rates (Granger, 1993; Anderson, 1997).

As a result, nonlinear and non-parametric methods are required to cap-
ture the complex dynamics of financial data for questions such as modelling,
forecasting, making inference and detecting the interrelationships among vari-
ables (Fang and Wolski, 2019; Tiwari and Mutascu, 2014). A review of relevant
parametric and nonparametric methods in financial time series can be found
in Franke (2008); Zhao (2008).

The concept of Granger causality has been widely utilized for the investiga-
tion of directed interactions, mainly in economics (Geweke et al., 1983; Dufour
and Taamouti, 2010). Its basic principle is to evaluate whether past values of a
variable X (driving variable) help to explain current values of variable Y (re-
sponse variable). The linear Granger causality test is employed by fitting vec-
tor autoregressive models. However, one should first implement a preliminary
econometric analysis. If the variables are non-stationary and/or co-integrated,
mis-specifications may occur (Granger and Newbold, 1974; Granger, 1988).
Causality in non-stationary time series (in mean) is typically investigated
through vector error correction models (VECM), addressing the presence of
both short- and long-run relationships. A comparison of the prediction per-
formance of VAR models and VECMs can be found in LeSage (1990); Clarke
and Mirza (2006).

The developments in the area of econometrics were appreciated in other
fields, included statistics and physics. Linear and nonlinear extensions of the
Granger causality concept have been also utilized in different areas, such as
brain dynamics (Hiemstra and Jones, 1994; Schiff et al., 1996). Linear causal-
ity measures originally defined for the analysis of biological signals, such as the
partial directed coherence (Baccala and Sameshima, 2001), have been applied
to financial data (Allali et al., 2011). Regarding nonlinear Granger causality,
the test of Hiemstra and Jones (1994), which is based on the residuals of a
fitted VAR model and conditional probabilities, was used broadly in finance.
The test was later corrected by Diks and Panchenko (2006) and extended from
the bivariate to the multivariate setting by Bai et al. (2010). The Granger
causality measures from information theory actually replace the conditional
probabilities in the Hiemstra and Jones test, with entropies and mutual in-
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formation. The main advantage is that better estimates for entropies using k
nearest neighbors estimation (Kraskov et al., 2004) can be obtained, allowing
the estimation of Granger causality in higher dimensional settings. In partic-
ular, the transfer entropy (Schreiber, 2000) is applied to financial data as well
(Marschinski and Kantz, 2002; Kwon and Yang, 2008). The main advantage
of information-based Granger causality measures is that they are model-free
and make no assumption about the distribution of the data, while they are
able to detect the overall dependencies and not only the linear ones. In ad-
dition, information theory is used in empirical studies dealing with nonlinear
co-integration (Aparicio and Escribano, 1998).

While transfer entropy and other nonlinear Granger causality measures
require stationarity, the transfer entropy defined on ranks rather than sam-
ples, initially introduced as (partial) symbolic transfer entropy (Staniek and
Lehnertz, 2008; Papana et al., 2016), and then corrected and termed (partial)
transfer entropy on rank vectors (Kugiumtzis, 2012, 2013), can be applied to
non-stationary time series (Kugiumtzis, 2013; Papana et al., 2016). Measures
defined on ranks, transform sample values to symbols and have been recently
employed for investigating Granger causality to economic and financial time
series (Matilla-Garcia et al., 2014; Shi et al., 2015; Papana et al., 2016).

The equivalence of transfer entropy and the linear Granger causality has
been established for Gaussian processes (Barnett et al., 2009). The extensions
of transfer entropy to rank vectors, symbolic transfer entropy (Staniek and
Lehnertz, 2008) and transfer entropy on rank vectors (Kugiumtzis, 2012), can
also be considered as Granger causality measures. Thus, tests for Granger
causality are developed using as test statistic the Granger causality index based
on linear VARs, and different variants of the transfer entropy not restricted to
linear cause-effect only.

In this work, we propose the use of the partial transfer entropy on rank
vectors (PTERV) that is able to overcome some of the existing methodological
shortcomings regarding the following aspects: a) nonlinear interdependencies
are taken into consideration, b) multivariate analysis is performed, c) estima-
tions are not restricted in cases of low memory, and d) stationarity of each
examined time series in either mean or variance is not required. The suggested
measure requires the sequence of rank vectors formed from the examined time
series be strictly stationary, which is expected to hold for all practical purposes
as the rank components define a discrete limited state space. It is not sensitive
to outliers and can handle non-stationary time series in mean and variance
since it is rank based. These issues have been reported with regard to a mea-
sure similar to the PTERV, the Partial Symbolic Transfer Entropy, in Papana
et al. (2016). We should also note that the PTERV is not as time consuming
as the Partial Symbolic Transfer Entropy. To demonstrate its effectiveness, we
perform a simulation study on the basis of bivariate and multivariate time se-
ries of different nonlinear coupled systems, with stationary and non-stationary
time series in mean, in the presence or absence of co-integration. In the aim
to emphasize the superiority of the PTERV compared to the standard lin-
ear procedure, we provide results also for the linear parametric methodology,
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built on a VAR or a VEC model depending on the existence of stationarity
and co-integration. An application to stock market and interest rate time se-
ries reveals the strength of the PTERV toward detecting causal effects in the
case of real datasets.

The structure of the paper is as follows. In Sec. 2, the methodology is dis-
cussed, i.e. we present the PTERV and the standard linear causality procedure
based on VAR/VEC models. In Sec. 3, a simulation study is performed and
results are reported and discussed. In Sec. 4, the corresponding methodology
is applied to financial time series, i.e. stock indexes and interest rates. Finally,
Sec. 5 concludes the paper.

2 Methodology

In this section, the Partial Transfer Entropy on Rank Vectors, is presented,
along with the standard linear procedure for the determination of the directed
interdependencies between the variables of a complex system.

Further, the statistical significance of each of the two approaches is dis-
cussed. The examined null hypothesis for the causality test is H0: Y2 does not
Granger cause Y1, and it is realized either with the tests developed for VAR
and VECM or the PTERV using the corresponding test statistic. The statisti-
cal significance is then assessed based on a parametric or non-parametric test
in order to decide whether H0 is accepted, i.e. whether a positive value of the
test statistic is due to bias or causality.

Finally, we clarify the difference between direct and indirect causality and
the notion of spurious causality providing some indicative examples.

2.1 Partial Transfer Entropy on Rank Vectors

The Partial Transfer Entropy on Rank Vectors (PTERV) is a non-parametric
causality measure that stems from information theory and constitutes a ro-
bust, efficient alternative to the standard linear multi-step test procedure de-
scribed in the following subsection (Kugiumtzis, 2012, 2013). The PTERV is
chosen because it is model-free, requires no assumptions about the distribu-
tion of the data, remains sensitive to nonlinear effects and is not affected by
non-stationarity (Kugiumtzis, 2013). Although interesting, its effectiveness on
financial applications has not been investigated so far.

The PTERV utilizes rank points in contrast to the original transfer en-
tropy (TE) that uses the original time delayed vectors. Given the multivari-
ate time series of K variables yt = {y1,t, y2,t, ..., yK,t}, t = 1, . . . , n, the
time delayed vectors from each of the K variables, e.g. for Y1, are y1,t =
(y1,t, y1,t−τ , . . . , y1,t−(m−1)τ )′ for t = (m−1)τ+1, . . . , n−1, where m is the em-
bedding dimension and τ is the time delay. From y1,t, we form the correspond-
ing rank-points ŷ1,t = (r1, . . . , rm)′, where rj ∈ {1, . . . ,m} for j = 1, . . . ,m
are the ranks of the corresponding amplitude values of y1,t when arranged in



Causality in non-stationary time series 5

ascending order. The future response of one step ahead at time t is given by
the rank ŷ11,t of the future point y11,t = (y1,t+1), when sorting the observations
of the joint vector [y11,t,y1,t].

As an example, let us consider the embedding dimension m = 2 and the
time delay τ = 1. In this case, the embedding vector y1,t = (y1,t, y1,t−1)′

contains only two values, therefore the corresponding rank vector ŷ1,t can be
either (1, 2) or (2, 1). Similarly, the rank ŷ11,t is extracted from the joint vector
[y11,t,y1,t] = (y1,t+1, y1,t, y1,t−1)′, which can be any of the 6 triplets (1, 2, 3),
(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1), and thus y11,t can take any of
the values 1, 2 and 3.

Suppose we are interested in the causality from Y2 to Y1. Collecting the rank
vectors of each of the confounding variables Y3, . . . , YK (denoted all together
as Z) in the vector ẑt, allows for the definition of the PTERV as

PTERVY2→Y1|Z = I(ŷ11,t; ŷ2,t|ŷ1,t, ẑt)

=
∑

ŷ11,t,ŷ2,t,ŷ1,t,ẑt

p(ŷ11,t, ŷ2,t, ŷ1,t, ẑt) log
p(ŷ11,t|ŷ2,t, ŷ1,t, ẑt)

p(ŷ11,t|ŷ1,t, ẑt)
,(1)

where I(X;Y |Z) is the mutual information ofX and Y conditioned on Z, while
p(X,Y ) and p(X|Y ) denote the joint probability mass function of X and Y ,
and the conditional probability mass function of X on Y , respectively, which
is evaluated over all possible values of X and Y in (1). The subscript ”t” in the
equation of mutual information enters the name of the rank vectors, and does
not denote dependence of the PTERV on the exact time step t. Note that the
possible values of the vector variables, being arguments in the probabilities in
(1), are the possible combinations of ranks of each rank vector. The probability
masses in Eq. 1 are estimated through the corresponding relative frequencies
of the observed rank vectors.

In our procedure, we need a significance test for the PTERV, i.e. to test
the null hypothesis of no direct Granger causal effect from Y2 to Y1, which is
expressed as H0: PTERVY2→Y1|Z = 0 .

Analytic approximations of the asymptotic null distribution for the PTERV
have been investigated by Kugiumtzis (2013) and Papapetrou and Kugiumtzis
(2014), who provided evidence that the Gamma distribution with parame-
ters as given by Goebel et al. (2005) attains best convergence to the null
distribution. Kugiumtzis (2013) further reports that often the approximation
with resampling is superior to the parametric approximation. The resampling
regards a randomization test using time-shifted surrogates (Quiroga et al.,
2002). The surrogate time series are formed by time-shifting the driving vari-
able, while the remaining variables stay intact. Considering the driving time
series {y2,1, . . . , y2,n} and a random integer d (1 + a < d < n − a, where a
is a small integer to account for autocorrelation effects), the first d values of
the time series are moved to the end, so that the time-shifted time series is
{y2,d+1, . . . , y2,n, y2,1, . . . , y2,d}. If the original PTERV value, q0, lies at the
tail of the distribution of the PTERV values, q1, . . . , qM , using the M time-
shifted time series, then H0 is rejected. If r0 is the rank of q0, when ranking in
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ascending order the list q0, q1, . . . , qM , then the p-value of the one sided test is

given by 1 − (r0−0.326)
M+1+0.348 (Yu and Huang, 2001). We employ and compare the

performance of the PTERV assessing its statistical significance based on both
the parametric (Gamma) and the non-parametric (randomization) significance
test.

2.2 Standard (linear) procedure for Granger causality

The standard procedure for investigating linear Granger causality, encom-
passes three different scenarios. We consider the multivariate time series of
K variables yt, t = 1, . . . , n. First, a unit-root test, such as the augmented
Dickey-Fuller test (Dickey and Fuller, 1979), is performed in order to deter-
mine whether each time series is covariance stationary. Then, the following
alternative cases are implemented.

Case 1. Stationary time series and short-run causality

We use the conditional Granger causality index (CGCI) (Geweke, 1982). More
specifically, a vector autoregressive model (VAR) is fitted to the time series

yt = c +

P∑
r=1

Aryt−r + et, (2)

where P is the order of the model, c is the K × 1 constant vector, Ar are the
K ×K coefficient matrices of the model and et is a white Gaussian random
vector with identity covariance matrix. Let us denote s21U and s21R the variances
of the residuals of the unrestricted model (2) with respect only to the response
variable Y1 and the restricted model, derived from the unrestricted model by
omitting the terms regarding the driving variable Y2, respectively. Then, the
CGCI is given as:

CGCIY2→Y1|Z = ln(s21R/s
2
1U ), (3)

where Z = {Y3, . . . , YK} contains the K − 2 confounding variables.

To infer about the existence of causality, a parametric significance test can
be conducted for the null hypothesis that Y2 is not driving Y1 making use of
the F -significance test for all P coefficients Ar(1, 2), r = 1, . . . , P (Brandt and
Williams, 2007). Equivalently, we can employ the likelihood ratio chi-squared
test, which basically uses the CGCI as test statistic (Brandt and Williams,
2007).

In the alternative to Case 1, at least one time series is non-stationary. In
this scenario, we apply the Johansen co-integration test (Johansen, 1991) (con-
sidering both the trace and the eigenvalue tests) leading to the two following
cases.
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Case 2. Non-stationary time series and absence of co-integration

The time series are non-stationary but not co-integrated. To obtain stationary
series, their first (logarithmic) differences are computed and then the CGCI
is implemented as in Case 1. The existence of short-run causality is identified
based on the p-values from the parametric significance test on the coefficients
of the VAR model.

Case 3. Non-stationary and co-integrated time series

The properties of non-stationarity and co-integration imply the use of a VECM.
The linear combination of the variables β1y1,t+. . .+βKyK,t is stationary, where
β = (β1, . . . , βK)′ is the co-integrating coefficient vector.

The VECM expresses the long-run dynamics of the process and has the
following form

∆yt = Cyt−1 +

p−1∑
i=1

Γi∆yt−i + et. (4)

where Cyt−1 measures the deviation from the stationary mean at time t− 1.
The coefficients in Γi account for the short-run dynamics, while the matrix
C determines the long run effect. The long- and short- run causal effects are
derived for each response variable (Y1) from another driving variable (Y2) by
testing the significance of the corresponding coefficients in the matrix C and
the matrices Γi, i = 1, . . . , p, respectively.

For the significance of the VECM coefficients, parametric tests are per-
formed based on the F -statistic for Γi (short-run effects) and the Johansen
test for the error correction terms (long-run effects).

Although the assumption of Gaussian residuals may not be required for the
VECM, the possible sources of residual non-Gaussianity are of great interest,
specifically when nonlinearity seems to be the driver of the data generating
process of the examined time series.

2.3 Direct vs indirect Granger causality and spurious causality

Direct causality measures, such as the PTERV, exploit all the available infor-
mation of the data and detect the causal influence of one variable on another
one, conditioning on the confounding variables of a complex system. The ad-
vantage of partial causality tests in multivariate systems can be stressed in the
following example. Considering a trivariate system composed of the variables
X, Y and Z, where X drives Y (X → Y ) and Y drives Z (Y → Z). A bivariate
causality test will identify the two true direct causal effects, i.e. X → Y and
Y → Z, as well as the indirect causality from X to Z. In contrast, a direct
causality test will indicate only the true causal couplings X → Y and Y → Z.

While the indirect causality cannot be considered as completely wrong, as
it is implied by other direct causality effects in the system, any other causality
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between two variables is regarded as spurious causality. For example, in the
trivariate system, all other causal-effects than the direct ones X → Y , Y → Z,
and the indirect one X → Z, if detected by the causality test are spurious.
Spurious causality can occur due to the inadequacy of the causality test but
there may be other sources of spurious causality, such as causal effects of an
unobserved variables and instantaneous interactions.

3 Simulations and Results

The effectiveness of both methodological procedures in detecting causal effects
is assessed based on a simulation study. Different types of systems are consid-
ered; bivariate and multivariate, stationary and non-stationary, co-integrated
and nonlinearly coupled. Since co-integration does not affect the performance
of PTERV, only co-integrated systems with one co-integration relationship
are simulated. The simulation systems are defined so that by construction one
variable may have (or not) a causal influence on another one, while causality is
succeeded using temporal precedence of the variables. The coupling strength
can be taken into account in the coefficient of the corresponding lagged term
of the driving variable in the equation of the response variable.

We perform 100 realizations of each simulation system for various time
series lengths n = 256, 512, 1024, 2048 in order to balance the computational
cost of the simulation study and the quality of the approximation of the size
and power of the PTERV. Results for 1000 realizations for System 1 have also
been obtained and do not significantly differ from the displayed outcomes.

For the PTERV, the time lag τ for all variables is set to 1 (as initially used
in the TE definition). The embedding dimension m is common for all variables
and equals the true model order from the equations of each simulation system.
The order P of the VAR / VECM is equal to m. The statistical significance of
the linear method is given by the parametric test, while for the PTERV both
parametric and non-parametric tests of significance are employed.

The performance of the causality methods is quantified by the percentage of
statistically significant couplings within the 100 realizations for each causality
effect. The couplings are always regarded to be conditioned on the remaining
variables, if the system is multivariate. For consistency, we keep the notations
CGCI, VECM and PTERV also for the bivariate simulation systems.

We note that for the linear procedure, we perform for each realization of the
simulation systems stationarity and co-integration tests in order to determine
the respective case, assuming that the properties of each system are unknown.
Nonetheless, the suitable linear procedure is considered for each simulation
system, based on the generating data process and therefore independently of
the outcome of the co-integration test. However, the effectiveness of the co-
integration tests is reported.
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System 1.

A non-stationary, nonlinear, multivariate system, with the unidirectional cou-
plings X1 → X2, X2 → X3, is generated by integrating the time series from
three coupled Hénon maps with coupling strength c = 0.2

x1,t = 1.4− x21,t−1 + 0.3x1,t−2

x2,t = 1.4− (cx1,t−1x2,t−1 + (1− c)x22,t−1) + 0.3x2,t−2

x3,t = 1.4− (cx2,t−1x3,t−1 + (1− c)x23,t−1) + 0.3x3,t−2.

We set m = P = 2. The initial values of the three variables, required for the
simulation, are randomly chosen.

The results in Table 1 indicate that the PTERV detects the true causalities,
even for small time series lengths, while the percentage of significant values
for the uncoupled directions are low. Similar conclusions are drawn from the
two different significance tests.

Table 1 Percentages of rejections of the non-causality hypothesis H0 based on the PTERV
(m = 2) (parametric / non-parametric statistical significance) and the CGCI (P = 2),
for the simulation System 1. When the same percentage has been found for the different
significance tests for the PTERV, a single number is displayed in the cell. The true couplings
are given in bold. All the indicated couplings are conditioned on the third variable of the
system.

PTERV (m = 2) CGCI (P = 2)
n 256 512 1024 2048 256 512 1024 2048

X1 → X2 51 / 54 81 99 100 46 91 100 100
X2 → X1 8 / 6 7 / 5 2 / 4 7 / 9 7 5 8 32
X2 → X3 56 / 54 91 100 / 99 100 22 60 93 100
X3 → X2 7 / 10 5 / 7 13 / 9 16 20 10 16 18
X1 → X3 5 / 9 10 / 11 7 / 10 8 / 9 6 8 9 7
X3 → X1 5 18 / 10 6 / 3 8 / 9 10 12 4 6

The CGCI is applied to the corresponding stationary time series, before in-
tegration or equivalently after taking the first-differences of the non-stationary
time series (Case 2). It correctly indicates the couplings, however also spuri-
ous causal relationships are observed, e.g. X2 → X1 for n = 2048 (32%) and
X3 → X2 for n = 256 (20%) (see Table 1).

For the aforementioned system, the PTERV outperforms the CGCI. We
note that BIC suggests to set P = 3 for which a loss of power and size occurs
compared to the presented results for P = 2. The Augmented Dickey-Fuller
unit root test does not always indicate that all three time series are non-
stationary. Finally, in 87% of the simulated data the Johansen co-integration
test confirms the absence of co-integration. A topic for further investigation is
whether a non-parametric stationarity and co-integration test would be more
appropriate for such data that contain strong nonlinearity.
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System 2.

This is a non-stationary, stochastic system in three variables, with unidirec-
tional nonlinear coupling X1 → X2 and linear coupling X1 → X3, specified
as

x1,t = x1,t−1 + ε1,t

x2,t = 0.1x21,t−1 − 0.2x2,t−2 + ε2,t

x3,t = 0.3x1,t−1 − 0.1x3,t−1 + ε3,t,

where εi,t, i = 1, 2, 3 are standard normal white noise innovations with iden-
tity covariance matrix and independent to each other (the same applies for
all the following systems). The time series derived from the equations for ran-
dom initial values are integrated. Thus, the time series are non-stationary but
non co-integrated as there is no linear combination of the variables that is
stationary. We also set P = m = 2.

The PTERV effectively shows the true couplings, although spurious causal-
ities arise for large n, e.g. X2 → X3. Therefore, short-run causality can be
again obtained based on the suggested non-parametric measure directly from
the original non-stationary data.

Table 2 As Table 1 but for System 2.

PTERV (m = 2) CGCI (P = 2)
n 256 512 1024 2048 256 512 1024 2048

X1 → X2 74 / 75 89 / 88 92 98 88 93 93 99
X2 → X1 5 0 / 1 7 / 8 5 / 6 7 8 11 8
X2 → X3 6 / 3 14 17 / 16 32 / 33 100 100 100 100
X3 → X2 4 6 / 4 15 / 16 29 / 27 99 100 100 100
X1 → X3 36 / 32 67 98 / 96 100 43 40 52 58
X3 → X1 7 2 / 3 2 2 100 100 100 100

Since the variables are not co-integrated by construction, the linear CGCI
is applied in the first log-differences. However, the Johansen co-integration
test, reveals that almost 50% of the realizations of this system present one co-
integrating relationship based on the trace statistic. The linear measure fails
to identify the causal links for this simulation system, since almost all resulting
couplings are bidirectional (see Table 2). When nonlinearities are present, the
linear methods such as the co-integration test and the CGCI do not seem to
be effective.

System 3.

This is a non-stationary, nonlinear (chaotic), bivariate system, with co-integrated
variables and unidirectional coupling X1 → X2. It is generated by superim-
posing (adding) to each of the variables X1 and X2 at time t of System 1
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(i.e. two coupled Hénon maps), two co-integrated random walks r1,t and r2,t,
respectively, defined as

r1,t = wt + ε1,t

r2,t = 0.3wt + ε2,t,

with a common stochastic drift wt = wt−1 +εt, where εt, ε1,t, ε2,t are standard
normal white noise innovations. Thus, each of the two time series y1,t, y2,t of
System 3 is generated by the sum yi,t = xi,t + ri,t , i = 1, 2 and t = 1, . . . , n,
where the first term is nonlinear (chaotic) and the second term is a random
walk. We consider the coupling strength c = 0.2, while we set m = P = 2.

As the Table 3 reports, the nonlinear method identifies the correct causal
effects with power that increases with n.

Table 3 As Table 1 but for System 3, where for the linear procedure short- and long-run
causality is assessed by the fit of VECM (P = 2). For long-run causality, the percentages of
not rejecting the null hypothesis that the number of co-integrating relations r is ≤ 0 or ≤ 1
are reported.

PTERV causality
n 256 512 1024 2048

Y1 → Y2 8 / 10 8 / 11 22 / 26 39 / 41
Y2 → Y1 8 / 7 5 14 / 16 7 / 9

VECM short-run causality
n 256 512 1024 2048

Y1 → Y2 92 100 100 100
Y2 → Y1 28 67 85 100

long-run causality
r <= 0 0 0 0 0
r <= 1 49 60 54 46

On the other hand, the VECM suggests that there is short-run causality
in both directions while long-run causality is obtained for almost half of the
examined samples, with one co-integration relation (see Table 3). As n in-
creases, the percentage of significant short-run causalities for the spurious link
Y2 → Y1 increases. We note that for n = 2048, the residuals of the VECM
are not normally distributed in 66% of the realizations (for both VECMs with
Y1 and Y2 being the dependent variable, respectively). Further, the residuals
have statistically significant autocorrelation at least for lag one. Finally, het-
eroskedasticity, based on the Engle test, is detected in 11% (for Y1) and 12%
(for Y2) of the cases. The comparative advantage of a model-free method is
apparent. The usually observed drawbacks of modelmis-specifications seem to
be effectively overcome with the application of the PTERV.

System 4.

We consider three co-integrated random walks, i.e.

r1,t = wt + ε1,t
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r2,t = 0.3wt + ε2,t

r3,t = 0.6wt + ε3,t

with a common stochastic drift wt = wt−1 + εt, where a coupled system with
linear (Y2 → Y3) and nonlinear couplings (Y1 → Y2 and Y1 → Y3) is superim-
posed via

y1,t = 3.4y1,t−1(1− y21,t−1)e−y
2
1,t−1 + 0.4δ1,t

y2,t = 3.4y2,t−1(1− y22,t−1)e−y
2
2,t−1 + 0.5y1,t−1y2,t−1 + 0.4δ2,t

y3,t = 3.4y3,t−1(1− y23,t−1)e−y
2
3,t−1 + 0.5y2,t−1 + 0.5y21,t−1 + 0.4δ3,t

where εt, εi,t and δi,t are Gaussian innovations with zero mean and variance
one. The considered system is given as xi,t = ri,t + yi,t for i = 1, 2, 3. The
causality tests are performed for m = P = 2.

As previously mentioned, the selection of long samples maximizes the per-
formance of the PTERV. The corresponding percentages of significant PTERV
values increase with n (see Table 4). For n = 2048, the spurious coupling
X3 → X1 and the indirect coupling X1 → X3 are also detected.

Table 4 As Table 3 but for System 4.

PTERV causality
n 256 512 1024 2048

X1 → X2 11 / 10 12 / 6 14 22 / 35
X2 → X1 3 / 5 5 / 9 8 / 14 12 / 6
X2 → X3 13 / 6 17 / 18 40 / 25 61 / 64
X3 → X2 5 / 1 5 / 9 3 / 6 3 / 8
X1 → X3 8 / 7 14 / 11 21 / 22 43 / 39
X3 → X1 6 / 8 9 / 19 18 / 11 33 / 37

VECM short-run causality
n 256 512 1024 2048

X1 → X2 9 30 59 84
X2 → X1 6 5 7 14
X2 → X3 2 4 4 7
X3 → X2 7 13 14 30
X1 → X3 47 85 98 100
X3 → X1 25 52 73 97

long-run causality
r <= 0 0 0 0 0
r <= 1 0 0 0 0
r <= 2 66 72 66 71

The VECM (Case 3) correctly indicates the linkX1 → X2 but fails to reveal
X2 → X3. The spurious relationships X1 → X3 and X3 → X1 are found in the
short-run (Table 4). For this system, the VECM residuals present significant
autocorrelations, especially for large n (e.g. for n = 2048, we obtain residual
autocorrelations in 100%, 98% and 69% of the realizations for X1, X2 and
X3 as dependent variable, respectively). Further, we get a high percentage of
heteroskedastic effects for X2 as dependent variable (e.g. 36% for n = 2048).
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Regarding the long-run causality, two co-integration relations are suggested
with a percentage between 66% and 72% for all sample sizes. Since the VECM
is not adequately fitted to the data, the nonlinear methodology seems to be a
more appropriate alternative for indicating the existence of causality among
the variables.

Although the PTERV is proposed for the detection of the causality when
nonlinearities exist, we also provide evidence for its performance when only
linear couplings are present.

System 5

A non-stationary, linear, bivariate model with bidirectional couplings X1 ↔
X2, is generated by integrating the variables from the system given by

x1,t = −0.7 + 0.7x1,t−1 + 0.2x2,t−1 + ε1,t

x2,t = 1.3 + 0.2x1,t−1 + 0.2x2,t−1 + ε2,t.

The variables are not co-integrated. System 5 is taken into consideration for
three reasons; first, in order to evaluate the performance of the PTERV only in
the presence of linear couplings, secondly when a bidirectional coupling exists,
and finally to investigate the effect of mis-specifying the embedding dimension
m. From the definition of the PTERV, we can only set m ≥ 2. However, the
true order model of this system is one.

The PTERV (for m = 2) seems to be robust only for large time series
lengths based on the non-parametric significance test, while for the paramet-
ric one, it gives high percentages of significant values also for smaller n (see
Table 5). The CGCI is applied to the first-differenced time series, since data
are non-stationary and non co-integrated (Case 2). It effectively denotes the
true couplings for all time series lengths, giving similar results when P = 1
and P = 2 (see Table 5 for P = 2).

Table 5 As Table 1 but for System 5.

PTERV (m = 2) CGCI (P = 2)
n 256 512 1024 2048 4096 256 512 1024 2048

X1 → X2 53 / 13 48 / 16 35 / 31 51 / 58 84 / 86 97 99 100 100
X2 → X1 47 / 0 38 / 3 22 / 9 18 / 14 37 / 41 99 100 100 100

System 6

A non-stationary, linear, multivariate system, with unidirectional couplings
X2 → X1 and X3 → X1, and co-integrated variables, defined as

x1,t = 0.4x1,t−1 + 0.4x2,t−1 + 0.5x3,t−1 + 0.2x1,t−2



14 Papana et al.

−0.2x2,t−2 − 0.2x1,t−3 + 0.15x2,t−3 + 0.1x3,t−3 + ε1,t

x2,t = 0.6x2,t−1 + 0.2x2,t−2 + 0.2x2,t−3 + ε2,t

x3,t = 0.4x3,t−1 + 0.3x3,t−2 + 0.3x3,t−3 + ε3,t.

The variables of this system are I(1) and co-integrated with one co-integration
relationship (see (Sharp, 2010), Model 8, p.78). We set m = P = 3.

The parametric significance test for the PTERV spuriously indicates all
couplings to be significant for n = 1024 and 2048, while the non-parametric
one correctly detects the direct couplings only for n = 1024 and 2048. The
corresponding percentages of significant PTERV values increase with n (Ta-
ble 6). Based on the standard linear procedure of VECM (Case 3), the short-
run causal relations X2 → X1 and X3 → X1 are correctly captured, with a
confidence that increases with the sample size (see Table 6). The results from
the Johansen trace test suggest the existence of long-run relationships, while
two co-integration relations are indicated in most cases.

Table 6 As Table 3 but for System 6.

PTERV causality
n 256 512 1024 2048

X1 → X2 0 / 1 0 / 1 87 / 0 90 / 6
X2 → X1 0 / 4 0 / 9 96 / 25 100 / 93
X2 → X3 0 / 0 0 / 3 93 / 1 88 / 7
X3 → X2 0 / 0 0 / 2 86 / 0 82 / 5
X1 → X3 0 / 5 0 95 / 1 92 / 5
X3 → X1 0 / 5 0 / 7 100 / 33 100 / 97

VECM short-run causality
n 256 512 1024 2048

X1 → X2 6 6 10 7
X2 → X1 63 97 100 100
X2 → X3 4 4 5 5
X3 → X2 8 6 5 6
X1 → X3 4 9 5 2
X3 → X1 22 48 76 96

long-run causality
r <= 0 0 0 0 0
r <= 1 80 92 85 90
r <= 2 87 91 90 91

System 7

Finally, we consider a system that is non-stationary in variance, generated
by superimposing three integrated generalized autoregressive conditional het-
eroskedastic processes of order (1,1), IGARCH (1,1), to the system of three
coupled Hénon maps (System 1). The IGARCH (1,1) is given as:

zi,t = σi,tεi,t

σ2
i,t = 0.2 + 0.9ε2i,t−1 + 0.1σ2

i,t−1, i = 1, 2, 3
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where εi,t is a Gaussian white noise with unit variance. Specifically, each zi,t
of IGARCH(1,1) (i = 1, 2, 3) is first standardized to have zero mean and
standard deviation equal to one. Then, the standarized series, denoted as zsi,t,
are multiplied by the factor g = 0.2 and are added to each xi,t, i = 1, 2, 3 of the
coupled Hénon map, so that the derived time series of System 7 are given as
yi,t = xi,t + gzsi,t, i = 1, 2, 3. In this example, variables are not co-integrated
and the nonlinear causality is known, i.e., Y1 → Y2 and Y2 → Y3.

The CGCI (P = 2) correctly suggests the causal links, however an in-
creased percentage of significant causality appears for Y2 → Y1 and Y3 → Y2
for large samples (Table 7). On the other hand, the PTERV (m = 2), ade-
quately identifies the connectivity of the system, both with parametric and
non-parametric significance tests.

Table 7 As Table 1 but for System 7.

PTERV (m = 2) CGCI (P = 2)
n 256 512 1024 2048 256 512 1024 2048

Y1 → Y2 25 / 33 72 96 / 98 100 46 83 100 100
Y2 → Y1 4 / 6 3 / 5 1 0 / 1 4 5 14 23
Y2 → Y3 44 / 37 77 / 71 98 / 99 100 27 52 86 100
Y3 → Y2 10 7 11 / 6 12 / 11 9 15 16 28
Y1 → Y3 7 / 8 3 / 2 3 / 8 9 / 12 10 12 10 6
Y3 → Y1 2 / 5 4 / 7 3 / 6 0 / 2 7 10 11 9

To sum-up, the PTERV indicates appropriately Granger causality when
nonlinearities are present and outperforms the standard linear procedure. Al-
though it has been developed to address features of nonlinear data, it performs
well also in the existence of linear couplings, such as for the simulation Systems
5 and 6. When nonlinear couplings are assumed, as in the first four systems,
the PTERV overpowers the linear method. The PTERV has low power for
small time series lengths but it improves with increasing n. Further, it seems
to be able to handle data that are non-stationary in variance. Finally, no
major differences in the performance of the PTERV are reported, when the
estimation of its statistical significance is parametric or non-parametric.

As a closing remark, we have to mention that the setting in general was
favorable for the linear procedure, since the PTERV on the integrated (non-
stationary) time series is compared to the CGCI on the original (stationary)
time series. A more realistic scenario, not applied here, would be to form
the non-stationary time series by adding a stochastic trend to the stationary
time series, e.g. as in Kugiumtzis (2013). Then, the first-differencing would
not produce the original stationary time series and the results of CGCI would
deviate, depending on the success of detrending.
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4 Application

In the effort to evaluate the performance of the methodological procedures,
presented in Section 2, on real data, we proceed with an application to two
sets of financial time series: stock indexes and interest rates. Since the respec-
tive variables obey unknown nonlinear features, non-parametric methods are
required for their analysis.

The PTERV is estimated on the original time series (prices) in both appli-
cations, the VECM is applied to the logarithmic time series in order to avoid
spurious couplings due to the variability of the data (Tsay, 2005; Lütkepohl
and Xu, 2011) and finally for the CGCI, the return series are calculated. To
gain insight from the PTERV measure and avoid eventual biases induced by
high dimension, we chose to have three time series at each of the two real
data sets. We recall that, by definition, the PTERV is not affected by the
logarithmic transformation or any other monotonic transformation.

In the first application, we study the causal relationships among interna-
tional stock markets. We consider the Morgan Capital International’s market
capitalization weighted index data of three markets consisting of daily mea-
surements from March 5, 2004 until March 5, 2009 for Germany (X1), Greece
(X2) and US (X3) (https://www.msci.com/market-cap-weighted-indexes) (see
Fig. 1). The logarithmic time series are denoted by Y1, Y2 and Y3, respectively.

The PTERV (m = 2) is estimated on the prices and shows that the US
drives Greece and Germany (p-values = 0.007, see Table 8). Further, between
Germany and Greece a bidirectional coupling is statistically significant (p-value
= 0.007).

Table 8 The estimated p-values from PTERV and CGCI for the first application. The rows
indicate the driving variables and the columns the respective response ones.

PTERV X1 X2 X3 CGCI Y Y1 Y Y2 Y Y3

X1 - 0.007 0.086 Y Y1 - 0.057 0.224
X2 0.007 - 0.510 Y Y2 0.025 - 0.115
X3 0.007 0.007 - Y Y3 0 0 -

Following the linear test procedure, the Augmented Dickey-Fuller test is
implemented. The results in Table 9 show that the logarithmic time series are
non-stationary, I(1). Then, the Johansen co-integration test is applied to the
log-transformed data for two lags (based on BIC). The test confirms that there
is not co-intergration (Table 10). Since the time series are I(1) and non co-
integrated, the CGCI is applied to the logarithmic returns, denoted as Y Y1,
Y Y2, Y Y3, respectively (Case 2). It appears that the US drives Greece and
Germany (p-values < 0.0001), while Germany causes Greece (p-value= 0.025)
(Table 8).

In the second application, we consider weekly measurements of interest
rates (in percent, not seasonally adjusted) for the period 5/1/1962 - 22/11/2013
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Fig. 1 (a) Original prices of developed markets and (b) logarithmic prices.

Table 9 Augmented Dickey-Fuller test results for the first application.

var. p-val. stat. crit. value
Y1 0.990 1.749 -3.414
Y2 0.990 2.052 -3.414
Y3 0.990 2.066 -3.414

Table 10 Results from Johansen co-integration test for application 1.

logarithmic prices
null trace stat. crit 90% crit 95% eigen. stat crit 90% crit 95%
r ≤ 0 51.391 32.065 35.012 29.325 21.873 24.252
r ≤ 1 22.066 16.162 18.398 15.933 15.001 17.148
r ≤ 2 6.133 2.705 3.841 6.133 2.705 3.841

such as the 3-Month Treasury Bill of the Secondary Market Rate (3MTB),
the effective Federal Funds Rate (FF) and the 10-Year Treasury Constant
Maturity Rate (10YTN) (https://fred.stlouisfed.org/categories/22). The log-
arithmic time series are denoted by Z1, Z2 and Z3, respectively (see Fig. 2).

The PTERV is estimated for m = 2. The empirical findings indicate two
drivings: the 3MTB on the FF (p-value from surrogate test is 0.007) and of
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Fig. 2 (a) Interest rates in levels and (b) logarithmic series.

the 10YTN on the FF (p-value= 0.007). Furthermore, a bidirectional coupling
exists between 3MTB and 10YTN (p-value= 0.007). Results are displayed in
Table 11. We note that the PTERV leads to identical findings for embedding
dimension m = 3, while for larger m, no couplings occur.

Table 11 The estimated p-values for PTERV (m = 2) for the second application.

PTERV 3MTB FF 10YTN
3MTB - 0.007 0.007

FF 0.076 - 0.322
10YTN 0.007 0.007 -

Regarding the standard linear procedure, the Augmented Dickey-Fuller test
shows that the data are non-stationary (I(1)) (see Table 12). The Johansen
co-integration test is then employed for P = 6 (based on BIC), suggesting
one co-integrating relationship (see Table 13). Thus, the VECM is built on
the logarithmic prices for P = 6 (Case 3). Analytical results are reported in
Table 14, including the coefficients of the model for each lag and the respective
probability. In the short-run, we capture the bidirectional couplings 3MTB ↔
FF and 3MTB ↔ 10YTN together with the unidirectional FF → 10YTN
(p-values < 0.05).

We recall that the outcomes of the VECM are sensitive to the selection
of P . As P increases, the number of causal links increases as well. It also
turns out that the VECM residuals are not normally distributed based on the
Jarque-Bera test of composite normality (p-value < 0.001). In the same line,
the Ljung-Box Q-test indicates residuals autocorrelation (p-value < 0.0001).
Finally, the Engle test detects ARCH effects (p-value < 0.0001).
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Table 12 Augmented Dickey-Fuller test results for the second application.

var. p-val. stat. crit. value
Z1 0.528 -2.131 -3.414
Z2 0.945 -0.976 -3.414
Z3 0.523 -2.142 -3.414

Table 13 Johansen co-integration test results for the second application.

logarithmic prices
null trace stat. crit 90% crit 95% eigen. stat crit 90% crit 95%
r ≤ 0 114.692 32.065 35.012 103.470 21.873 24.252
r ≤ 1 11.221 16.162 18.398 9.601 15.001 17.148
r ≤ 2 1.620 2.705 3.841 1.620 2.705 3.841

Table 14 Results from VECM (P = 6) for the second application.

Eq. 1 Eq. 2 Eq. 3
Variable lag coef. prob. coef. prob. coef. prob.

Y1 1 0.0338 0.1095 0.0886 0.0000 0.0057 0.2044
Y1 2 0.0021 0.9195 0.0236 0.0672 0.0100 0.0253
Y1 3 0.0182 0.3798 0.1201 0.0000 0.0167 0.0002
Y1 4 -0.0052 0.8045 0.0950 0.0000 0.0090 0.0446
Y1 5 -0.0048 0.8175 0.0692 0.0000 0.0128 0.0041
Y1 6 0.0523 0.0123 0.0106 0.4107 0.0018 0.6882
Y2 1 -0.0359 0.2713 -0.1767 0.0000 -0.0057 0.4096
Y2 2 0.1336 0.0000 -0.0959 0.0000 -0.0180 0.0095
Y2 3 -0.0631 0.0487 -0.1132 0.0000 -0.0048 0.4804
Y2 4 0.0205 0.5043 -0.0111 0.5558 -0.0042 0.5244
Y2 5 0.2408 0.0000 -0.0152 0.4139 0.0019 0.7728
Y2 6 0.0041 0.8902 -0.0041 0.8224 0.0187 0.0033
Y3 1 0.6259 0.0000 0.0752 0.1844 0.2041 0.0000
Y3 2 -0.0922 0.3279 0.1507 0.0092 0.0316 0.1157
Y3 3 0.0027 0.9773 -0.0320 0.5812 -0.0067 0.7407
Y3 4 0.0438 0.6418 -0.0004 0.9944 0.0341 0.0900
Y3 5 0.0331 0.7252 0.0365 0.5282 -0.0306 0.1277
Y3 6 -0.0432 0.6412 -0.0586 0.3031 0.0027 0.8925

ec term 1 0.014664 0.0000 -0.0062 0.0000 0.0008 0.0571

5 Conclusions

In this paper we propose the use of a nonlinear Granger causality measure,
the partial transfer entropy on rank vectors (PTERV), as an alternative to the
standard linear procedure (VAR / VECM) for the investigation of directed
inter-relationships among financial variables. Therefore, we present and com-
pare the two procedures in the aim to detect causality in non-stationary time
series. Both are evaluated for different simulation systems and their perfor-
mance is assessed based on the percentages of rejection of the non-causality
hypothesis from different realizations.

The PTERV can be applied to any type of data and no assumptions need
to be made regarding the nature of the involved time series (e.g. their volatil-
ity) prior to its estimation. This means that it can be directly employed to
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non-stationary series. In addition to that, it is not affected by any monotonic
transformation of the data as well as by the existence of co-integration, be-
cause it is model-free. We should note that the PTERV, as the majority of
the Granger causality measures, requires the separability assumption, i.e. the
assumption that cause and effect are separable. Further, the PTERV has not
been designed for systems with time dependent causal relations, however, such
cases can potentially be faced by estimating the PTERV on relatively short
rolling windows, tracing in this way possible changes of the causality relations
across time.

The PTERV outperforms the linear approach (VAR or VECM) in the case
of nonlinear causal effects and tends to avoid possible spurious causalities
stemming from first-differencing. Large samples are required for the PTERV;
its performance improves with the time series length and with relatively low
embedding dimensions. Additionally, it is a convenient alternative procedure to
the VECM methodology in cases where the VECM is poorly fitted to the data.
However, the PTERV indicates both long- and short-run causality. We leave for
future work the combination of PTERV with some non-parametric/nonlinear
co-integration test in order to be able to extract information for the existence
of long-run causality (Breitung, 2001; Choi and Saikkonen, 2010).

On the other hand, the standard linear procedure consists of three cases
arising from the outcome of stationarity and co-integration tests. When the
data are not co-integrated, Granger causality tests, such as CGCI, can be
applied (Case 1 and Case 2). The CGCI has been vastly used in the literature
and found very effective in different applications. However, it gives poor results
in the case of nonlinear structures. When data are non-stationary and co-
integrated, the VECM is utilized (Case 3). Its main advantage is that we can
discriminate between long- and short-run causality, while it is efficient even for
small time series lengths. Nevertheless, it fails to capture the true couplings
in the presence of nonlinearity. The validity of the results depends on whether
the fitted model is well-specified.

To see whether the conclusions from the simulation experiment hold, both
procedures have been applied to real data. In the first application to national
capitalization indices, both methods highlight that the US drives Germany
and Greece. In addition, the VECM indicates the causal link Germany →
Greece, while the PTERV unveils a bidirectional interaction between Greece
and Germany supporting empirical evidence about the strong connectivity
among the European stock markets.

In the second application where interest rates are examined, the detection
of bidirectional couplings, via the linear procedure, leads to an over-simplistic
view of money and capital markets, since it is not able to take into account
the impact of the financial crisis of 2007-2009 on the traditional interest rate
channel. In contrast, the PTERV accurately describes the effect of the 3MTB
and the 10YTN on the FF as well as the feedback mechanism between the
3MTB and 10YTN. According to Kyrtsou et al. (2014) and Papana et al.
(2016), this kind of connectivity can be explained by the stance of monetary
policy and the behavioral aspects of investors’ expectations. In the same line,
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Guo et al. (2011) find that in the aftermath of the financial crisis, a reversal
of the causal relationship between bond yields is observed, conditional to the
stock market signals, so that long-term yields cause shorter-term yields and
then the US policy rate.
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