
Generalised 2-Circulant Inequalities for the Max-Cut Problem

Konstantinos Kaparisa,1,∗, Adam N. Letchfordb, Ioannis Mourtosc

aQMeDA Lab, Department of Business Administration, University of Macedonia, Thessaloniki, Greece.
bDepartment of Management Science, Lancaster University, Lancaster, UK.

cELTRUN Research Lab, Department of Management Science & Technology, Athens University of Economics and Business, Athens, Greece.

Abstract

The max-cut problem is a fundamental combinatorial optimisation problem, with many applications. Poljak and
Turzik found some facet-defining inequalities for the associated polytope, which we call 2-circulant inequalities. We
present a more general family of facet-defining inequalities, an exact separation algorithm that runs in polynomial
time, and some computational results.

Keywords: max-cut problem, polyhedral combinatorics, cutting planes

1. Introduction

In the max-cut problem (MCP), we are given a (sim-
ple, loopless) undirected graph, along with a (rational)
weight for each edge. The task is to partition the vertex
set into two subsets, called “shores”, in a way that max-
imises the sum of the weights of the edges that cross
from one shore to the other.

The MCP is a much-studied problem in combinato-
rial optimisation, with a wide range of applications (see,
e.g., [3, 11, 16]). Unfortunately, it is also strongly NP-
hard [13]. At present, even the best exact algorithms can
solve only instances with up to 120 nodes or so (e.g.,
[5, 21, 23]).

The convex hull of feasible solutions to the MCP is
called the cut polytope [4]. This polytope has been stud-
ied in depth, and many families of strong valid linear in-
equalities are known for it (e.g., [4, 6, 10, 17, 18, 22]).
For some of those families, efficient separation algo-
rithms are known (e.g., [4, 5, 14, 15, 17, 19, 20]).

A 2-circulant is a graph with vertex set {1, . . . , p},
where p ≥ 5, and edges {i, i + 1} and {i, i + 2} for
i = 1, . . . , p, where indices are taken modulo p. See
Figure 1 for an example. Poljak & Turzik [22] showed

∗Corresponding author
Email addresses: k.kaparis@uom.edu.gr (Konstantinos

Kaparis), A.N.Letchford@lancaster.ac.uk (Adam N.
Letchford), mourtos@aueb.gr (Ioannis Mourtos)

1This work is part of a project that has received funding from the
Research Committee of the University of Macedonia under the Basic
Research 2020-21 funding programme

Figure 1: A 2-circulant with p = 7.

that any 2-circulant with p ≡ 1 mod 4 yields a facet-
defining inequality for the cut polytope. We will fol-
low [15] in calling these inequalities 2-circulant (2C)
inequalities. Separation algorithms for them are given
in [15, 19, 20].

In this paper, we derive a more general family of
facet-defining inequalities, which we call generalised
2-circulant (G2C) inequalities. We then show how to
extend the separation algorithm in [15], in order to sep-
arate exactly over a family of valid inequalities that in-
cludes all G2C inequalities. We also present some com-
putational results.

The paper has a simple structure. The literature is re-
viewed in Section 2. The new inequalities are presented
in Section 3. The separation algorithm is described in
Section 4, and the computational results are in Section
5.

Throughout the paper, we assume that the reader is
familiar with the polyhedral approach to combinatorial

Preprint submitted to Operations Research Letters January 6, 2022

optimisation (see, e.g., [8]). We also use the following
notation and terminology. We let Kn =

(
Vn, En

)
denote

the complete graph on n nodes, where Vn = {1, . . . , n}.
Given a set S ⊆ V , the set of edges having exactly one
end-node in S is called a cut and denoted by δ(S). A set
C ⊂ En is called a cycle if it induces a connected sub-
graph in which all nodes have even degree. A cycle is
called a circuit if all nodes in the subgraph have degree
2. Given two sets S ,T ⊆ Vn, the set (S ∪ T) \ (S ∩ T)
is called the symmetric difference of S and T , and is de-
noted by S4T . Given a vector x ∈ [0, 1]En and an edge
e = {i, j} ∈ En, we sometimes write xi j or x(i, j) instead
of xe. Finally, we assume n ≥ 5 throughout the paper, to
avoid trivial or “degenerate” cases.

2. Literature Review

We now briefly review the relevant literature. We re-
fer the reader to [11, 16] for comprehensive surveys on
the MCP.

2.1. The cut polytope
For a given n and a given edge-weight vector w ∈

QEn , the MCP can be formulated as follows:

max
∑

1≤i< j≤n wi jxi j

s.t. xi j + xik + x jk ≤ 2 (1 ≤ i < j < k ≤ n) (1)
xi j − xik − x jk ≤ 0

(
{i, j} ∈ En; k ∈ Vn \ {i, j}

)
(2)

xe ∈ {0, 1}
(
e ∈ En

)
.

Here, xe takes the value 1 if and only if edge e lies in
the cut. The inequalities (1) and (2) are called triangle
inequalities.

The convex hull of feasible x vectors is called the cut
polytope and is denoted by CUTn. In [4], the triangle
inequalities are shown to define facets of CUTn, along
with several other inequalities, such as the odd bicycle
wheel (OBW) inequalities. Since then, many more fam-
ilies have been discovered (see Part V of [11]). Here, we
focus on the 2-circulant inequalities [22], which take the
form ∑

e∈F

xe ≤ 3(p − 1)/2,

where the edge set F ⊂ En induces a 2-circulant in Kn,
with p ≡ 1 mod 4.

We will also need the following result from [4]: given
any circuit C ⊂ En, and any D ⊆ C with |D| odd, the co-
circuit inequality∑

e∈D

xe −
∑

e∈C\D

xe ≤ |D| − 1

is implied by the triangle inequalities.

2.2. Switching and collapsing

It is shown in [4] that, if the inequality λT x ≤ γ is
valid (or facet-defining) for CUTn, then the ‘switched’
inequality∑

e∈En\δ(S)

λexe −
∑

e∈δ(S)

λexe ≤ γ −
∑

e∈δ(S)

λe

is also valid (or facet-defining), for any S ⊂ Vn. This op-
eration is called switching [11]. One can check the fol-
lowing facts: (i) switching on S is equivalent to switch-
ing on V \ S , (ii) switching on S and then switching on
T is equivalent to switching on S4T , (iii) if we take a
triangle inequality of the form (1) and switch on node k,
then we obtain a triangle inequality of the form (2).

We will also need the following fact from [9]. Let
αT x ≤ β be valid for CUTn, and let {i, j} be an edge
in En. We can obtain a valid inequality for CUTn−1 as
follows. The edge {i, j} is contracted, by identifying j
with i. For any k ∈ {1, . . . , n}\ {i, j}, the coefficient of xik

in the new inequality is set to αik + α jk. The coefficients
for the edges that were not incident on i and j remain
unchanged. This operation is called collapsing.

2.3. Separation

Separation algorithms for the cut polytope can be
found in, e.g., [5, 11, 14, 15, 19, 20]. Poljak & Turzik
[22] conjectured that separation for the 2C inequalities
isNP-hard. As far as we know, this conjecture remains
open. On the other hand, polynomial-time separation
algorithms are known for various families of valid in-
equalities that include the 2C inequalities.

Letchford [19] showed that every switched OBW or
2C inequality is implied by triangle inequalities and a
simple disjunction of the form

(
xe = 0

)
∨
(
xe = 1

)
. Let us

call inequalities that can be derived in this way simple
disjunctive cuts (SDCs). Using results in [2], one can
separate over all SDCs by solving

(
n
2

)
linear programs

(LPs), each with O
(
n3) variables and O

(
n2) constraints.

A faster separation algorithm was provided by Letch-
ford & Sørensen [20]. They defined a family of “

{
0, 1

2
}
-

cuts” for the cut polytope (see [7]), and showed that it
includes the switched OBW and 2C inequalities. They
then showed how to separate over the

{
0, 1

2
}
-cuts in

O
(
n5) time.
An alternative O

(
n5) separation algorithm was given

in Kaparis & Letchford [15]. It separates over not only
the switched 2C inequalities, but all inequalities that can
be obtained from them via the collapsing operation.

2

3. More Facets from 2-Circulants

In this section, we derive and analyse the G2C in-
equalities. In Subsection 3.1, the inequalities are de-
rived and the effect of switching is analysed. In Subsec-
tion 3.2, the G2C inequalities are shown to be interme-
diate in generality between the switched 2C inequalities
and the SDCs. Then, in Subsection 3.3, the G2C in-
equalities are shown to define facets of CUTn.

3.1. Derivation and the effect of switching
Before presenting our new inequalities, we will need

the following two lemmas.

Lemma 1. Given any ordered triple (i, j, k) of distinct
vertices in Vn, the “weakened triangle” inequalities

xi j + x jk + 2xik ≤ 3 (3)
xi j − x jk − 2xik ≤ 0 (4)
−xi j + x jk − 2xik ≤ 0 (5)
−xi j − x jk + 2xik ≤ 1 (6)

are valid for CUTn.

Proof. The first inequality is the sum of the triangle in-
equality (1) and the trivial upper bound xik ≤ 1. The
other three inequalities can be obtained from the first by
switching on k, i and j, respectively. �

Lemma 2. Let C ⊂ En be a circuit, and let D be an
arbitrary subset of C. If x is the incidence vector of a
cut, then the quantity∑

e∈C\D

xe −
∑
e∈D

xe

is an even integer.

Proof. This follows trivially from the fact that every cut
intersects every circuit an even number of times. �

The following theorem introduces the new inequali-
ties.

Theorem 1. Let p be an odd integer with 5 ≤ p ≤ n.
Let v1, . . . , vp be distinct vertices in Vn. Define the set
S = {1, . . . , p}, and let S + be an arbitrary (possibly
empty) subset of S . Let S − denote S \ S +, and define
the sets

S ++ =
{
i ∈ S + : i + 1 ∈ S +},

S +− =
{
i ∈ S + : i + 1 ∈ S −

}
,

S −+ =
{
i ∈ S − : i + 1 ∈ S +},

S −− =
{
i ∈ S − : i + 1 ∈ S −

}
,

where indices are taken modulo p. If 3
∣∣∣S ++

∣∣∣ +
∣∣∣S −−∣∣∣ ≡

3 mod 4, then the “generalised 2-circulant” (G2C) in-
equality∑
i∈S +

x
(
vi, vi+1

)
−

∑
i∈S −

x
(
vi, vi+1

)
+

∑
i∈S ++∪S −−

x
(
vi, vi+2

)
−

∑
i∈S +−∪S −+

x
(
vi, vi+2

)
≤

(
3
∣∣∣S ++

∣∣∣+ ∣∣∣S −−∣∣∣−3
)
/2 (7)

is valid for CUTn (indices taken modulo p).

Proof. We assume w.l.o.g. that vi = i for i = 1, . . . , p,
and we let L denote the left-hand side of (7). By Lemma
1, the following inequalities are valid:

x(i, i + 1) + x(i + 1, i + 2) + 2x(i, i + 2) ≤ 3
(
i ∈ S ++)

x(i, i + 1) − x(i + 1, i + 2) − 2x(i, i + 2) ≤ 0
(
i ∈ S +−)

−x(i, i + 1) + x(i + 1, i + 2) − 2x(i, i + 2) ≤ 0
(
i ∈ S −+)

−x(i, i + 1) − x(i + 1, i + 2) + 2x(i, i + 2) ≤ 1
(
i ∈ S −−

)
.

Summing these inequalities, we obtain:

2L ≤ 3
∣∣∣S ++

∣∣∣ +
∣∣∣S −−∣∣∣.

Dividing by two and rounding down the right-hand side,
we obtain:

L ≤

3
∣∣∣S ++

∣∣∣ +
∣∣∣S −−∣∣∣

2

 . (8)

Now, observe that L can be written as the sum of two
components:

(a)
∑
i∈S +

x(i, i + 1) −
∑
i∈S −

x(i, i + 1);

(b)
∑

i∈S ++∪S −−
x(i, i + 2) −

∑
i∈S +−∪S −+

x(i, i + 2).

By Lemma 2, each of these two components must be an
even integer. Thus, if the right-hand side of (8) is odd,
we can subtract one while maintaining validity. �

Figure 2 gives a graphical representation of a G2C in-
equality with p = 7, S = {1, . . . , 7} and S + = {1, 2, 3, 5}.
Solid and dotted lines indicate edges whose variables
have a coefficient of 1 and −1, respectively. Note that,
for this example, S − = {4, 6, 7}, S ++ = {1, 2} and
S −− = {6}. Thus, 3

∣∣∣S ++
∣∣∣ +

∣∣∣S −−∣∣∣ = 6 + 1 = 7. Thus,
the right-hand side is (7 − 3)/2 = 2.

The following proposition will turn out to be useful
in the following two subsections.

Proposition 1. Consider a fixed G2C inequality of the
form (7), and let k be any element of S . Switching the
G2C inequality on {vk} is equivalent to changing S + to
S +4{k, k − 1} (and adjusting S −, S ++ and so on accord-
ingly).

3

1

2

3

4

5

6

7

≤ 2

Figure 2: G2C inequality with S = {1, . . . , 7} and S + = {1, 2, 3, 5}.

Proof. Suppose initially that
{
vk−2, . . . , vk+2

}
⊆ S +.

Consider the modified G2C inequality that is obtained
by removing vk and vk−1 from S +. The coefficients of
x
(
vk−2, vk

)
, x

(
vk−1, vk

)
, x

(
vk, vk+1

)
and x

(
vk, vk+2

)
change

from 1 to −1, and the right-hand side decreases by 4.
Thus, the modified G2C inequality can be obtained from
the original by switching on {vk}. A similar argument
applies if some of vk−2, . . . , vk+2 do not lie in S +, as one
can verify by an easy (but tedious) enumeration of cases.
�

3.2. Relationship with other inequalities
We now compare the G2C inequalities with some

other known inequalities. Let us say that an inequality
is a switched 2-circulant (S2C) inequality if it is either
a 2C inequality, or can be obtained from one by switch-
ing. The next lemma will be used to show that the S2C
inequalities are a special case of the G2C inequalities.

Lemma 3. A G2C inequality has p ≡ 1 mod 4 if and
only if |S +| is odd and |S −| is even.

Proof. Theorem 1 states that any G2C inequality must
satisfy 3

∣∣∣S ++
∣∣∣ +

∣∣∣S −−∣∣∣ ≡ 3 mod 4. Moreover, by defi-
nition, we have

∣∣∣S +−
∣∣∣ =

∣∣∣S −+
∣∣∣, which implies 3

∣∣∣S +−
∣∣∣ +∣∣∣S −+

∣∣∣ ≡ 0 mod 4. Put together, these imply

3
∣∣∣S ++ ∪ S +−

∣∣∣ +
∣∣∣S −+ ∪ S −−

∣∣∣ ≡ 3 mod 4,

or, equivalently, 3|S +|+|S −| ≡ 3 mod 4. Now, p = |S +|+

|S −|, which implies that p + 2|S +| ≡ 3 mod 4. Given
that p is odd, there are only two possibilities: either p ≡
1 mod 4, |S +| is odd and |S −| is even, or p ≡ 3 mod 4,
|S +| is even and |S −| is odd. �

Proposition 2. A valid inequality for CUTn is an S2C
inequality if and only if it is a G2C inequality with p ≡
1 mod 4.

1

2

3

4

5

6

7

≤ 2

Figure 3: “Simple” G2C inequality with p = 7.

Proof. One can check that a 2C inequality is nothing
but a G2C inequality with p ≡ 1 mod 4 and S + = S .
(Indeed, in this case, we have S ++ = S and S +− =

S −+ = S −− = ∅, and the right-hand side of (7) reduces to
3(p−1)/2.) Now, switching a 2C inequality on some set
T ⊆ {v1, . . . , vp} is equivalent to switching on each node
in T consecutively, in any order. Proposition 1 then im-
plies that any S2C inequality is a G2C inequality.

To complete the proof, consider a G2C inequality
with p ≡ 1 mod 4. Suppose |S −| ≥ 2, and recall from
Lemma 3 that |S −| is even. Let vk, v` be two elements of
S −, with k < `. If we switch the inequality on the set{
vk+1, . . . , v`

}
, the effect is that vk and v` move from S −

to S +. This operation can be repeated until S + = S , at
which point we have a 2C inequality. �

Before presenting our next result, we will need the
following definition:

Definition 1. A G2C inequality will be called “simple”
if S = {1, . . . , p}, p ≡ 3 mod 4 and S + = ∅.

One can check that a simple G2C inequality takes the
form:

−

p∑
i=1

x(i, i + 1) +

p∑
i=1

x(i, i + 2) ≤ (p − 3)/2. (9)

See Figure 3 for a representation of a simple G2C in-
equality with p = 7. One can check that every G2C
inequality with p ≡ 3 mod 4 is either simple, or can be
obtained from a simple inequality by switching.

We can now present our next result.

Proposition 3. Every G2C inequality is an SDC.

Proof. Since the result was already shown for switched
2C inequalities in [19], it suffices to show it for the
G2C inequalities with p ≡ 3 mod 4. By relabelling

4

the nodes, if necessary, we can assume that vk = k for
k = 1, . . . , p. Now, the set of triangle inequalities (1),
(2) is closed under switching, which implies that the set
of SDCs is closed under switching as well. Accordingly,
we can assume that our G2C inequality is simple.

To complete the proof, we show that the simple G2C
inequalities (9) are implied by the triangle inequalities
together with the simple disjunction(

x1p = 0
)
∨

(
x1p = 1

)
.

To this end, we consider two cases.

Case 1: x1p = 0. In this case, we obtain the inequality
(7) by summing together (a) the triangle inequalities

−x(i, i + 1) − x(i + 1, i + 2) + x(i, i + 2) ≤ 0 (10)

for i ∈ {2, 4, . . . , p−1}∪{p}; (b) the co-circuit inequality

(p−5)/2∑
i=1

x(2i+1, 2i+3) +x(1, 3)+x(p−2, p)−x(1, p) ≤ (p−3)/2;

and (c) the inequality 2x1p ≤ 0.

Case 2: x1p = 1. In this case, we obtain the inequal-
ity (7) by summing together (a) the triangle inequalities
(10) for i = 1, 3, . . . , p − 2; (b) the triangle inequalities
x1p+x12+x2p ≤ 2 and x(1, p)+x(1, p−1)+x(p−1, p) ≤ 2;
(c) the co-circuit inequality

(p−3)/2∑
i=1

x(2i, 2i+2) +x(1, 2)−x(1, p)−x(p−1, p) ≤ (p−3)/2;

and (d) the inequality −4x1p ≤ −4. �

We remark that one of the inequalities mentioned in
[1], which defines a facet of CUT7, can be derived as a
G2C inequality with p = 7. (That inequality is called a
parachute inequality in [11].) In other words, the G2C
inequalities with p = 7 are not completely new. On the
other hand, the G2C inequalities with p = 11, 15, . . . did
not appear before in the literature.

To end this subsection, we use the collapsing opera-
tion to define some more families of inequalities. Let us
say that an inequality is an extended 2-circulant (E2C)
inequality if it is either a 2C inequality, or can be ob-
tained from one via collapsing. We define extended
switched 2-circulant (ES2C) and extended generalised
2-circulant (EG2C) inequalities analogously. One can
check that EG2C inequalities can be written in the form
(7), the only change being that the vertices v1, . . . , vp are
no longer required to be distinct.

2C S2C G2C

E2C ES2C EG2C

{
0, 1

2
}

SDC

Figure 4: Hierarchy of inequalities.

Figure 4 shows the resultant hierarchy of inequalities.
An arrow from one class to another indicates that the
former is a subset of the latter. (One can easily show
that all inclusions are strict. We omit details for brevity.)
This hierarchy will prove useful in the next section.

3.3. Facet proof

In this subsection, we will show that every G2C in-
equality defines a facet. We will need the following
standard lemma.

Lemma 4. [4, Lemma 2.5] Let aT x ≤ b be a valid in-
equality for CUTn, and let i, j be distinct nodes in Kn. If
there is W ⊂ Vn \ {i, j} such that the incidence vectors
of δ(W), δ

(
W ∪ {i}

)
, δ

(
W ∪ { j}

)
and δ

(
W ∪ {i, j}

)
satisfy

aT x = b, then ai j = 0.

Theorem 2. Every G2C inequality defines a facet of
CUTn.

Proof. If p ≡ 1 mod 4, then the G2C inequality is
a switched 2C inequality, which is known to define a
facet. So suppose that p ≡ 3 mod 4. By relabelling
the nodes, if necessary, we can assume that vk = k for
k = 1, . . . , p. Also, since the property of being facet-
defining is preserved under switching, we can assume
that S + = ∅. In other words, we can suppose that the
G2C inequality is simple. Let us call edges of the form
{i, i + 1} and {i, i + 2} ‘outer’ and ‘inner’, respectively.

We follow the proof strategy of [22, Theorem 4.1].
We say that a set R ⊂ S is a ‘root’ if the incidence vector
of the cut δ(R) satisfies the simple G2C inequality at
equality. That is, R is a root if and only if the number
of inner edges in δ(R) exceeds that of its outer edges by
(p − 3)/2. We also let [m] stand for {1, 2, . . . ,m}.

Assume an arbitrary but fixed inequality (9) and let F
denote the face of CUTn it defines, i.e., the convex hull

5

of the incidence vectors of all it roots. As CUTn is full-
dimensional, F cannot coincide with CUTn. Consider
the following roots that show also the non-emptiness of
F:

• R1 =
⋃

k∈
[

p−7
4

]{4k + 1, 4k + 2} ∪ {1, p − 1, p},

• S 1 =
⋃

k∈
[

p−3
4

]{4k − 1, 4k} ∪ {1, p}, and

• T =
⋃

k∈
[

p−3
4

]{4k, 4k + 1} ∪ {1}.

Simple counting shows that δ(R1) contains p−3
2 outer

and p−3 inner edges, while both δ(S 1) and δ(T) contain
p+1

2 outer and p − 1 inner edges. In fact, each of δ(S 1)
and δ(T) contains all inner edges of the circulant except
for {1, 3} and {2, p}, respectively. Let us also observe
that:

• R1 contains {1, 2} and {1, 3} but not {1, p} and
{1, p − 1};

• S 1 contains {1, 2} and {1, p − 1} but not {1, 3} and
{1, p};

• and T contains all four edges incident to node 1.

Note also that switching node 1 to the opposite side of
the cut in any of these three roots (i.e., deleting 1 from
R1 or S 1 or T) yields another root of (9) that we call the
“{1}-switch” of the starting root. For example, deleting
1 from R1 results in the following changes to the cut:
(a) the outer edge {1, 2} is removed, (b) the outer edge
{1, p} is added, (c) the inner edge {1, 3} is removed, and
(d) the inner edge {1, p − 1} is added. Thus, the total
number of inner and outer edges in δ

(
R1 \ {1}

)
remains

as in δ(R1).
Let x1 and x̂1 denote the incidence vectors of R1 and

its {1}-switch, y1 and ŷ1 the vectors of S 1 and its {1}-
switch, and z1 and ẑ1 the vectors of T and its {1}-switch.
For i ∈ S , one can define the roots Ri and S i by ‘shifting’
by i positions the nodes in R1 and T1, thus obtaining also
the corresponding {i}-switches and the vectors xi, x̂i, yi

and ŷi.
To show that F is a facet of CUTn, we prove that any

equality aT x = b satisfied by all roots in F has ae =

α for any inner e, ae = −α for any outer e, and ae =

0 for any other edge. That is, we show that any such
inequality is a scalar multiple of (9).

As both xi and x̂i satisfy aT x = b, we have aT xi =

aT x̂i. Thus,

ai(i+1) + ai(i+2) = ai(i−1) + ai(i−2).

Similarly, we have aT yi = aT ŷi, which yields

ai(i+1) + ai(i−2) = ai(i−1) + ai(i+2).

Adding the two shows that ai(i+1) = ai(i−1) and, therefore,
ai(i+2) = ai(i−2). This implies (by the rotational symmetry
of the circulant) that ae = α for any inner e and ae = β
for any outer e. Moreover, aT z1 = aT ẑ1, which yields

a12 + a13 + a1p + a1(p−1) = 0.

Combined with the above, this shows that β = −α.
It remains to show that ae = 0 for any other edge

e = {i, j}, using Lemma 4. If neither of i and j belongs
to S , any subset of S that is a root can play the role of
W in Lemma 4. If only i belongs to S , one can set W
to Ri \ {i}. Finally, if both i and j belong to S , we can
assume without loss of generality that i = 1. This in
turn implies that j ∈ {4, 5, . . . , p − 3, p − 2}, given that
{i, j} is not an edge of the circulant. If j is congruent to
0 or 3 mod 4, then j is not in R1, and therefore we can
set W to R1 \ {1}; otherwise, j is not in S 1, and we can
set W to S 1 \ {1}. �

4. The New Separation Algorithm

When considering separation, it helps to refer once
again to Figure 4. Recall that the algorithms in [19] and
[20] separate over the {0, 1

2 }-cuts and the SDCs, respec-
tively. One can also check that the separation algorithm
in [15] separates over the ES2C inequalities.

We now present an O
(
n5) separation algorithm for the

EG2C inequalities. The algorithm is based on the fol-
lowing definition and lemma.

Definition 2. Given any ordered triple (i, j, k) of nodes
in Vn, define

∆++(i, j, k) = 3 − xi j − x jk − 2xik

∆+−(i, j, k) = −xi j + x jk + 2xik

∆−+(i, j, k) = −xi j + x jk + 2xik

∆−−(i, j, k) = 1 + xi j − x jk − 2xik.

Note that these quantities are the slacks of the inequali-
ties (3)-(6).

Lemma 5. The G2C inequalities (7) can be written as∑
i∈S ++

∆++(vi, vi+1, vi+2
)

+
∑

i∈S +−

∆+−(vi, vi+1, vi+2
)
+

∑
i∈S −+

∆−+(vi, vi+1, vi+2
)

+
∑

i∈S −−
∆−−

(
vi, vi+1, vi+2

)
≥ 3,

where indices are again taken mod p.

Proof. Multiply the inequality (7) by minus two, add
3
∣∣∣S ++

∣∣∣+ ∣∣∣S −−∣∣∣ to both sides, and re-arrange the left-hand
side. �

6

We remark that the EG2C inequalities can also be
written as in the above lemma, the only change being
that the vertices v1, . . . , vp are no longer required to be
distinct.

Now, assume that we have been given a point x∗ ∈
[0, 1]En that we wish to separate. We construct an aux-
iliary graph, called G̃, as follows. For each ordered pair
(i, j) of nodes in V , we insert two nodes into G̃, labelled
“(i, j)+” and “(i, j)−”. For each ordered triple (i, j, k) of
nodes in V , we include edges in G̃ as follows:

• an edge between node (i, j)+ and node (j, k)+, with
“weight” of ∆++(i, j, k) (evaluated at x∗) and a
“charge” of 3;

• an edge between node (i, j)+ and node (j, k)−, with
weight ∆+−(i, j, k) and charge 0;

• an edge between node (i, j)− and node (j, k)+, with
weight ∆−+(i, j, k) and charge 0;

• an edge between node (i, j)− and node (j, k)−, with
weight ∆−−(i, j, k) and charge 1.

It then follows from Lemma 5 that, if x∗ violates a G2C
inequality, there is a circuit in G̃ that (a) has total weight
less than 3, and (b) has a total “charge” congruent to 3
mod 4. It can also be shown, using the remark following
Lemma 5, that x∗ violates an EG2C inequality if and
only if there is such a circuit in G̃.

To detect whether such a circuit exists, we use an idea
from [4, 15]. We construct another graph, called G+,
which is four times larger than G̃. For each pair (i, j),
and for c = 0, . . . , 3, we have a node labelled “(i, j)+

c ”
and a node labelled “(i, j)−c ”. The index c represents the
cumulative “charge”, and is taken modulo 4. For each
triple (i, j, k), and for c = 0, . . . , 3, we have an edge
between (i, j)+

c and (j, k)+
c+3 with weight ∆++(i, j, k), an

edge between (i, j)+
c to (j, k)−c with weight ∆++(i, j, k),

and so on.
We can now solve the separation problem by solv-

ing O
(
n2) shortest-path problems in G+. Specifically,

for each pair (i, j), we find the minimum-weight path
from (i, j)+

0 to (i, j)+
3 , and the minimum-weight path

from (i, j)−0 to (i, j)−3 . If the path has a total weight less
than 3, we have found a violated inequality.

Note that D+ has O
(
n2) nodes and O

(
n3) arcs, and it

can be constructed in O
(
n3) time. Moreover, under the

assumption that our fractional point x∗ satisfies all of
the weakened triangle inequalities, each arc in A+ will
have non-negative weight. Thus, we can use Dijkstra’s
algorithm to solve the shortest-path problems. Using
the Fibonacci heap variant of Dijkstra’s algorithm [12],

one can solve each shortest-path problem in O
(
n3) time.

This leads to a total running time of O
(
n5).

A running time of O
(
n5) is still rather high. The al-

gorithm can be made faster by exploiting the sparsity of
x∗. Define the edge set F =

{
e ∈ E : 0 < x∗e < 1

}
. (The

“F” stands for “fractional”.) Proposition 3 implies that,
if x∗ satisfies all triangle inequalities, then an EG2C
inequality cannot be violated unless

(
vi, vi+1

)
∈ F for

i = 1, . . . , p.
To exploit this fact, we assume that x∗ satisfies all

triangle inequalities. We then only include the nodes
(i, j)+

c and (i, j)−c in G+ if x∗i j is fractional. This re-
duces the number of nodes and edges in G+ to O

(
|F|

)
and O

(
n|F|

)
, respectively. Each shortest-path computa-

tion then takes only O
(
n|F|

)
time, and the number of

shortest-path calls reduces to O
(
|F|

)
. The total time re-

duces to O
(
n|F|2

)
.

Although the running time of O
(
n|F|2

)
is still rather

high, note that the algorithm can generate several vio-
lated inequalities in a single call.

We remark that our auxiliary graph G+ has half as
many nodes and edges as the one in [15], despite the
fact that it separates over a larger family of inequalities.

5. Computational Results

To explore the potential of EG2C inequalities, we
modified the cutting-plane algorithm described in [15],
and ran it on the same instances. The test set is com-
posed of two sets of fully dense instances, called “MC A”
and “MC B”. For the instances in MC A, each edge weight
is a random integer uniformly selected from {1, . . . , 10}.
For the instances in MC B, each edge weight is set to ei-
ther +1 or −1, with equal probability. Each set contains
ten instances for each value of n in {35, 45, 55}.

The code was written in C and calls on the callable
library of CPLEX (v.12.8). We use primal simplex to
solve the initial LP and dual simplex to re-optimise after
adding cutting planes. The experiments were run on an
Intel i5 processor at 3.40GHz × 4, under Ubuntu 18.04,
with 8GB of RAM.

We considered three versions of the cutting-plane al-
gorithm. In version (a), we separate triangle inequali-
ties alone. In version (b), we separate over the ES2C
inequalities, using the algorithm in [15], when triangle
separation fails. In version (c), we separate over the
(more general) EG2C inequalities, using the algorithm
in this paper, when triangle separation fails.

For each instance and each version of the cutting-
plane algorithm, we stored the total computing time and
the upper bound obtained. We also calculated the gap

7

|V | (a) (b) (c)

35 0.72 1120 119
MC A 45 0.97 3760 449

55 2.34 10383 1320

35 0.34 425 94
MC B 45 1.34 4965 1501

55 5.05 24076 6161

Table 1: Average running times (in seconds) for three versions of the
cutting-plane algorithm.

|V | (a) (b) (c)

35 15.37 3.83 3.83
MC A 45 17.83 5.63 5.63

55 21.33 7.35 7.35

35 33.90 0.00 0.00
MC B 45 55.74 0.37 0.37

55 78.89 3.89 3.89

Table 2: Average percentage integrality gaps for three versions of the
cutting-plane algorithm.

between each upper bound and the optimum, expressed
as a percentage of the optimum.

Table 1 shows the average computing times, in sec-
onds. Each row corresponds to a batch of ten instances.
It is apparent that the cutting-plane algorithm converges
much more quickly when our separation algorithm is
used rather than the one in [15], despite the fact that our
separation algorithm separates over a more general fam-
ily of inequalities than the one in [15]. Table 2 shows the
average percentage gaps for the same instances. We ob-
serve that the ES2C and EG2C inequalities close an im-
pressive proportion of the integrality gap, especially for
the MC B instances. Remarkably though, the numbers in
the last two columns are identical. In fact, versions (b)
and (c) of the cutting-plane algorithm produced identi-
cal upper bounds for every one of our 60 instances. In
an attempt to understand this phenomenon better, we in-
spected the primal and dual LP solutions obtained when
the cutting-plane algorithm terminates. Recall that an
inequality with zero slack is called binding. It turned out
that, regardless of whether version (b) or (c) was used,
the majority of the binding inequalities were ES2C in-
equalities with p = 5 (which is the smallest value that
p can take). There were some other binding ES2C and
EG2C inequalities, but they all had zero dual price.

Another strange phenomenon is that, for almost all

instances, the number of binding EG2Cs when version
(c) was used was significantly smaller than the number
of binding ES2Cs when version (b) was used. We sus-
pect that this odd behaviour is due to the fact that all of
our instances were fully dense.

An interesting topic for future work is the integra-
tion of EG2C inequalities (perhaps together with other
known inequalities) in a branch-and-cut framework.
Another interesting topic is to determine whether any
other arrows should be added to Figure 4. In particular,
can EG2C inequalities be derived as {0, 1

2 }-cuts, and can
{0, 1

2 }-cuts be derived as SDCs?

References

[1] P. Assouad (1984) Sur les inégalités valides dans L1. Eur. J.
Combinatorics, 5, 99–112.

[2] E. Balas, S. Ceria & G. Cornuéjols (1993) A lift-and-project cut-
ting plane algorithm for mixed 0-1 programs. Math. Program.,
58, 295–324.

[3] F. Barahona, M. Jünger & G. Reinelt (1989) Experiments in
quadratic 0-1 programming. Math. Program., 44, 127–137.

[4] F. Barahona & A.R. Mahjoub (1986) On the cut polytope. Math.
Program., 36, 157–173.

[5] T. Bonato, M. Jünger, G. Reinelt & G. Rinaldi (2014) Lifting
and separation procedures for the cut polytope. Math. Program.,
146, 351–378.

[6] E. Boros & P.L. Hammer (1993) Cut-polytopes, Boolean
quadric polytopes and nonnegative quadratic pseudo-Boolean
functions. Math. Oper. Res., 18, 245–253.

[7] A. Caprara & M. Fischetti (1996) {0, 1/2}-Chvátal-Gomory
cuts. Math. Program., 74, 221–235.

[8] M. Conforti, G. Cornuéjols & G. Zambelli (2014) Integer Pro-
gramming. Cham, Switzerland: Springer.

[9] C. De Simone, M.M. Deza & M. Laurent (1994) Collapsing and
lifting for the cut cone. Discr. Math., 127, 105–130.

[10] M.M. Deza & M. Laurent (1992) Facets for the cut cone I. Math.
Program., 56, 121–160.

[11] M.M. Deza & M. Laurent (1997) Geometry of Cuts and Metrics.
Berlin: Springer.

[12] M.L. Fredman & R.E. Tarjan (1987) Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM, 34,
596–615.

[13] M.R. Garey, D.S. Johnson & L.J. Stockmeyer (1976) Some sim-
plified NP-complete graph problems. Theoret. Comput. Sci., 1,
237–267.

[14] A.M.H. Gerards (1985) Testing the odd bicycle wheel inequal-
ities for the bipartite subgraph polytope. Math. Oper. Res., 10,
359–360.

[15] K. Kaparis & A.N. Letchford (2018) On the 2-circulant inequal-
ities for the max-cut problem. Oper. Res. Lett., 46, 443–447.

[16] M. Laurent (1997) Max-cut problem. In M. Dell’Amico, F. Maf-
foli & S. Martello (eds.) Annotated Bibliographies in Combina-
torial Optimization, pp. 241–259. Chichester: Wiley.

[17] M. Laurent & S. Poljak (1995) On a positive semidefinite relax-
ation of the cut polytope. Lin. Alg. Appl., 223/224, 439–461.

[18] M. Laurent & S. Poljak (1996) Gap inequalities for the cut poly-
tope. Eur. J. Combinatorics, 17, 233–254.

[19] A.N. Letchford (2001) On disjunctive cuts for combinatorial op-
timization. J. Combin. Optim., 5, 299–315.

8

[20] A.N. Letchford & M.M. Sørensen (2014) A new separation al-
gorithm for the Boolean quadric and cut polytopes. Discr. Op-
tim., 14, 61–71.

[21] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi & A. Wiegele
(2012) Computational approaches to max-cut. In M.F. Anjos &
J.B. Lasserre (eds.) Handbook on Semidefinite, Conic and Poly-
nomial Optimization, pp. 821–847. Boston, MA: Springer US.

[22] S. Poljak & D. Turzik (1992) Max-cut in circulant graphs. Discr.
Math., 108, 379–392.

[23] F. Rendl, G. Rinaldi & A. Wiegele (2010) Solving max-cut
to optimality by intersecting semidefinite and polyhedral relax-
ations. Math. Program., 121, 307–335.

9

