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Abstract

WeperformMonteCarlo simulations to study the effect of increasing the frequency
of observations and data span on the JohansenJohansen (1995) maximum likeli-
hood cointegration testing approach, as well as on the bootstrap and wild boot-
strap implementations of the method developed by Cavaliere et al. (2012, 2014).
Considering systems with three and four variables, we find that when both the
data span and the frequency vary, the power of the tests dependmore on the sam-
ple length. We illustrate our findings by investigating the existence of long-run
equilibrium relationships among four indicators prices of coffee.
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1 Introduction

Progress in information technology for collecting, organising, storing and retrieving

data is leading to the availability of such a vast amount of economic and financial vari-

ables, that practitioners need to decide carefully the type of data (annual, quarterly,

monthly, weekly, daily or even higher frequency) that they will use in their empiri-

cal work. This choice is important because tests of time series properties typically

exhibit low power (as those for integration and cointegration), so that finding ways

of improving power, either by increasing the observation frequency (the number of

observations per unit of time) or the data span (the period between the first and last

observation), becomes relevant.1 Shiller and Perron (1985) found that the power of

unit root tests depends solely on the total sample length; see also Lahiri and Mamingi

(1995). Hooker (1993) examined the Engle and Granger (1987) cointegration test and

showed that, contrary to unit root tests, it gains power from temporal disaggregation.

Rossana and Seater (1995) showed that temporal aggregation leads to substantial in-

formation losses and increases long-term persistence. Marcellino (1999) offered theo-

retical results that while time-series properties such as integration and cointegration

are invariant to time aggregation, the finite-sample power of testing procedures may

decrease when using temporally aggregated data. Later, Otero and Smith (2000) exam-

ined the Johansen (1988, 1995) cointegration test applied to two time series, and found

that the test ability to detect cointegration depended more on the sample length than

the number of observations. Haug (2002) found that, cointegration tests gain power

when, for a given data span, a higher frequency is used.

This paper aims to complement and extend existing Monte Carlo evidence on the

effects of increasing the data span and the frequency of observation on the finite-

sample properties of cointegration tests. We focus on the Johansen (1988, 1995) rank

test in systemswith three and four variables. Appliedmacroeconomicmodelling often
1See Tiao (1972) and Brewer (1973) for some early studies on the effects of temporal aggregation on

the time series properties of economic and financial data.
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deals with more than two variables, and so the results contained in this paper should

be appealing to practitioners. More importantly, in recent contributions to the cointe-

gration literature Cavaliere et al. (2012, 2014) recommendbootstrap andwild bootstrap

implementations of the Johansen rank test. These bootstrap implementations aim to

improve the finite sample performance of the likelihood ratio test, which could be

quite poor as indicated by Johansen (2002). Unlike previous bootstrap procedures, see

e.g. Swensen (2006), in the implementations of Cavaliere et al. (2012, 2014), the result-

ing bootstrap data are I(1) and satisfy the null co-integration rank, regardless of the

true rank. Hence, it is interesting to examine the performance of these new bootstrap

procedures in the context of temporal aggregation. As an empirical application, we

reexamine Vogelvang (1992) analysis of the existence of long-run relationships among

the spot prices of four coffee varieties over an extended period of time.

The paper proceeds as follows. Section 2 describes the design of the Monte Carlo

experiments. Section 3 summarises the main findings of the simulations. Section 4

presents an empirical illustration based on Vogelvang (1992). Section 5 concludes.

2 Design of the Monte Carlo simulations

The design of ourMonte Carlo experiments develops further the simulation setup con-

sidered by Engle and Granger (1987), Hooker (1993), Lahiri and Mamingi (1995) and

Otero and Smith (2000) for the case of two time series. Accordingly, we consider two

systems of equations consisting of three and four variables. First, we examinewhether

temporal aggregation causes size distortions (falsely rejecting the null hypothesis of

no cointegration). Next, we examine the effect of temporal aggregation on the power

of the tests. For the three-variables system we consider the cases of one and two coin-

tegration vectors and for the four-variables system we consider the cases of one, two

and three cointegration vectors. The specific data generating processes (DGPs) are

presented in Table 1 along with their associated parameter values. In all simulations

2



the error terms are assumed to follow independent standardnormal distributions, and

ui,0 = 0 for all values of i = 1, 2, 3, 4 where applicable. The following is an example of

the DGP used to create a system of 4 variables with 3 cointegration relationships:

xt = u3,t + u4,t − u1,t − u2,t, u1 = u1,t + error

yt = 2(u1,t + u2,t)− u3,t − u4,t, u2 = ρ1u2,t + error

zt = 2(u1,t + u3,t − u1,t)− u2,t, u1 = ρ2u3,t + error

wt = u2,t + u4,t − u1,t − u3,t, u1 = ρ3u4,t + error

We consider two cases regarding the parameters ρi. In the frst case, we set ρ1 =

0.85, ρ2 = 0.92, ρ3 = 0.95 and in the second case, we set ρ1 = 0.92, ρ2 = 0.95, ρ3 == 0.98.

The generated series contain 1188 observations which is equivalent to 99 years of

monthly observations. The Johansen test and the bootstrap algorithms are applied to

the systems presented in Table 1 using sample sizes of 33, 66 and 99 years of monthly,

quarterly and annual observations. We consider two methods of temporal aggrega-

tion. The first one keeps only the last observation of every quarter (year) and is often

referred to as systematic sampling. The second one averages the three (twelve) non-

overlapping observations corresponding to each quarter (year). In practice, the choice

between the two methods ought to be guided by the type of variable under analysis,

namely whether it is a stock (e.g. prices, wealth, foreign debt) or a flow (e.g. output,

imports, exports). The size and power probabilities of the tests are computed at the

5% nominal level. We focus on the Trace test which tests the null hypothesis that the

cointegration rank is less than or equal to r, denoted H(r), against the alternative of

cointegration rank equal to p, denotedH(p), where p refers to the number of variables

in the system. The null hypothesis is rejected when the trace statistic is greater than

the corresponding critical value. We follow a sequential procedure which involves

starting with r = 0 and testingH(r) againstH(p) for r = 0, 1, . . . , p− 1, until the null

hypothesis is rejected for some value of r. The results are based on 5000 Monte Carlo
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replications, with 1000 bootstrap replications used to generate the bootstrap distribu-

tions of the tests. The R statistical language was employed.

3 Monte Carlo Simulation results

Table 2 reports size probabilities for the Trace test. The upper panel presents the prob-

ability of wrongly rejecting the null hypothesis of no cointegration in a system with

three variables (DGP30), while the lower panel presents the results in a system with

four variables (DGP40). Using the critical values from MacKinnon et al. (1999) MacK-

innon et al. (1999) for inference, we observe that the trace test is approximately cor-

rectly sized for monthly data irrespective of the span of the data. However, there can

be substantial size distortions that arise from temporal aggregation; the extent of the

distortion diminishes as the data span increases though. For example, in DGP30 size is

17.5% when using 33 annual observations obtained through averaging; when the data

span increases to 99 years the resulting size is 8.2%. The magnitude of the size distor-

tions seems greater in DGP40. Size is controlled reasonably well for the two bootstrap

methods (less than 5.8% for all samples).

Tables 3, 4 and 5 summarise the probability of identifying the exact number of

existing cointegration vectors (where the numbers in parentheses indicate the num-

ber of observations in each sample). In the case of asymptotic inference, we use size-

corrected critical values, while in the two bootstrap schemes we follow Cavaliere et al.

(2012) (bootstrap) and Cavaliere et al. (2014) (wild bootstrap). Table 3 presents the re-

sults for the three-variables systems. The first two panels (DGP31) correspond to sys-

tems where a sole cointegration vector exists. The two lower panels correspond to

systems with two cointegration vectors. For a given sample, reducing the data span

yields substantial power losses than reducing the frequency of observations. For ex-

ample, in all cases the test produces worse results when we use a sample of monthly

data for 66 years (792 observations) instead of a sample of quarterly data for 99 years
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(396 observations). In some cases, even a sample of annual data for 99 years (99 obser-

vations) yields better results than a sample of monthly data for 66 years (i.e. DGP31,

ρ = 0.98 for all critical values).

Tables 4 and 5 present the results for systems with four variables. Panels DGP41,

DGP42 and DGP43 refer to the cases of one, two and three cointegration vectors, re-

spectively. Similar to Table 3, the values denote the probability of identifying the exact

number of existing cointegration vectors while the numbers in parentheses the num-

ber of observations for each sample. As in the case of three variables, decreasing the

data span leads to greater power losses than decreasing the frequency of observations.

These losses are more apparent when changing the number of years from 66 to 33. In

this case, the probability of detecting the correct number of cointegration vectors de-

creases from80% to 40%. It is alsoworth examining the power of the testwhen applied

samples with the same number of observations. The samples of 33 years of monthly

observations and 99 years of quarterly observations, both contain 396 observations.

Independently of the DGP, the test produces better results when employed on the lat-

ter sample.

For all DGPs except DGP30 and DGP40 (used to calculate the size probabilities) we

consider two cases regarding the parameters ρi. While size is not affected by the differ-

ent values of these parameters, the power of the test is. The test performs worse when

the value of ρi approaches one. These findings are in line with the findings in Otero

and Smith (2000). One possible explanation for this result is that the when the value of

ρi approaches one, the stationarity of the auto-regressive process ui,t is affected. Qual-

itatively similar results (not reported here, but available upon request) are obtained

for the λmax test.
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4 Empirical example

To illustrate our findings, we examine the relationship between coffee prices using

the four composite “indicator prices” constructed by the International Coffee Organ-

isation (ICO). Vogelvang (1992) conducted a similar study using quarterly data over

the period 1960–1982 and identified two cointegrating vectors.2 The largest database

corresponds to monthly observations over the 1964–2018 period. Quarterly and an-

nual versions of the data are obtained by skip sampling and averaging techniques. We

then test for cointegration in the following samplingperiods: 1964–2018, 1983–2018 and

2000–2018. We use the Schwarz (1978) information criterion to select the order of the

underlying VAR models. The augmented Dickey–Fuller (ADF) test suggested by Said

and Dickey (1984), based on Dickey and Fuller (1979), revealed that all four variables

are integrated of order one.

Table 6 summarises our findings. Using the information for the shortest data span,

2000–2018, we are not able to detect evidence of cointegration among coffee prices

neither with monthly nor quarterly data (the tests are not applied on annual data due

to insuficient number of observations). Extending the data span so that it runs from

1983 to 2018 all tests identify two vectors using monthly data and up to one vector us-

ing quarterly and annual data. Extending further to cover the longest sample period

available the tests detect two cointegration vectors using monthly and quarterly data,

and one using annual data (when the skip sampling method is used the bootstrap al-

gorithms identify two vectors).

5 Conclusions

We perform a large set of Monte Carlo simulations to assess the effects of increasing

the frequency of observations and the data span on the Johansen (1988, 1995) multi-
2It is likely that changes over time in the structure and regulation of the coffee market may have

caused structural breaks. The effect of temporal aggregation on such breaks is left as a topic for further
research though.
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variate cointegration Trace test, and its bootstrap andwild bootstrap implementations

advocated by Cavaliere et al. (2012, 2014). We find evidence supporting the view that

both the frequency and span of the data affect the power of the test. Our findings in-

dicate that the ability to detect the presence of long-term cointegration relationships

dependsmore on the total sample length. The importance of data span over frequency

of observations is highlighted by the fact that the test performs better when applied

on a smaller set of observations collected over a long time period than a large number

of observations gathered over a relatively small time period.
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Table 1: Design of the Monte Carlo simulations.

Name Data generating process Parameter values
DGP30 xt = xt−1 + error

yt = yt−1 + error
zt = zt−1 + error

DGP31 xt = u2,t − u1,t, u1,t = u1,t−1 + error
yt = 2u1,t − u2,t, u2,t = ρu2,t−1 + error
zt = zt−1 + error ρ = 0.95, 0.98

DGP32 xt = u2,t + u3,t − u1,t, u1,t = ρ1u1,t−1 + error ρ1 = 0.92, ρ2 = 0.95
yt = u1,t + u3,t − u2,t, u2,t = ρ2u2,t−1 + error ρ1 = 0.95, ρ2 = 0.98
zt = 2(u1,t + u2,t)− u3,t, u3,t = u3,t−1 + error

DGP40 xt = xt−1 + error
yt = yt−1 + error
zt = zt−1 + error
wt = wt−1 + error

DGP41 xt = u2,t + u3,t − u1,t, u1,t = u1,t−1 + error ρ1 = 0.95, ρ2 = 1
yt = u1,t + u3,t − u2,t, u2,t = ρ1u2,t−1 + error ρ1 = 0.95, ρ2 = 0.98
zt = 2(u1,t + u2,t)− u3,tu3,t = ρ2u3,t−1 + error
wt = wt−1 + error

DGP42 xt = 2u1,t − u2,t, u1,t = u1,t−1 + error ρ1 = 0.92, ρ2 = 0.95
yt = u2,t − u1,t, u2,t = ρ2u2,t−1 + error ρ1 = 0.95, ρ2 = 0.98
wt = ρ1wt−1 + error
zt = zt−1 + error

DGP43 xt = u3,t + u4,t − u1,t − u2,t, u1,t = u1,t−1 + error ρ1 = 0.85, ρ2 = 0.92, ρ3 = 0.95
yt = 2(u1,t + u2,t)− u3,t − u4,t, u2,t = ρ1u2,t−1 + error ρ1 = 0.92, ρ2 = 0.95, ρ3 = 0.98
zt = 2(u1,t + u3,t − u2,t)− u4,t, u3,t = ρ2u3,t−1 + error
wt = u2,t + u4,t − u1,t − u3,t, u4,t = ρ3u4,t−1 + error

Notes: In DGPXY, X refers to the number of variables and Y to the number of cointegration vectors. We con- sider
two sets of parameters for all DGPs except DGP30 and DGP40 which are used for size.
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Table 2: Size of the Trace test.

Asymptotic inference Bootstrap Wild bootstrap
33 years 66 years 99 years 33 years 66 years 99 years 33 years 66 years 99 years
DGP30
M 0.056(396) 0.051(792) 0.047(1188) 0.013(396) 0.017(792) 0.025(1188) 0.052(396) 0.052(792) 0.057(1188)
Q skip 0.059(132) 0.054(264) 0.055(396) 0.008(132) 0.018(264) 0.024(396) 0.046(132) 0.049(264) 0.056(396)
A skip 0.133(33) 0.078(66) 0.066(99) 0.023(33) 0.020(66) 0.019(99) 0.038(33) 0.048(66) 0.045(99)
Q avg 0.067(132) 0.059(264) 0.054(396) 0.012(132) 0.019(264) 0.023(396) 0.043(132) 0.054(264) 0.048(396)
A avg 0.175(33) 0.097(66) 0.082(99) 0.023(33) 0.021(66) 0.022(99) 0.045(33) 0.047(66) 0.046(99)
DGP40
M 0.058(396) 0.057(792) 0.047(1188) 0.015(396) 0.009(792) 0.012(1188) 0.047(396) 0.046(792) 0.037(1188)
Q skip 0.065(132) 0.061(264) 0.052(396) 0.009(132) 0.012(264) 0.016(396) 0.060(132) 0.046(264) 0.045(396)
A skip 0.119(33) 0.082(66) 0.065(99) 0.016(33) 0.015(66) 0.012(99) 0.037(33) 0.046(66) 0.034(99)
Q avg 0.106(132) 0.111(264) 0.094(396) 0.008(132) 0.011(264) 0.014(396) 0.058(132) 0.049(264) 0.049(396)
A avg 0.214(33) 0.167(66) 0.131(99) 0.022(33) 0.018(66) 0.019(99) 0.041(33) 0.043(66) 0.041(99)
Notes: The table reports the probability of falsely identifying a cointegration relationship. The top panel refers to the three-variables system and
lower panels refer to four-variables systems. Critical values are based on MacKinnon et al. (1999) (Asymptotic inference), Cavaliere et al. (2012)
(Bootstrap) and Cavaliere et al. (2014) (Wild bootstrap). Numbers in parentheses denote the number of observations for each sample. M, Q, A
stand for monthly, quarterly and annual data. Skip refers to systematic sampling method for aggregating data and avg to the averaging with non-
overlapping observations method. The numbers in parentheses refer to the number of observations for each sample.
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Table 3: SEmpirical power of the Trace test for systems with three variables.

Asymptotic inference Bootstrap Wild bootstrap
33 years 66 years 99 years 33 years 66 years 99 years 33 years 66 years 99 years
DGP31, ρ = 0.95
M 0.271(396) 0.813(792) 0.950(1188) 0.164(396) 0.704(792) 0.960(1188) 0.252(396) 0.806(792) 0.947(1188)
Q skip 0.254(132) 0.759(264) 0.934(396) 0.130(132) 0.618(264) 0.942(396) 0.208(132) 0.731(264) 0.939(396)
A skip 0.223(33) 0.503(66) 0.836(99) 0.028(33) 0.305(66) 0.709(99) 0.036(33) 0.402(66) 0.786(99)
Q avg 0.291(132) 0.682(264) 0.902(396) 0.151(132) 0.629(264) 0.922(396) 0.221(132) 0.729(264) 0.931(396)
A avg 0.261(33) 0.515(66) 0.825(99) 0.025(33) 0.304(66) 0.695(99) 0.033(33) 0.392(66) 0.767(99)
DGP31, ρ = 0.98
M 0.084(396) 0.175(792) 0.382(1188) 0.037(396) 0.101(792) 0.270(1188) 0.074(396) 0.178(792) 0.382(1188)
Q skip 0.082(132) 0.181(264) 0.359(396) 0.033(132) 0.089(264) 0.252(396) 0.066(132) 0.162(264) 0.357(396)
A skip 0.084(33) 0.166(66) 0.302(99) 0.016(33) 0.066(66) 0.177(99) 0.021(33) 0.117(66) 0.263(99)
Q avg 0.083(132) 0.118(264) 0.328(396) 0.042(132) 0.104(264) 0.240(396) 0.076(132) 0.164(264) 0.340(396)
A avg 0.109(33) 0.103(66) 0.170(99) 0.017(33) 0.080(66) 0.205(99) 0.023(33) 0.125(66) 0.286(99)
DGP32, ρ1 = 0.92, ρ2 = 0.95
M 0.486(396) 0.943(792) 0.947(1188) 0.079(396) 0.330(792) 0.664(1188) 0.119(396) 0.416(792) 0.756(1188)
Q skip 0.393(132) 0.932(264) 0.949(396) 0.065(132) 0.300(264) 0.637(396) 0.105(132) 0.383(264) 0.724(396)
A skip 0.146(33) 0.732(66) 0.945(99) 0.006(33) 0.193(66) 0.486(99) 0.013(33) 0.259(66) 0.571(99)
Q avg 0.425(132) 0.909(264) 0.921(396) 0.077(132) 0.336(264) 0.636(396) 0.116(132) 0.413(264) 0.718(396)
A avg 0.137(33) 0.701(66) 0.826(99) 0.005(33) 0.195(66) 0.515(99) 0.010(33) 0.256(66) 0.594(99)
DGP32, ρ1 = 0.95, ρ2 = 0.98
M 0.064(396) 0.366(792) 0.729(1188) 0.052(396) 0.325(792) 0.675(1188) 0.083(396) 0.405(792) 0.757(1188)
Q skip 0.058(132) 0.337(264) 0.678(396) 0.039(132) 0.289(264) 0.636(396) 0.066(132) 0.360(264) 0.718(396)
A skip 0.053(33) 0.228(66) 0.549(99) 0.004(33) 0.151(66) 0.465(99) 0.009(33) 0.210(66) 0.553(99)
Q avg 0.059(132) 0.478(264) 0.720(396) 0.045(132) 0.312(264) 0.623(396) 0.073(132) 0.386(264) 0.702(396)
A avg 0.057(33) 0.248(66) 0.573(99) 0.003(33) 0.154(66) 0.475(99) 0.007(33) 0.210(66) 0.561(99)
Notes: The Table reports the probability of detecting the correct number of cointegration vectors existing in each system. In the case of asymptotic
inference we use size-adjusted critical values, while in the two bootstrap schemes we follow Cavaliere et al. (2012) (Bootstrap) and Cavaliere et al.
(2014) (Wild bootstrap). Numbers in parentheses denote the number of observations for each sample. M, Q, A stand for monthly, quarterly and
annual data. Skip refers to systematic sampling method for aggregating data and avg to the averaging with non-overlapping observations method.
The numbers in parentheses refer to the number of observations for each sample
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Table 4: Empirical power of the Trace test for systems with four variables (case 1).

Asymptotic inference Bootstrap Wild bootstrap
33 years 66 years 99 years 33 years 66 years 99 years 33 years 66 years 99 years
DGP41, ρ1 = 0.95, ρ2 = 0.98
M 0.202(396) 0.640(792) 0.850(1188) 0.111(396) 0.583(792) 0.698(1188) 0.166(396) 0.627(792) 0.581(1188)
Q skip 0.193(132) 0.604(264) 0.786(396) 0.088(132) 0.506(264) 0.705(396) 0.131(132) 0.568(264) 0.607(396)
A skip 0.186(33) 0.432(66) 0.635(99) 0.015(33) 0.237(66) 0.595(99) 0.019(33) 0.298(66) 0.593(99)
Q avg 0.109(132) 0.644(264) 0.798(396) 0.107(132) 0.553(264) 0.687(396) 0.143(132) 0.591(264) 0.578(396)
A avg 0.132(33) 0.442(66) 0.591(99) 0.016(33) 0.244(66) 0.580(99) 0.020(33) 0.285(66) 0.569(99)
DGP42, ρ1 = 0.92, ρ2 = 0.95
M 0.173(396) 0.795(792) 0.949(1188) 0.092(396) 0.685(792) 0.961(1188) 0.165(396) 0.782(792) 0.951(1188)
Q skip 0.131(132) 0.713(264) 0.934(396) 0.057(132) 0.565(264) 0.938(396) 0.105(132) 0.686(264) 0.942(396)
A skip 0.085(33) 0.358(66) 0.912(99) 0.003(33) 0.167(66) 0.620(99) 0.006(33) 0.253(66) 0.726(99)
Q avg 0.111(132) 0.560(264) 0.901(396) 0.067(132) 0.607(264) 0.939(396) 0.114(132) 0.708(264) 0.941(396)
A avg 0.099(33) 0.356(66) 0.724(99) 0.003(33) 0.148(66) 0.577(99) 0.005(33) 0.218(66) 0.681(99)
DGP42, ρ1 = 0.82, ρ2 = 0.92, ρ3 = 0.95
M 0.475(396) 0.939(792) 0.960(1188) 0.427(396) 0.950(792) 0.961(1188) 0.522(396) 0.944(792) 0.950(1188)
Q skip 0.364(132) 0.933(264) 0.958(396) 0.291(132) 0.929(264) 0.959(396) 0.377(132) 0.934(264) 0.949(396)
A skip 0.078(33) 0.681(66) 0.947(99) 0.010(33) 0.583(66) 0.929(99) 0.018(33) 0.670(66) 0.936(99)
Q avg 0.390(132) 0.922(264) 0.945(396) 0.309(132) 0.929(264) 0.954(396) 0.402(132) 0.934(264) 0.946(396)
A avg 0.067(33) 0.623(66) 0.923(99) 0.005(33) 0.508(66) 0.912(99) 0.010(33) 0.595(66) 0.922(99)
Notes: The Table reports the probability of detecting the correct number of cointegration vectors existing in each system. In the case of asymptotic
inference we use size-adjusted critical values, while in the two bootstrap schemes we follow Cavaliere et al. (2012) (Bootstrap) and Cavaliere et al.
(2014) (Wild bootstrap). Numbers in parentheses denote the number of observations for each sample. M, Q, A stand for monthly, quarterly and
annual data. Skip refers to systematic sampling method for aggregating data and avg to the averaging with non-overlapping observations method.
The numbers in parentheses refer to the number of observations for each sample
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Table 5: Empirical power of the Trace test for systems with four variables (case 2).

Asymptotic inference Bootstrap Wild bootstrap
33 years 66 years 99 years 33 years 66 years 99 years 33 years 66 years 99 years
DGP41, ρ1 = 0.95, ρ2 = 1
M 0.179(396) 0.547(792) 0.877(1188) 0.069(396) 0.386(792) 0.814(1188) 0.146(396) 0.535(792) 0.877(1188)
Q skip 0.179(132) 0.503(264) 0.831(396) 0.053(132) 0.302(264) 0.733(396) 0.114(132) 0.449(264) 0.821(396)
A skip 0.277(33) 0.371(66) 0.616(99) 0.015(33) 0.134(66) 0.390(99) 0.019(33) 0.209(66) 0.523(99)
Q avg 0.199(132) 0.627(264) 0.867(396) 0.062(132) 0.358(264) 0.752(396) 0.113(132) 0.490(264) 0.823(396)
A avg 0.326(33) 0.381(66) 0.637(99) 0.014(33) 0.137(66) 0.396(99) 0.018(33) 0.196(66) 0.507(99)
DGP42, ρ1 = 0.95, ρ2 = 0.98
M 0.031(396) 0.160(792) 0.332(1188) 0.011(396) 0.090(792) 0.258(1188) 0.025(396) 0.149(792) 0.362(1188)
Q skip 0.029(132) 0.156(264) 0.311(396) 0.009(132) 0.072(264) 0.230(396) 0.022(132) 0.128(264) 0.336(396)
A skip 0.031(33) 0.086(66) 0.220(99) 0.001(33) 0.030(66) 0.131(99) 0.002(33) 0.057(66) 0.197(99)
Q avg 0.017(396) 0.082(264) 0.157(396) 0.009(132) 0.089(264) 0.259(396) 0.023(132) 0.143(264) 0.358(396)
A avg 0.022(33) 0.046(66) 0.109(99) 0.001(33) 0.030(66) 0.142(99) 0.002(33) 0.054(66) 0.213(99)
DGP42, ρ1 = 0.92, ρ2 = 0.95, ρ3 = 0.98
M 0.052(396) 0.383(792) 0.729(1188) 0.046(396) 0.339(792) 0.677(1188) 0.070(396) 0.413(792) 0.747(1188)
Q skip 0.047(132) 0.334(264) 0.695(396) 0.032(132) 0.285(264) 0.636(396) 0.053(132) 0.364(264) 0.712(396)
A skip 0.024(396) 0.178(66) 0.522(99) 0.001(396) 0.125(66) 0.441(99) 0.003(396) 0.174(66) 0.524(99)
Q avg 0.050(132) 0.271(264) 0.717(396) 0.037(132) 0.330(264) 0.671(396) 0.059(132) 0.407(264) 0.738(396)
A avg 0.031(33) 0.177(66) 0.530(99) 0.001(33) 0.122(66) 0.463(99) 0.003(33) 0.167(66) 0.533(99)
Notes: The Table reports the probability of detecting the correct number of cointegration vectors existing in each system. In the case of asymptotic
inference we use size-adjusted critical values, while in the two bootstrap schemes we follow Cavaliere et al. (2012) (Bootstrap) and Cavaliere et al.
(2014) (Wild bootstrap). Numbers in parentheses denote the number of observations for each sample. M, Q, A stand for monthly, quarterly and
annual data. Skip refers to systematic sampling method for aggregating data and avg to the averaging with non-overlapping observations method.
The numbers in parentheses refer to the number of observations for each sample
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Table 6: Cointegration analysis of cofee prices (p−values only).

Sample period H0 2000-2018 1983-2018 1964-2018
Trace B BW Trace B BW Trace B BW

M r = 0 0.187 0.134 0.280 0.000*** 0.005*** 0.018** 0.000*** 0.001*** 0.001***
r ≤ 1 0.484 0.341 0.335 0.009*** 0.037** 0.096** 0.001*** 0.002*** 0.002***
r ≤ 2 0.578 0.505 0.492 0.188 0.197 0.158 0.274 0.278 0.238
r ≤ 3 0.512 0.650 0.616 0.233 0.257 0.267 0.226 0.194 0.153

A skip r = 0 0.010*** 0.111 0.134 0.000*** 0.004*** 0.005***
r ≤ 1 0.302 0.489 0.624 0.027 0.062* 0.038**
r ≤ 2 0.487 0.391 0.468 0.413 0.499 0.405
r ≤ 3 0.392 0.462 0.495 0.338 0.348 0.476

Q avg r = 0 0.514 0.600 0.778 0.008*** 0.010*** 0.026** 0.000*** 0.001*** 0.002***
r ≤ 1 0.460 0.569 0.586 0.154 0.134 0.164 0.007*** 0.008*** 0.012**
r ≤ 2 0.335 0.398 0.391 0.103 0.085 0.111 0.221 0.240 0.178
r ≤ 3 0.580 0.576 0.504 0.207 0.210 0.258 0.263 0.248 0.151

A avg r = 0 0.013** 0.101 0.086* 0.000*** 0.004*** 0.006***
r ≤ 1 0.344 0.582 0.540 0.167 0.285 0.239
r ≤ 2 0.368 0.352 0.331 0.276 0.327 0.254
r ≤ 3 0.323 0.377 0.439 0.249 0.225 0.225

Notes: B and WB denote the bootstrap and wild bootstrap versions of the test, respectively. All models are estimated for the re-
stricted constant case. The table reports the p values for the Trace test. The asymptotic critical values are tabulated byMacKinnon
et al. (1999) and the number of replications used in both bootstrap algorithms is set to 1000. ***, ** and * denote signifcance at the 1,
5 and 10% signifcance levels. We do not apply the tests on annual data from 2000 to 2018 due to insufcient number of observations.
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