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Abstract: One method that has been proposed for the measurement of sustainability is Data Envel-
opment Analysis (DEA). Despite its advantages, the method has limitations: First, the efficiency of
Decision-Making Units is calculated with weights that are favorable to themselves, which might
be unrealistic, and second, it cannot account for different perceptions of sustainability; since there
is not an established and unified definition, each analyst can use different data and variations that
produce different results. The purpose of the current paper is twofold: (a) to propose an alternative,
multi-dimensional DEA model that handles weight flexibility using a different metric (an alternative
optimization criterion) and (b) the inclusion of a computational stage that attempts to incorporate
different perceptions in the measurement of sustainability and integrates machine learning to explore
country sustainability composite indices under different perceptions and assumptions. This approach
offers insights in areas such as feature selection and increases the trust in the results by exploiting
an inclusive approach to the calculations. The method is used to calculate the sustainability of the
28 EU countries.

Keywords: data envelopment analysis; two-stage DEA; exploratory modeling and analysis;
sustainability; increased discriminatory power; machine learning
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1. Introduction

In public decision-making, factors such as personal values, cultural background and
different individual perspectives play a central role in the policy cycle of designing, testing,
implementation and review [1]. To assist policy makers, analysts have used an array of
qualitative and quantitative methods in all steps of the cycle.

However, the increasing use of sophisticated methods does not always fully address
the needs of policy makers and their decision-making process; on the contrary, in many
cases, it seems to attract criticism that is focused on their disadvantages [2]. Furthermore,
the rise of Artificial Intelligence and its expanding use in decision and/or policy making
has brought forth several issues such as the interpretability of algorithms and whether their
output can be trusted, or the availability and quality of the data that are used. Questions
such as which specific feature made the model/algorithm reach the specific decision [3] or
how accurate are the data that were used, and hence issues of transparency, interpretability
and data quality [4], are becoming central issues of the critique on quantitative methods
and algorithms.

This criticism is not without its merits. The complexity of contemporary problems
means that there are issues about which an analyst can only make assumptions due to
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the existence of deep uncertainty [5]. Moreover, in such complexity, the perception of the
analyst along with the availability and quality of data may limit the view of the policy cycle
under study. As a result, the success of a quantitative method relies on all of the above
choices to be exactly correct [2].

Sustainable development perfectly encapsulates these issues. It entered the sphere
of public policy-making and analysis in the 1980s, when the Brundtland report defined
sustainable development as: “the ability to meet the needs of the present without compro-
mising the ability of future generations to meet their own needs” [6]. In order to achieve
sustainable development, public policies should have economic, social and environmental
dimensions, while taking into account the current technological developments [7], the
cultural context and value system in which they are applied [8]. Thus, sustainable develop-
ment is a multi-dimensional concept and from early on, sustainability was used as a proxy
to measure it.

Sustainability, a notion stemming from ecology, at its basic form is an indication of a
system’s endurance and its ability to retain its essential properties [9]. In human systems,
sustainability is regarded as the ability to live without environmental degradation [7], while
encompassing all dimensions of human systems and processes [10].

Hence, both sustainable development and sustainability have been characterized by
multi-dimensionality and different perceptions on how to explicitly define them [7,11]. So
far, all definitions fall into two categories: there is the three-dimensional approach that seeks
to integrate an economic, social and environmental dimension and the dualistic approach
that emphasizes the interlinked relationship between humans and nature [7]. Lately,
however, another category has emerged, one that focuses on technology and innovation as
the means to achieve sustainable development [11].

Complementary to the lack of a unified definition is also the absence of an official and
unified methodological framework [12]. The existence of such a framework could be of
great assistance, but it should entail certain properties. First, the multi-dimensional nature
of sustainability dictates that any quantitative method cannot rely only on terms of costs
and benefits [13]. Moreover, any such method should have integrating properties, since
sustainability seeks to combine different dimensions into a single measure [14], and finally
it should be transparent, easy to communicate to non-experts and subject to the review of
experts [7].

One method that is being increasingly used is Data Envelopment Analysis (DEA). DEA
is a non-parametric, mathematical programming technique that is used for the assessment
of the technical efficiency of Decision-Making Units (DMUs) relative to one another, where
technical efficiency can be viewed as the ability of a DMU to transform its inputs to outputs
and is defined as the ratio of the sum of its weighted outputs over the sum of its weighted
inputs [15], as indicated in expression (1):

technical e f f iciency =
∑ woutput ∗ y
∑ winput ∗ x

, where x = input level and y= output level (1)

The method was established in the seminal papers of Charnes, Cooper and Rhodes [16]
and Banker, Charnes and Cooper [17]. It does not require the knowledge of price informa-
tion [18], and it requires knowledge neither of the relationship between inputs and outputs
nor of the statistical distribution of the data that are used [19]. Moreover, DEA is flexible
enough to be combined with other methods [20–23], thus increasing its methodological
robustness. These advantages were crucial in recognizing that DEA can be a suitable tool
for assessing sustainable development, and as a result it has been increasingly used in
sustainability policy-making [9].

Zhou et al. [9] performed a literature review on the use of Data Envelopment Analysis
in regional sustainability studies, and their study covers the years until 2016. In their paper,
the authors identified the trend of using DEA to measure sustainability; however, they also
noted several gaps in the literature. Firstly, it appeared that the main focus of the studies
was the economic and environmental dimensions of sustainability, while the inclusion
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of the societal aspect was not equally extensive. Secondly, the authors observed a trend
of combining DEA with other methodologies in order to increase the robustness of the
measurement by mitigating the methodological limitations of DEA. Moreover, the authors
identified that while early studies tend to employ classic DEA models, in later years, more
sophisticated versions are used. Nonetheless, Zhou et al. [9] also identify that there is
still the need to decide which parameters will be used in the model that best describe the
multi-dimensional concept of sustainability.

Tsaples and Papathanasiou [24] performed a literature review on DEA and sustain-
ability for the years 2016–2020 and discovered that since 2016 the studies have made an
effort to include parameters that represent the social dimension of sustainability. Moreover,
there are efforts to include other aspects that represent technological advancement and
innovation, despite the fact that the three-dimensional construct appears to be the preferred
one. However, they also revealed the lack of a unified context in which sustainability
is measured, in two forms: firstly, the choice of inputs and outputs (and intermediate
measures) despite commonalities is unique to each research work. Second, the choice of
DEA variation and/or combination with other methodologies implies that the perception
of each analyst affects the final result of their work.

Consequently, DEA does not come without limitations. First, in its traditional form,
the efficiency of Decision-Making Units is calculated with weights that are most favorable
to themselves; i.e., each DMU is evaluated under the most favorable weighting scheme with
the purpose of maximizing its own efficiency [25]. Furthermore, Zhou et al. [9] identified
that there is the need to use DEA in the appropriate context, which means that there is
the requirement to decide which parameters will best explain different dimensions of
sustainability. This particular methodological limitation was not unknown; Moutinho,
Madaleno and Robaina [26] identified that DEA is sensitive to the choice of inputs and
outputs, meaning that the calculated efficiency depends on what inputs and outputs will be
chosen. Finally, the number of inputs and outputs that can be used is limited by the number
of DMUs under evaluation for the measurement to be meaningful, otherwise there would
be an increased number of efficient DMUs that would result in inconsistencies [27]. Using
appropriate inputs and outputs is an item of ongoing research in the DEA literature, with
researchers attempting to utilize different techniques to select appropriate measures and
increase the robustness of the method [28]. For example, Benítez-Peña et al. [29] proposed
the use of Mixed Integer Programming in choosing the appropriate inputs and outputs.

Moreover, researchers understood that the robustness of a DEA model increases if the
DMU under study is not considered a “black box”, and for that reason, the intermediate
steps of the typical DEA model were increased [24]. The addition of intermediate stages
was considered a more accurate depiction of certain complex processes, and it allowed
researchers to better track sources of inefficiencies [30]; thus, network DEA models can
capture the weights for the calculation of efficiency in a more appropriate manner. Further-
more, the inclusion of those intermediate steps could free the analysis from the limitation
of how many inputs and outputs could be used [27] and could better reflect the inner
workings of complex processes. For that reason, two-stage (or network) DEA models have
been increasingly used for sustainability assessments of different types of DMUs [30]. A
typical two-stage DEA model is presented in Figure 1 below:
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As can be observed, inputs enter stage 1 and produce the intermediate measures
(which are considered the outputs of stage 1). Those intermediate measures are used as
inputs for stage 2 of the process and produce the outputs. This structure of DMUs for
DEA has proven very effective in increasing the robustness of efficiency measurements;
however, as will become clearer in the next section, little attention has been paid to the
weight distribution and weak discriminatory power of network models [30].

Consequently, the power of DEA as a monitoring tool for sustainability is diminished
by the same issue that was identified in the beginning of this section: different people
(policy makers, analysts, the public, etc.) have different values and perceptions of what
sustainable development means and what should be used to measure sustainability. Thus,
there is a need to increase the robustness of DEA by incorporating as many perceptions as
possible in the measurement of sustainability without losing the value of its advantages.

To summarize, the following gaps have been identified: first, the employment of
two-stage (or network) DEA models for sustainability assessments, despite its increasing
use, has not reached the levels of use of classic, one-stage DEA models. Second, more
efforts are necessary in order to increase the discriminatory power of two-stage models, and
finally, research efforts need to be directed towards including more and diverse perceptions
for the measurement of sustainability.

The purpose of the current paper is to address the above gaps by proposing a computa-
tional framework with a twofold functionality. First, it uses a two-stage Data Envelopment
Analysis model with an alternative optimization metric that attempts to intervene in the
weights of the inputs, intermediate measures and outputs to better reflect their importance
for the DMUs. Second, the framework accompanies the DEA model with a computational
stage that will attempt to incorporate different perceptions (meaning different combinations
of inputs and outputs) and apply it in the measurement of sustainability of the EU 28 coun-
tries using machine learning techniques. To achieve this objective, the framework will rely
on Exploratory Modeling and Analysis (EMA). EMA is a school of thought developed at
RAND corporation [31] and promotes the exploratory use of quantitative methods despite
methodological limitations, uncertainties and different perceptions. Employing an ex-
ploratory approach to sustainability measurement could reveal unanticipated implications
of the initial assumptions regarding inputs and outputs. The use of computational exper-
imentations to explore conjectures, models and datasets is not new. It has been applied
in simulation models [5]), mathematics [32] and of course in various disciplines with the
emergence of big data [33]. The approach requires computational power, development of
new algorithms and techniques to analyze the data that will be generated.

Thus, EMA relies on Machine Learning (ML) techniques, even though validation of the
developed models may not be possible. However, even when it is not possible to validate a
model, exploration could lead to insights on how the different perceptions of sustainability
give rise to unexpected results. Moreover, the use of computational explorations could
facilitate the explanation of known facts and the discovery of commonalities among differ-
ent perceptions of sustainability, hence leading towards the development of a composite
definition of sustainable development.

For that reason, the combination of DEA and ML has been gaining traction in the
literature. For example, Samoikenko and Osei-Bryson [34] combined DEA with clustering
and Classification and Regression Trees (CART) to increase the discriminatory power of the
method; Wu [35] integrated DEA with data mining and CART to evaluate the efficiency of
Brazilian companies. De Nicola et al. [36] combined DEA with CART to evaluate the Italian
health system. Nandy and Singh [37] used DEA to evaluate the efficiency of farms in India
and employed machine learning to gain insights into which variables are crucial in predict-
ing performance. Aydin and Yurdakul [38] separated countries in groups via clustering and
then calculated the efficiency of how countries responded to COVID-19 in each cluster with
DEA. Finally, Thaker et al. [39] employed DEA to evaluate the efficiency of Indian banks
and then used Random Forest Regression to analyze the impact of corporate governance
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(and other bank characteristics) on the calculated efficiencies. Consequently, combining
DEA with ML offers an alternative approach to the issue of inputs and outputs selection.

However, all the above combinations of DEA with ML are limited by the repeating
theme of this introduction: that they do not consider different perceptions into the calcula-
tions. Furthermore, all the above attempts, in essence, worked towards reducing the size of
the available data with the introduction of ML (e.g., using clustering). In the current paper,
the opposite occurs; the variety of calculations under different perceptions can be seen as
new data generators that are used as inputs for the ML stage of the model that add new
layers of insights.

The novelties of the current paper are the following: first is the proposal and de-
velopment of an alternative, two-stage DEA model with a different optimization metric
and the proof of lemmas and a theorem. The second novelty is the integration of DEA
with ML under an exploratory, multi-perspective (similar to a full factorial experimental
design pattern) that will not only calculate the performance of EU countries in terms of
sustainability, but at the same time will provide insights relevant to policy makers and the
general public. Finally, several case studies are presented in the subsequent sections, and
each can be considered an addition to the literature of DEA.

The rest of the paper is structured as follows: in Section 2, the issue of the weight
flexibility in Data Envelopment Analysis is approached. The literature is reviewed, an
alternative two-stage DEA model is proposed and it is applied in the calculation of the
environmental performance of European countries. In Section 3, a new computational
framework is proposed and applied in the calculation of the sustainability of European
countries in a step-wise function. Conclusions, contributions of the current paper and
future research avenues are explored in Section 4.

2. Weight Flexibility in Data Envelopment Analysis
2.1. Literature Review on Weights in Data Envelopment Analysis

Weighting flexibility has been met with some criticism, since a DMU’s efficiency
assessment might be dominated by secondary activities, thus concealing inefficiencies of
important factors in the Production Possibility Set [40], or might not reflect the preferences
of the policy maker [41].

To solve these limitations, several approaches have been proposed. Sexton et al. [42]
introduced the notion of cross efficiency, where each DMU is assessed in a peer evaluation
mode with the optimal weights of all the other DMUs instead of its own [43]. However,
Kao and Hung [44] argued that cross efficiency limits the information contained in the
weights of the DMU’s inputs and outputs. The research on cross-efficiency evaluation has
been very active in recent years, with papers attempting different approaches to establish
appropriate weights [45] for both crisp and fuzzy data [46,47].

In another approach, several authors suggested modifications to the classic DEA
models in order to obtain a Common Set of Weights on which the efficiency of all DMUs is
calculated [48]. One stream of research in this approach is the use of virtual DMUs in the
set that act as reference points for the real DMUs. Such virtual DMUs are hypothetical units
that can act as a reference for the existing ones, either by assuming that they use inputs
in the most economical ways to produce the maximum level of outputs (ideal DMUs),
thus incentivizing the existing DMUs to imitate them, or by assuming that they use inputs
in the most expensive way to produce the minimum level of outputs (anti-ideal DMUs),
thus incentivizing the existing DMUs to deviate from the behavior as much as possible.
Khalili-Damghani and Fadaei [49] used both an ideal and an anti-ideal DMU to increase
the discrimination power of DEA. Finally, Azadi et al. [50] proposed models to calculate
the efficiency of DMUs based on the distances to two virtual DMUs, considering both the
pessimistic and optimistic approach of DEA.

Moreover, there are approaches to increase the discriminatory power of DEA by
combining the classic model with another method. For example, Kritikos [51] combined
DEA with TOPSIS in order to fully rank DMUs, while Simuany-Stern and Friedman [52]
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used the methodology with non-linear discriminant analysis. Another common approach
is the combination of DEA with AHP; for example, in Thanassoulis et al. [53], the authors
combined the two methods to evaluate higher education teaching performance. Moreover,
DEA has been combined with Multi-Objective Linear Programming approaches (see for
example [54–56]) that provide the Decision Maker with the opportunity to state their
preferences through interventions in the weights. Finally, weight restrictions as part of the
DEA model have been proposed as a solution to their flexibility in the literature. Weight
restrictions can be seen as value judgments [57] that not only limit their flexibility, but
also act positively on the discriminatory power of the model [58]. Examples of weight
restriction methods include the work by Alirezaee and Afsharian [59] who used the trade-
offs approach with an expanded Malmquist index to increase the discrimination of DMUs
or the Cone-Ratio models [60] and Assurance Regions [61].

However, Jain et al. [41] point out that these weight restriction methods might also
have some limitations such as increased subjectivity, since the models incorporate a priori
information, lack of guarantee for feasibility or the assumption of a single policy maker.
Even in cases where hybrid models are used for group decision-making contexts (for
example, [62]) the final result relies on the assumption of compromise, which indicates
a final (aggregate) Decision Maker. Moreover, all the approaches that were mentioned
above are solutions for classic, one-stage Data Envelopment Analysis. For two-stage or
Network DEA models, examples include the work by Mahdiloo et al. [30], who argued that
little attention has been paid to the weight distribution and weak discriminatory power of
network models. In their paper, they propose a multi-criteria DEA model, which is tested
by assessing the sustainable design performances of car products. Gharakhami et al. [63]
proposed a DEA variation that is based on goal programming, while Mavi et al. [64] used a
similar approach to analyze the joint effects of eco-efficiency and eco-innovation. Halkos
et al. [65] proposed a weight assurance region model to restrict the weights of the individual
stages and applied the model to evaluate the efficiency of secondary education units of
various countries. Finally, Kiaei and Matin [66] suggested a method based on separation
vector to change a Multiple Objective problem into a single objective linear programming
problem in two-stage DEA. Consequently, for two-stage DEA models, more efforts are
necessary to address the limitations of weight distribution, especially when it comes to
measuring the efficiency of complex processes such as sustainable development; in such
cases, incorrect weight distribution might conceal inefficiencies of very important factors.
For example, GHG emissions might not have equal importance compared to increased
economic activity, despite the fact that they are crucial for the measurement of sustainability,
thus providing an erroneous picture of sustainable development for the country/DMU
under study. The present paper contributes to that aim.

2.2. Proposed Model

Assume a two-stage process for N DMUs. Each DMUj(j = 1 . . . N) in the first stage
uses m inputs, the level of which is notated as xij, (i = 1, 2 . . . m), to produce D intermediate
measures, the level of which is notated as zdj, (d = 1, 2 . . . D). The intermediate measures
are used as inputs in the second stage to produce s outputs, notated as yrj, (r = 1, 2 . . . s).

The efficiency of the first stage is calculated by the weighted sum of the intermediate
measures over the weighted sum of the inputs, while the efficiency of the second stage is
calculated by the weighted sum of the outputs over the weighted sum of the intermediate
measures. The notations ωi, µd and γr are used to represent the weights of the inputs,
intermediate measures and outputs, respectively.

These are the typical problem statements and solution logic of two-stage DEA models,
and several authors provided integrated models that attempted to simultaneously optimize
the efficiencies of the two stages. Examples include: Liang et al. [67,68], Chen et al. [69,70],
Kao and Hwang [71], Cook et al. [72] and Halkos et al. [73]. For indicative extensive
reviews of two-stage and network DEA models, the reader is referred to the works of
Castelli et al. [74], Halkos et al. [75], Kao [76] and Despotis et al. [77].
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The two-stage model that is used by the authors Chen et al. [70] is presented below.

maxE0 =
s

∑
r=1

γryr0 (2)

Subject to
D

∑
d=1

µdzdj −
m

∑
i=1

ωixij ≤ 0, j = 1, . . . , N (3)

s

∑
r=1

γryrj −
D

∑
d=1

µdzdj ≤ 0, j = 1, . . . , N (4)

m

∑
i=1

ωixi0 = 1 (5)

ωi ≥ 0, i = 1, . . . , m (6)

µd ≥ 0, d = 1, . . . , D (7)

γr ≥ 0, r = 1, . . . , s (8)

The optimal value calculated by the model described in Equations (2)–(8) represents
the overall efficiency of DMU0, a number between zero (inefficient) and one (efficient).
Furthermore, the optimal values of the weights ωi, µd and γr are used for the decomposition
of the overall efficiency and the calculation of the efficiencies of the individual stages
according to Equations [70]:

E1
0 =

∑D
d=1 µ∗dzd0

∑m
i=1 ω∗i xi0

(9)

E2
0 =

∑s
r=1 γ∗r yr0

∑D
d=1 µ∗dzd0

(10)

The values of ω∗i , µ∗d and γ∗r are the optimal values of the weights of the inputs,
intermediate measures, and outputs, respectively, that were calculated by Equations (2)–(8).

However, the above model searches for the best possible values of those variables in
order to maximize the efficiency of DMU0. As a result, the weights retain the flexibility that
was mentioned in the Introduction. The issue in two-stage DEA models has incentivized
authors to overcome the weight flexibility limitation by proposing different extensions,
such as in the works by Mahdiloo et al. [30] and Sun et al. [25].

The model that is developed in the context of the current paper is in the same direction
as the papers of Mahdiloo et al. [30] and Sun et al. [25], and proposes an alternative
extension to the model described by Equations (2)–(8) by actually introducing a different
metric for the objective function using deviational variables:

mind0 + n0 + d′0 + n′0 (11)

Subject to
m

∑
i=1

ωixij −
D

∑
d=1

µdzdj ≥ 0, j = 1, . . . , N (12)

m

∑
i=1

ωixi0 −
D

∑
d=1

µdzd0 − d0 + n0 = 0 (13)

D

∑
d=1

µdzdj −
s

∑
r=1

γryrj ≥ 0, j = 1, . . . , N (14)

D

∑
d=1

µdzd0 −
s

∑
r=1

γryr0 − d′0 + n′0 = 0 (15)
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D

∑
d=1

µdzd0 = 1 (16)

ωi ≥ 0, i = 1, . . . , m (17)

µd ≥ 0, d = 1, . . . , D (18)

γr ≥ 0, r = 1, . . . , s (19)

d0, n0, d′0, n′0 ≥ 0 (20)

The main property of the model is the introduction of the variables d0, d′0, n0, n′0.
The variable d0 represents the positive deviation and variable n0 represents the negative
deviation of the efficiency of stage 1 from reaching the maximum value. Variable d′0
represents the positive deviation while the variable n′0 represents the negative deviation of
the efficiency of stage 2 from reaching its maximum value. Consequently, since in two-stage
DEA it is assumed that the ratio of the sum of the weighed intermediate measures to
the sum of the weighted inputs (stage 1) and the sum of weighted outputs to the sum of
weighted intermediate measures should be smaller or equal to one (constraints (13), (15)),
the introduction of the variables d0, d′0, n0, n′0 occurs in constraints (13) and (15) in order to
make them equal to zero in the following manner:

∑D
d=1 µdzdj

∑m
i=1 ωixij

≤ 1 ⇒
m
∑

i=1
ωixij −

D
∑

d=1
µdzdj ≥ 0

⇒
m
∑

i=1
ωixij −

D
∑

d=1
µdzdj

−d0 + n0 = 0

(21)

∑s
r=1 γryr0

∑D
d=1 µdzdj

≤ 1 ⇒
D
∑

d=1
µdzdj −

s
∑

r=1
γryr0 ≥ 0

⇒
D
∑

d=1
µdzdj −

s
∑

r=1
γryr0

−d′0 + n′0 = 0

(22)

Thus, the model represented by Equations (11)–(20) attempts to find the best possible
values for ωi, µd and γr by minimizing the deviations of both the first and second stage of
the DEA model. By simultaneously minimizing the deviations of each stage (i.e., d0 + n0
for stage 1 and d′0 + n′0 for stage 2), the efficiencies of both stages are maximized at the same
time and no priority is given for which stage should take precedence. Moreover, since we
wish to attain the specific value of one for both stage efficiencies, both groups of deviational
variables are included in the objective function to be minimized.

Equations (12) and (14) ensure that the efficiency scores of the first and second stage
are smaller than one. Equations (13) and (15) indicate that the efficiency score for the first
and second stage, respectively, when their respective deviations are added should be one,
and to achieve that, it is assumed that ∑D

d=1 µdzd0 = 1 (Equation (16)).
The efficiencies of the individual stages are calculated according to Equations (9) and (10),

while the overall efficiency equals the average of the individual efficiencies, similar to the
work by Mahdiloo et al. [30].

The contribution of the proposed model compared to the ones in the literature is the
inclusion of both positive and negative deviational variables. The introduction of positive
and negative deviations in such models is typical in the Multi-Criteria Decision Analysis
literature, and although the model might work with fewer deviations, in the context of the
current paper, the authors believe that although the inclusion of both positive and negative
deviations adds a level of complexity to the model, it also offers a layer of rigor, which
might increase the computational time but at the same time provides a more nuanced
distribution of the weights without altering the core elements of the DEA methodology.
In addition, the significance of each deviational variable in the objective function can be
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further fine-tuned, either within a level or between levels with appropriate weights, thus
offering a trade-off vehicle of trading between the efficiencies.

The authors of the current paper recognize that the proposed alternative, two-stage
DEA with a different optimization metric described by Equations (11)–(20) can be one of
many approaches that use deviational variables; in order to examine whether the proposed
approach was valid, three lemmas and one theorem were proved about the model described
by Equations (11)–(20), which are presented in Appendix A. Finally, the proposed alterna-
tive approach to two-stage DEA might not offer a unique solution and one approach to
mitigate the potential effects of that fact will be presented in Section 3 of the current paper.

2.3. Application

Another contribution of the current paper is the calculation of the environmen-
tal performance of European countries with the two-stage DEA model described by
Equations (11)–(20). For the determination of the inputs, intermediate measures and out-
puts, the efforts of Tsaples and Papathanasiou [78] were used. The authors study the concept
of sustainability and how DEA has tackled it and consider environmental performance
as one of the dimensions of sustainability. Furthermore, Tsaples and Papathanasiou [79]
use different combinations of inputs, intermediate measures and outputs to calculate the
environmental performance of EU countries.

For the case study, the following measures are used:

Inputs: Population, Gross electricity production [Thousand tons of oil equivalent
(TOE)] (xij in the DEA model)
Intermediate measures: Final energy consumption [Terajoule] (zdj in the DEA model)
Outputs: Terrestrial protected area (km2), Share of renewable energy in gross fi-
nal energy consumption, Greenhouse gas emissions (in CO2 equivalent) (yrj in the
DEA model)

The data source is Eurostat (https://ec.europa.eu/eurostat (accessed on 10 January
2021)) for the year 2018, which was the latest common year for which data were available for
all countries during the writing of the current paper. The choice of the specific parameters
was based on the works of Tsaples and Papathanasiou [78,79]. However, as the authors
note in their literature review [24], despite the commonalities, the works in the literature
use different sets of inputs and outputs to measure sustainability. For example, the input
Population can be found in papers such as the one by Lo Storto [80], while the pollution
outputs can be found in several papers, such as the one by Li et al. [81]. Nonetheless,
as it was stated in the Introduction, the objective of the current paper is to propose a
computational framework that will incorporate all those different perceptions (hence
different combinations of parameters) into a single measure of sustainability.

Finally, the output Greenhouse gas emissions is considered undesirable, which con-
tradicts the nature of outputs in Data Envelopment Analysis, which should always be
maximized. Thus, the undesirable output of the case study is rendered into a “desirable”
one with a linear monotonic transformation [82].

Table 1 below illustrates the results obtained from the alternative metric two-stage
DEA and the corresponding results obtained from the model of Chen et al. [70].

The column named E0 indicates the overall environmental performance of the country,
E1 indicates the performance of the first stage and E2 indicates the performance of the
second stage. The first aspect to observe is that the results of the individual stages for
the proposed alternative are almost similar to the ones calculated with the model of Chen
et al. [70], nonetheless with notable differences. These differences, we argue, are the result
of the introduction of the deviational variables that, apart from restricting the values of the
optimal weights, essentially induce the optimization of a different metric in the objective
function and the following calculation of the overall efficiency by the arithmetic mean
of the individual efficiencies. Furthermore, the two models differ in the average overall
efficiency, which is larger in the proposed variation and the range of the values of the
overall efficiency, which, in the proposed model, is smaller than that of Chen et al. [70].

https://ec.europa.eu/eurostat
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Notably, the model of Chen et al. [70] assumes that the overall efficiency is derived as the
product of the divisional efficiency scores, whereas in the proposed model, the overall
efficiency is calculated as the weighted average of the divisional efficiency scores. Therefore,
it is true that comparing the overall efficiency scores would not make much sense. It is
worth mentioning, though, that the overall efficiency in the proposed model is defined
through a compensatory approach, whereas the model of Chen et al. [70] employs a non-
compensatory approach. Consequently, it is mathematically expected that the proposed
model would certainly be allowed to attain higher (or equal) overall efficiency scores. In
Table 1, as both models estimate almost identical divisional efficiency scores, they will
also provide almost the same overall efficiency scores under any common definition of the
overall efficiency.

Table 1. Results from the proposed, alternative metric two-stage DEA and the ones obtained by the
models of Chen et al. [70].

Chen et al. [70] Proposed, Alternative Metric
Two-Stage DEA Chen et al. [70] Proposed, Alternative Metric

Two-Stage DEA

Country E0 E1 E2 E0 E1 E2 Country E0 E1 E2 E0 E1 E2
Belgium 0.032 (26) 0.733 0.044 0.388 (21) 0.733 0.044 Luxemburg 0.255 (10) 1 0.255 0.628 (9) 1 0.255
Bulgaria 0.296 (9) 0.296 1 0.648 (7) 0.296 1 Hungary 0.160 (16) 0.715 0.224 0.469 (14) 0.715 0.224

Czech
Republic 0.077 (22) 0.664 0.116 0.390 (20) 0.664 0.116 Malta 0.223 (11) 0.223 1 0.612 (10) 0.223 1

Denmark 0.145 (18) 0.818 0.178 0.498 (12) 0.818 0.178 Netherlands 0.023 (27) 0.570 0.041 0.306 (28) 0.570 0.041
Germany 0.038 (25) 0.657 0.058 0.358 (23) 0.657 0.058 Austria 0.153 (17) 0.756 0.202 0.479 (13) 0.756 0.202
Estonia 0.680 (2) 0.680 1 0.840 (2) 0.680 1 Poland 0.093 (21) 0.512 0.183 0.347 (24) 0.512 0.183
Ireland 0.132 (20) 0.599 0.220 0.410 (19) 0.599 0.221 Portugal 0.136 (19) 0.272 0.502 0.387 (22) 0.272 0.502
Greece 0.188 (13) 0.348 0.541 0.444 (15) 0.348 0.541 Romania 0.191 (12) 0.469 0.408 0.438 (16) 0.469 0.408
Spain 0.171 (14) 0.320 0.534 0.427 (17) 0.320 0.534 Slovenia 0.405 (6) 0.506 0.800 0.653 (6) 0.506 0.800
France 0.061 (23) 0.583 0.105 0.344 (25) 0.583 0.105 Slovakia 0.169 (15) 0.378 0.449 0.414 (18) 0.378 0.449
Croatia 0.457 (5) 0.659 0.693 0.676 (5) 0.659 0.693 Finland 0.495 (4) 1 0.495 0.748 (4) 1 0.495

Italy 0.056 (24) 0.538 0.104 0.321 (26) 0.538 0.104 Sweden 0.380 (7) 0.753 0.505 0.629 (8) 0.753 0.505

Cyprus 0.316 (8) 0.398 0.793 0.596 (11) 0.398 0.793 United
Kingdom 0.020 (28) 0.604 0.033 0.318 (27) 0.604 0.033

Latvia 0.697 (1) 0.714 0.977 0.845 (1) 0.714 0.977
Lithuania 0.589 (3) 1 0.589 0.794 (3) 1 0.589

The accumulated small differences result in different rankings of the countries accord-
ing to their overall efficiency. Countries that seemed to perform better under the variation
of Chen et al. [70], such as Poland, Portugal and Greece, move down the ranking in the
proposed variation of the current paper. Finally, we observe that despite the above notable
observations, the values of the efficiencies of the individual stages do not differ much, and
the fact that the countries that are in the efficient frontiers of the first and the second stages,
respectively, remain the same under both variations increases the confidence in the results.
In combination with the results from the paper of Mahdiloo et al. [30], where the authors
observed similar behavior when they compared their model with that of Chen et al. [70],
the robustness of both the results and the models increases.

To get a better understanding of how the alternative variation compares to that of Chen
et al. [70], an additional illustration was performed by adding: to the inputs the Gross fixed
capital at current prices (PPS) and the Total Labor force (×1000 persons), to the intermediate
measures the Domestic material consumption [Thousand tons] and to the outputs the Total
expenditure [Euro per inhabitant]. The results are tabulated in Table 2 below.

The inclusion of more parameters in the two-stage models alters the results, which is
not unexpected. However, the conclusions from the previous table also hold for the results
in Table 2. Nonetheless, the differences in the overall efficiency between the proposed
method and that of Chen et al. [70] are larger.

In conclusion, the proposed DEA variation with the alternative optimization metric
does not come without limitations. Firstly, the calculated solution might not be unique.
Furthermore, in its current version, the proposed model uses a compensatory approach
to calculate the overall efficiency from the stage ones, which might not be applicable in
all contexts.
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Table 2. Another set of results from the two variations with additional parameters.

Chen et al. [70] Proposed, Alternative Metric
Two-Stage DEA Chen et al. [70] Proposed, Alternative Metric

Two-Stage DEA

Country E0 E1 E2 E0 E1 E2 Country E0 E1 E2 E0 E1 E2
Belgium 0.066 (26) 0.746 0.088 0.475 (22) 0.891 0.059 Luxemburg 1 (1) 1 1 1 (1) 1 1
Bulgaria 1 (1) 1 1 1 (1) 1 1 Hungary 0.321 (17) 0.965 0.333 0.652 (14) 0.986 0.317

Czech
Republic 0.117 (23) 0.716 0.164 0.456 (23) 0.795 0.116 Malta 0.647 (10) 0.647 1 0.822 (9) 0.645 1

Denmark 0.228 (20) 1 0.228 0.614 (17) 1 0.228 Netherlands 0.052 (27) 0.527 0.098 0.364 (28) 0.665 0.062
Germany 0.069 (25) 0.656 0.105 0.410 (26) 0.758 0.062 Austria 0.204 (21) 0.765 0.267 0.511 (21) 0.815 0.206
Estonia 0.843 (5) 0.843 1 0.917 (5) 0.907 0.927 Poland 0.252 (19) 1 0.252 0.626 (16) 1 0.252
Ireland 0.267 (18) 0.857 0.311 0.588 (20) 0.896 0.279 Portugal 0.350 (16) 0.740 0.473 0.605 (19) 0.763 0.446
Greece 0.723 (6) 0.864 0.836 0.847 (6) 0.894 0.801 Romania 0.429 (13) 0.985 0.435 0.710 (12) 1 0.420
Spain 0.366 (15) 0.429 0.854 0.641 (15) 0.429 0.854 Slovenia 0.656 (9) 0.701 0.934 0.818 (10) 0.701 0.934
France 0.109 (24) 0.551 0.198 0.393 (27) 0.676 0.111 Slovakia 0.376 (14) 0.607 0.620 0.613 (18) 0.607 0.620
Croatia 0.935 (4) 0.935 1 0.968 (4) 0.935 1 Finland 0.670 (8) 1 0.670 0.835 (8) 1 0.670

Italy 0.130 (22) 0.613 0.212 0.452 (24) 0.795 0.108 Sweden 0.497 (12) 0.755 0.658 0.706 (13) 0.755 0.658

Cyprus 0.717 (7) 0.882 0.813 0.847 (6) 0.898 0.797 United
Kingdom 0.044 (28) 0.634 0.070 0.447 (25) 0.858 0.037

Latvia 0.998 (3) 0.998 0.999 0.999 (3) 0.998 1
Lithuania 0.632 (11) 1 0.632 0.816 (11) 1 0.632

Despite the limitations, the alternative model that is proposed in the current paper is
accompanied by several advantages, as follows: (1) the introduction of both negative and
positive deviational variables distinguishes the proposed model from that of Chen et al. [70]
(and the model by Mahdiloo et al. [30]) in a qualitative manner: the deviational variables in
the first stage push the stage efficiency to increase, to the detriment of the efficiency of the
second stage. (2) At the same time, the deviational variables of the second stage push the
stage efficiency to increase in detriment to the efficiency of the first stage. Hence, a trade-
off occurs between the two stage efficiencies that ultimately drives the overall efficiency
upwards. (3) The model provides a more nuanced distribution of the weights without
altering the core elements of the DEA methodology. (4) In addition, the significance of each
deviational variable in the objective function can be further fine-tuned, either within a level
or between levels with appropriate weights, thus offering a trade-off vehicle between the
efficiencies and a scheme to incorporate the preferences of decision makers.

3. Exploratory, Multi-Dimensional Data Envelopment Analysis

As was mentioned above, environmental performance is considered only one of
the three (or more) dimensions of sustainability. Consequently, moving in the direction
of adding more dimensions to measure sustainability, the need arises to move from a
two-stage DEA model to a multi-level or multi-dimensional model that will allow the
incorporation of these dimensions without succumbing to the methodological limitations
of DEA. In the following sub-sections, a new framework is proposed for the incorporation
of multiple dimensions.

3.1. Multi-Dimensional DEA for the Construction of Composite Indicators

The typical calculation of sustainability involves three dimensions: economic, environ-
mental and social. Thus, the calculation of the environmental performance in the previous
section can be considered as part of sustainability, despite the fact that many of the inputs,
intermediate measures and outputs that have been used by the various authors resemble
those that are used in the DEA literature for the calculation of sustainability.

However, for a more inclusive calculation of sustainability that is not limited by the
number of inputs and outputs that can be used, the proposed alternative, two-stage model
that was described by Equations (11)–(20) can be incorporated in the framework proposed
by Tsaples and Papathanasiou [79] and shown in Figure 2.
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Each sub-indicator/dimension is calculated using Equations (11)–(20) and the overall
performance of each sub-indicator/dimension is used in a Benefit-of-the-Doubt (BoD)
model to calculate the overall sustainability index. The BoD model is described by Equa-
tions (23)–(25) below [83]:

max
s

∑
r=1

wriyri (23)

Subject to:

s

∑
r=1

wriyrj≤ 1 (N constraints, one f or each DMU j= 1 . . . N) (24)

wrj ≥ 0, (r = 1 . . . s, s constraints one f or each sub− indicator) (25)

The BoD model described by Equations (23)–(25) is a typical DEA model with the
inputs designated as one. As a result, the model calculates the optimal weights allowing
maximum flexibility. In contrast with the proposed two-stage alternative of Equations
(11)–(20), the BoD model does not include any restrictions to the weights because the
dimensions that are included are typical of sustainability (despite the differences in the
underlying measures that are used to calculate those indicators) and limited in number.
Moreover, the simplicity of the BoD model, the opportunities that it allows to account for
different (countries’) backgrounds [84], the fact that it has been used by numerous studies
(see [85] for an inclusive account) and has been proposed by OECD for the construction of
composite indicators [86] mean that it can be used without any intervention in the weights.
As mentioned in the above paper, its main advantage is that “it results in idiosyncratic
weights to aggregate sub-indicators that vary both across sub-indicators and evaluated
decision-making units (DMUs)”. In other words, “each evaluated DMU is allowed to
choose a set of weights that maximizes its performance in terms of the resulting value of
the composite indicator under the restriction that if the same set of weights is used by
any other evaluated DMU it will not result in a value of the composite indicator that is
greater than one” [85] (p. 1). The use of a BoD model is not unique and alternative methods
can be used equally successfully and efficiently (for example, Shannon’s entropy in the
example [87]). However, in the context of the current paper, the BoD approach is preferred
because the overall proposed model continues to be two-stage DEA, in which the first stage
consists of two-stage DEA models that calculate the (more refined) dimensions that will
be used in the BoD model that brings the above desired properties for the construction of
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a final scalar index for each country. Thus, the framework is characterized by an esoteric,
elegant consistency.

In the current paper, the following are used for each dimension:

• Economic

- Inputs: Gross fixed capital at current prices (PPS); Total Labor force (×1000 persons);
- Intermediate measures: GDP per capita in PPS Index (EU28 = 100);
- Outputs: Median equivalized net income [Purchasing power standard (PPS)];

Final consumption expenditure of households [Current prices, million euro].

• Environmental

- Inputs: Population, Gross electricity production [Thousand tons of oil equivalent (TOE)];
- Intermediate measures: Final energy consumption (Terajoule);
- Outputs: Terrestrial protected area (km2), Share of renewable energy in gross final

energy consumption (%), Greenhouse gas emissions (in CO2 equivalent).

• Social

- Inputs: Gross fixed capital at current prices (PPS), GDP per capita in PPS Index
(EU28 = 100);

- Intermediate measures: Total expenditure (Euro per inhabitant);
- Outputs: Patent applications to the European patent office (EPO) by priority

year; Overall life satisfaction; Satisfaction with living environment; Percentage of
females in total labor population [79].

As it can be observed in Table 3, there are four countries that are considered sustainable
compared to the rest of the set: Germany, Estonia, Latvia and Malta. The rest of the
countries can be grouped into two broad categories: those that have a sustainability
index above 0.7 compared to the other countries and those that have a sustainability index
below 0.7., which includes Belgium, Czech Republic, Ireland, Greece, Spain, Hungary,
Netherlands, Portugal and Slovakia. Furthermore, the Spearman Correlation Coefficient
was calculated for:

Sustainability–Economic sub-indicator: 0.635
Sustainability–Environmental sub-indicator: 0.627
Sustainability–Social sub-indicator: 0.616

Table 3. Results for the construction of a sustainability composite indicator.

Country Sustainability Economic
Sub-Indicator

Environmental
Sub-Indicator

Social
Sub-

Indicator
Country Sustainability Economic

Sub-Indicator

Environmental
Sub-

Indicator

Social
Sub-

Indicator

Belgium 0.68 0.44 0.38 0.47 Lithuania 0.93 0.41 0.79 0.49
Bulgaria 0.94 0.4 0.75 0.6 Luxemburg 0.93 0.79 0.62 0.53

Czech
Repub-

lic
0.62 0.4 0.39 0.4 Hungary 0.68 0.32 0.46 0.44

Denmark 0.82 0.44 0.5 0.57 Malta 1 1 0.61 0.58
Germany 1 0.49 0.35 0.87 Netherlands 0.65 0.4 0.3 0.5
Estonia 1 0.53 0.84 0.46 Austria 0.74 0.45 0.47 0.47
Ireland 0.62 0.4 0.41 0.38 Poland 0.68 0.43 0.34 0.5
Greece 0.61 0.34 0.44 0.37 Portugal 0.6 0.36 0.38 0.39
Spain 0.68 0.47 0.42 0.44 Romania 0.8 0.29 0.43 0.6
France 0.85 0.5 0.34 0.7 Slovenia 0.85 0.54 0.65 0.46
Croatia 0.82 0.43 0.67 0.43 Slovakia 0.61 0.33 0.41 0.39

Italy 0.7 0.46 0.32 0.54 Finland 0.93 0.46 0.74 0.52
Cyprus 0.9 0.8 0.59 0.47 Sweden 0.87 0.41 0.62 0.54

Latvia 1 0.46 0.84 0.53 United
Kingdom 0.75 0.5 0.31 0.58

The coefficients illustrate that the sustainability of each country depends almost
equally on each sub-indicator, with the economic-sub-indicator, however, having a slightly
larger coefficient.
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3.2. Proposed DEA-ML Computational Framework

Nonetheless, the above calculated sustainability index suffers from the same limita-
tions that were identified in the Introduction and in the previous section: Since there is
no unique, “correct” definition of sustainability, the same indicator can be calculated by
using different variations of DEA and/or different combinations of inputs, intermediate
measures and outputs.

Furthermore, the proposed two-stage DEA variation might not offer a unique solution
that could alter the final results of the calculated index. Finally, one could argue that the
BoD model that was used to aggregate the individual dimensions into one sustainability
index does not pose any restrictions to the weights, similar to those proposed in the initial
two-stage DEA model. Thus, methodological limitations might limit the value of the
final results.

Consequently, there is the need to have an indicator of sustainability that will incor-
porate all these different perceptions that may arise—where perceptions mean different
DEA and BoD variations and/or different combinations of inputs, intermediate measures
and outputs—and at the same time limit the impact of methodological limitations. Such
an indicator would be useful in policy design (and policy making in general) because, as
Foster and Sen [88] proposed, uniqueness is not a prerequisite to make agreed judgments.
Hence, the proposed computational framework is based on this principle, and it consists of
the following steps:

Step 1: Define different perceptions of sustainability and for each perception:

(a) Define how many sub-indicators will be entailed in this perception’s sustainability index;
(b) Define the inputs, intermediate measures and outputs that each sub-indicator will entail;
(c) Repeat for all perceptions.

Step 2: Define the variation of DEA that will calculate the value of the sub-indicators.

(a) Calculate the sub-indicators;
(b) Calculate the perception’s sustainability index using model (23)–(25);
(c) Once all sustainability indices for all perceptions are calculated, calculate the mean

value for each country/DMU.

Step 3: Use machine learning to gain insights into the sustainability of each country
under different perceptions.

Figure 3 below illustrates the proposed computational framework.
Consequently, by blending DEA with ML, the available data and analyses are ex-

panded, which contributes to investigating the topic under study (thus implicitly adding
new layers to the initial problem), meaning that greater insights are revealed. Furthermore,
the absence of a unique solution created by the proposed alternative two-stage model
of Equations (11)–(20) can be considered a methodological limitation; however, the issue
becomes not of central importance per se, since in the context of the current paper, the
model will be used repeatedly and with different data to generate different results, in
accordance with the philosophy of Exploratory Modeling and Analysis, where methodolog-
ical limitations lose their impact from the generation of numerous results under different
assumptions. Hence, the exploratory framework offers not only a slight deviation from the
typical way that DEA is used, but also a complementary research avenue on the issues of
interpretability and transparency of algorithms and/or quantitative methods: by blending
methodologies under a multi-perspective design, algorithms become more inclusive and
democratic (in the sense that the Benefit-of-the-Doubt notion inherent in the aforemen-
tioned DEA formulations is further enriched). Hence, decision support can take a step
towards the generation of collective knowledge that includes different values, perceptions
and dimensions.
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3.3. Illustration of the Proposed DEA-ML Computational Framework

Step 1: In the context of the current paper, three types of Economic (with measures
including, for example, Total Labor Force, Gross Fixed Capital at current prices as inputs,
GDP per capita as intermediate measures and Median equivalized net income and Final
consumption expenditure of households as outputs), three types of Environmental (with
measures including, for example, Gross Electricity Consumption as inputs, Energy Con-
sumption as intermediate measures and Greenhouse Gas Emissions as outputs), three
types of Social (with measures including, for example, Overall life satisfaction, percentage
of females in total labor population as outputs) and two types of Research and Develop-
ment (R&D) (with measures including, for example, Intramural R&D expenditures, Patent
applications to the EPO as outputs) dimensions are defined. These 11 different types of
dimensions are combined in all the possible combinations of three and four dimensions,
resulting in 135 different perceptions of sustainability. Consequently, in the context of the
current paper, the choice of parameters for the models becomes secondary in importance,
with the purposing of reducing the bias of the analyst or decision maker and the method-
ological limitations of DEA. All the parameters/variables that are used in the calculations
along with summary statistics are presented in Appendix B.

Step 2: Each of these 135 perceptions are used with the proposed DEA model that is
described by Equations (11)–(20) and (23)–(25). The mean sustainability of the countries
with the proposed DEA variation is displayed in Table 4 below:

Hence, the inclusion of different perceptions alters the results that were illustrated
in Table 3. Under multiple perceptions, Malta, Latvia and Luxemburg have the highest
sustainability compared to the rest of the countries. Moreover, with all the different
variations of sub-indicators, there are countries for which the mean sustainability falls
below 0.5, such as the Czech Republic, Ireland, Italy and the Netherlands. Finally, there
are no countries for which the mean sustainability increased with the inclusion of different
parameters; only Malta managed to keep the sustainability at the value of one in both cases.

Figure 4 below illustrates the results of the 135 calculations of sustainability on violin plots.
The y axis indicates the measurement of sustainability, while the x axis indicates the

distribution of the sustainability indices that were calculated; wider sections of the density
indicate that there is a higher probability that data points will take the given value, while
narrow sections indicate lower probability.
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Table 4. Mean sustainability calculated with the proposed DEA model (Equations (11)–(20) and (23)–(25)).

Country

Mean
Sustainability

(Proposed,
Alternative Metric
Two-Stage DEA)

Country

Mean
Sustainability

(Proposed
DEA Variation)

Country

Mean
Sustainability

(Proposed,
Alternative Metric
Two-Stage DEA)

Belgium 0.5 Croatia 0.77 Austria 0.6
Bulgaria 0.83 Italy 0.48 Poland 0.53

Czech Republic 0.47 Cyprus 0.86 Portugal 0.51
Denmark 0.73 Latvia 0.91 Romania 0.73
Germany 0.75 Lithuania 0.79 Slovenia 0.73
Estonia 0.87 Luxemburg 0.93 Slovakia 0.51
Ireland 0.47 Hungary 0.57 Finland 0.82
Greece 0.57 Malta 1 Sweden 0.81
Spain 0.52 Netherlands 0.45 United Kingdom 0.58
France 0.65
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The first aspect to observe is that Latvia concentrates the majority of their values on
the upper side of the violin plot, while Malta has a constant value of one for all calculations,
indicating that compared to the rest, the two countries have a high sustainability no matter
the perception; thus, the robustness of the conclusion increases. For the rest of the countries,
the different perceptions create different situations for their sustainability. For example,
Greece has a mean sustainability of 0.57; however, its values can change depending to the
perception from 0.45 to 0.75, with the majority of the values concentrated between 0.5 and
0.6. Thus, the sustainability of Greece changes with different perceptions in a significant
way, weakening the declaration of any robust conclusions.

Apart from the calculation of the sustainability indices under different perceptions
with the proposed two-stage DEA, Step 2 of the computational framework includes the use
of different variations of DEA. In the present application, the classic two-stage model of
Chen et al. [70], and an adaptation of the Constant Returns to Scale (CRS) DEA [16] and
of the Variable Returns to Scale (VRS) [17] are used (along with the proposed variation).
For the last two DEA variations, the classic DEA models are used in a chained way to
accommodate the two-stage nature of the models. More specifically, each combination
of inputs, intermediate measures and outputs is used in the chained way of the classic
one-stage models as follows: the efficiency of the first stage is calculated with the inputs and
the intermediate measures as outputs, using either CRS or VRS DEA. The efficiency of the
second stage is calculated with the intermediate measures as inputs and the outputs, using
(similar to the first stage) either CRS or VRS DEA. The sustainability index is calculated
by multiplying the efficiencies of the two stages. Finally, the sustainability index of each
perception is calculated using the BoD model [83] (Table 5).

Table 5. Mean sustainability calculated with all DEA variations.

Country Mean Sustainability
(All DEA Variations) Country Mean Sustainability

(All DEA Variations) Country Mean Sustainability
(All DEA Variations)

Belgium 0.56 Croatia 0.60 Austria 0.57
Bulgaria 0.51 Italy 0.47 Poland 0.42

Czech Republic 0.35 Cyprus 0.85 Portugal 0.49
Denmark 0.69 Latvia 0.80 Romania 0.44
Germany 0.6 Lithuania 0.67 Slovenia 0.67
Estonia 0.82 Luxemburg 0.95 Slovakia 0.4
Ireland 0.55 Hungary 0.41 Finland 0.75
Greece 0.49 Malta 0.99 Sweden 0.71

Spain 0.49 Netherlands 0.55 United
Kingdom 0.55

France 0.55

The inclusion of different variations of DEA (which can be chosen by the analyst
and/or the policy maker) with different combinations of inputs and outputs increases
the robustness of the results, since many sustainability indices will be calculated that
can capture different perceptions both methodologically (which method is the more “cor-
rect”) and context wise (which combination of inputs, outputs and intermediates is the
more “correct”).

As can be observed in Table 5, the mean sustainability changes again, indicating that
the methodological framework that is used matters in the calculation of the final index. In
the current illustration, there are countries where the mean sustainability increases with
the inclusion of other DEA variations (such as Belgium, Luxemburg and the Netherlands),
others where it is almost the same (such as Malta) and those for which the mean sustain-
ability decreases (the rest of the countries). Moreover, the Spearman correlation coefficient
for the two mean sustainability indices of Tables 4 and 5 was calculated and found to be
equal to 0.752, which indicates a strong positive correlation between the two indices.
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These changes are also mirrored in the violin plots of the sustainability, displayed
on Figure 5.
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Focusing again on the example of Greece, there are combinations of sub-indicators
and DEA variations that produce high sustainability indices. Furthermore, the number of
values below the mean increases with all DEA variations.
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Step 3: The final step of the proposed computational framework is to use machine
learning techniques in the results of the above computations with the purpose of revealing
insights into how the sustainability of countries behaves under different perceptions. For
the current paper, the Classification and Regression Decision Trees (CART) are used; since
they are not computationally costly, they can be used as tools to communicate with non-
experts and offer deep interpretational capabilities [89]. Consequently, the use of Machine
Learning assists in identifying those features that affect the calculations of sustainability
under different perceptions and methodological frameworks. However, CART trees tend
to overfit the data to their training set and are considered weak learners [90], and for
that reason, an additional ML technique will be used: boosting regression [91]. Boosting
regression is considered a slow learner, where each tree is generated using information from
previous ones [92]. Moreover, the technique will also reveal the relative influence of the
individual sub-indicator to the index of sustainability, which could provide further insights
into the analysis of the results. It is more robust than CART trees, but this robustness comes
at the detriment of intuitive communication capabilities that are the main characteristic of
CART trees. Consequently, the use of the two Machine Learning techniques will limit the
methodological weaknesses of each method, while providing results and insights that are
robust and independent of the technique used. Following the logic of the previous steps,
the focus will be on Greece. Figure 6 below illustrates the CART tree of Greece, along with
the relative influence of the sub-indicators that were used in all perceptions.
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As can be observed, the overall environmental performance is the sub-indicator that
influences the overall sustainability the most. Furthermore, the CART tree illustrates that
when the environmental performance of the second stage is larger than 0.59 and the overall
environmental performance is missing, the sustainability of Greece takes its lowest values,
further supporting the importance of the sub-indicator.

The final part of the analysis is to perform data mining on the countries when all DEA
variations are used. For Greece (Figure 7), the most important sub-indicators become those
of the overall economic one and the one representing research and development. From
the CART tree, if the overall economic performance is lower than 0.045 and the overall
research and development index is lower than 0.59, the sustainability of Greece (under all
DEA variations) has its lowest values.
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4. Conclusions

The purpose of this paper was to propose a computational framework with a twofold
contribution: at its initial phase, it uses a two-stage Data Envelopment Analysis model
with an alternative optimization metric that attempts to intervene on the weights of the
inputs, intermediate measures and outputs to better reflect their importance for the DMUs.
The model takes advantage of deviational variables to handle the variations attributed to
the weights distribution. The deviational variables provide a vehicle of interventions on
the weights distribution through the goal programming formulation inherent to DEA. The
model was used to calculate the environmental performance of EU countries and a compar-
ison was provided with the two-stage variations of Chen et al. [70]. The results illustrate
that the two variations share similarities but also notable differences for environmental
performances, and obviously there are changes in the rankings. This is attributed to the
fact that the alternative DEA variation uses a different optimization metric through the
additional variables that impose limitations on the distributions of the calculated weights.

The second area of contribution of the framework is the integration of a computational
stage, which attempts to incorporate different perceptions (that is, different combinations of
inputs and outputs) and apply it in the measurement of sustainability of the EU 28 countries
using machine learning techniques. This is extremely useful and important especially in
the case of multi-dimensional constructs such as sustainability. The overall computational
stage relies on the use of multi-level Data Envelopment Analysis in combination with
classic DEA variations and on the application of these models for different combinations
of inputs, intermediate measures and outputs that represent different perceptions of what
sustainability is. Finally, the exploratory analysis on the outcomes with the use of Machine
Learning methodologies such as CART decision trees concludes the computational part
of the paper by proposing sustainability paths according to each country’s strengths and
weaknesses as it is further summarized in the following paragraph.

In this direction, it is worth pointing out that this framework follows the school
of thought of Exploratory Modeling and Analysis that supports the use of models and
quantitative methods in an exploratory way, not to predict or monitor policy cycles accu-
rately (which can be considered impossible) but to gain insights by incorporating different
perceptions and methodological approaches towards the same problem, thus increasing
the robustness of the results [93]. In the current paper, we applied this approach in the
measurement of sustainability of EU 28 countries. Concretely, the computational experi-
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ments illustrated that the different perceptions of how sustainability is measured, and the
use of different DEA variations (hence different methodological frameworks) affect the
final results.

Finally, the blend of DEA with machine learning (applied on the results of DEA for
the various scenarios) revealed insights on the areas to which policy makers could direct
investments to increase sustainability. In addition, the ML application contributed to the
identification of the most important features of sustainability for the various countries,
something that could have direct implications in the area of EU policy-making: for example,
countries that share similar features that drive the behavior of sustainability could be
grouped together in clusters and policies, laws, regulations, etc., could be adapted to those
clusters in order to boost the particular features that would increase their sustainability. As
a result, policy making has the potential to become customized (adapted to the specifics
of each group) without missing its overall and principal theme of pursuing sustainable
development. This adaptive and adaptable policy-making could be of great assistance,
especially when new countries are negotiating their entry to the Union; based on the
features that affect the sustainability of the new countries, they could follow the regulations
and laws of the appropriate cluster. Finally, the inclusion of new layers and perceptions
renders the algorithms more inclusive and participatory, increasing their transparency, thus
improving the trust in the final results.

However, the proposed framework is not without limitations. Regarding the definition
and/or methodological framework for sustainability, a new approach could be taken: a
bottom-up approach, where scientists propose a unified methodological and/or compu-
tational framework that attempts to mitigate the limitations of individual methods and
integrates different and diverse definitions of sustainability into the same measurement.

Moreover, the addition of this new layer means that the process becomes more com-
putationally costly and new conceptual questions arise; for example, when is it valid to
break the inner loop, stop adding new perceptions and report the conclusions? How many
new perceptions are necessary to get a clearer picture? Finally, the proposed methodolog-
ical framework relies on an intrinsic assumption that the majority of perceptions drives
the measure of sustainability towards its “real value”. However, this is not always the
case, since the notion of sustainability constantly evolves, meaning that perceptions that
currently represent the minority in the calculations could become more prevalent in the
future. Hence, the proposed computational framework could be enriched further with
notions and algorithms that represent values more clearly. Of course, such an inclusion is
not limited to the current framework but is a problem that is central to the overall research
of the Artificial Intelligence community.

Such questions will drive future research efforts of the current study. Further directions
of research include the development of a user interface that could be used by non-experts,
and the inclusion of supplementary variations of DEA (for example, the VRS variation
of the proposed two-stage model described by Equations (11)–(20), or a version of the
BoD model with weight restrictions), the generation of additional sub-indicators along
with various data sources. Finally, the framework could be enriched with methods other
than DEA which would allow the Machine Learning techniques to identify not only the
differences in the context (sub-indicators) but also in the method that was used.
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Appendix A

The following lemmas and theorem about the model described by Equations (11)–(20)
are proved based on the work by Sun et al. [25] and Khalili-Damghani and Fadaei [45].

Lemma 1. The constraints of the model described by Equations (11)–(20) form a non-empty, convex set.

Proof of Lemma 1. The constraints (11)–(20) constitute a non-empty set named S. If(
ω∗i , µ∗d and γ∗r

)
and (ω∗′i , µ∗′d and γ∗′r ) ∈ S, then ∀α ∈ [0, 1] :

(
αω∗i + (1− α)ω∗

′
i ,

αµ∗d + (1− α)µ∗
′

d ,αγ∗r + (1− α)γ∗
′

r
)
∈ S. Hence, S is a convex set. �

Lemma 2. The objective function (11) is convex in the defined domain.

Proof of Lemma 2. The Hessian matrix of the objective function is:
∂2

obj
∂2ω1

∂2
obj

∂ω1∂ω2
· · ·

∂2
obj

∂ω1∂γs
...

∂2
obj

∂2ω2

. . .
...

∂2
obj

∂γs∂ω1

∂2
obj

∂γs∂ω2
· · ·

∂2
obj

∂2γs


The matrix is always zero; thus, objective function (11) is a strictly convex function. �

Lemma 3. The model described by Equations (11)–(20) is always feasible.

Proof of Lemma 3. Suppose that an arbitrary solution of the model of the form:

ωi =
1

mxi0
(A1)

µd =
1

Dzd0
(A2)

γr =
1

syr0
(A3)

d0 =

(
1
D

D

∑
d=1

zdj

zd0
− 1

m

m

∑
i=1

xij

xi0

)
, ∀j (A4)

d′0 =

(
1
s

s

∑
r=1

yrj

yr0
− 1

D

D

∑
d=1

zdj

zd0

)
, ∀j (A5)

n0 =

(
1
D

D

∑
d=1

zdj

zd0
− 1

s

s

∑
r=1

yrj

yr0

)
, ∀j (A6)

n′0 =

(
1
D

D

∑
d=1

zdj

zd0
− 1

s

s

∑
r=1

yrj

yr0

)
, ∀j (A7)

Substituting Equations (A1) and (A2) in Equation (12): ∑m
i=1

1
mxi0

xij −∑D
d=1

1
Dzd0

zdj ≥
0, j = 1, . . . , n.

Substituting Equations (A1), (A2), (A4) and (A6) in Equation (13): ∑m
i=1

1
mxi0

xi0 −

∑D
d=1

1
Dzd0

zd0 −
(

1
D ∑D

d=1
zdj
zd0
− 1

m ∑m
i=1

xij
xi0

)
+
(

1
m ∑m

i=1
xij
xi0
− 1

D ∑D
d=1

zdj
zd0

)
= 0.

Substituting Equations (A2) and (A3) in Equation (14): ∑D
d=1

1
Dzd0

zdj −∑s
r=1

1
syr0

yrj ≥
0, j = 1, . . . , n.

Substituting Equations (A2), (A3), (A5) and (A7) in Equation (15): ∑D
d=1

1
Dzd0

zd0 −

∑s
r=1

1
syr0

yr0 −
(

1
s ∑s

r=1
yrj
yr0
− 1

D ∑D
d=1

zdj
zd0

)
+
(

1
D ∑D

d=1
zdj
zd0
− 1

s ∑s
r=1

yrj
yr0

)
= 0.
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Finally, substituting Equation (A2) in Equation (16): ∑D
d=1

1
Dzd0

zd0 = 1.
All constraints are satisfied with the arbitrary solution; thus, the model (11)–(20)

is feasible. �

Theorem 1. The model described by Equations (11)–(20) has an optimal solution.

Proof of Theorem 1. S is a non-empty, convex set (Lemma 1); the objective function is
strictly convex (Lemma 2) and the model has a feasible solution (Lemma 3). Consequently,
the solution obtained by the model is optimal. �

Appendix B

The choice of the parameters that were used to form the various sub-indicators was
based on the literature (from works such as [9,24,73,78–81,94,95]) and the availability of
common data. The authors do not claim that the list is exhaustive, but it serves to illustrate
the capabilities of the proposed computational framework. Table A1 below summarizes
the parameters, along with the major descriptive statistics of the data.

Table A1. Parameters that are used in the compuational framework and summary statistics.

Gross Fixed Capital
at Current

Prices (PPS)

Total Labor Force
(×1000 Persons)

GDP per Capita in
PPS Index

(EU28 = 100)

Median
Equivalised Net

Income
[Purchasing Power

Standard
(PPS)]—2018

Final Consumption
Expenditure of

Households
[Current Prices,
Million Euro]

Population—2018

Mean 93.7035714 8954.214286 97.60714286 15,896.46429 309,080.5929 17,970,379.21
Standard Error 25.2418411 2219.976821 7.815724769 1144.509393 89,744.88872 4,373,182.198

Median 35.85 4360.45 84.5 16372.5 122,017.75 8,846,162.5
Standard Deviation 133.567268 11,747.01317 41.35692811 6056.174452 474,885.314 23,140,705.07

Sample Variance 17,840.2152 137,992,318.5 1710.395503 36,677,249 2.25516 × 1011 5.35492 × 1014

Kurtosis 4.02051893 2.281925743 8.29166899 0.182552646 2.792124589 1.428904095
Skewness 2.11001276 1.770197969 2.325043795 0.448817209 1.981594431 1.622982

Range 526.2 44,245.7 215 25,880 1,664,272.9 81,388,230
Minimum 1.7 193.3 46 6278 6506.1 414,027
Maximum 527.9 44,439 261 32,158 1,670,779 81,802,257

Gross electricity
production

[Thousand tonnes
of oil equivalent

(TOE)]—2018

Domestic material
consumption

[Thousand
tonnes]—2018

Final energy
consumption

[Terajoule] —2018

Terrestrial
protected area
(km2)—2018

Share of renewable
energy in gross

final energy
consumption

Greenhouse gas
emissions (in CO2

equivalent)

Mean 10,048.5454 246,185.8875 424,169.6536 28,009 18.53214286 9.228571429
Standard Error 2697.45258 54,633.58413 110,868.6098 5782.166667 2.211867065 0.624962584

Median 4853.78 148,400.71 214,985.875 16,821.5 15.75 8.4
Standard Deviation 14,273.5774 289,093.7537 586,661.5397 30,596.35008 11.70410038 3.306991152

Sample Variance 203,735,012 83,575,198,424 3.44172 × 1011 936,136,638.3 136.9859656 10.93619048
Kurtosis 4.39672619 4.383577372 3.565649211 4.921733029 0.957448781 3.456735643

Skewness 2.17413267 2.014708432 2.041196627 1.92448185 0.958061175 1.586879483
Range 54,998.36 1,239,884.92 2,309,837.03 137,974 48.5 14.9

Minimum 168.71 6499.1 3892.59 42 3.5 5.4
Maximum 55,167.07 1,246,384.02 2,313,729.62 138,016 52 20.3

Total expenditure
[Euro per

inhabitant]

Mean consumption
expenditure of

private households
on cultural goods
and services by

COICOP
consumption

purpose
[Purchasing power

standard (PPS)]

Patent applications
to the European

patent office (EPO)
by priority year

Overall life
satisfaction

Satisfaction with
living environment

Percentage of
females in total

labor
population—2018

Mean 7182.62071 25,608.67857 1951.743214 6.971428571 7.221428571 68.53214286
Standard Error 993.301805 1686.520727 746.3961868 0.135581946 0.148480589 1.349613442

Median 4696.11 26,815 277.075 7.05 7.55 68.6
Standard Deviation 5256.0591 8924.228852 3949.55738 0.717432223 0.785685425 7.141483069

Sample Variance 27,626,157.3 79,641,860.6 15,599,003.5 0.514708995 0.617301587 51.00078042
Kurtosis −0.1173526 0.381582258 12.94505502 1.597491057 0.06125311 1.020390146

Skewness 0.82586947 0.374300212 3.389370605 −0.877951855 −0.844073462 −0.959481566
Range 19,595.89 38,416 18,875.07 3.2 3.2 31.1

Minimum 1248.76 11,422 6.63 4.8 5.2 49.1
Maximum 20,844.65 49,838 18,881.7 8 8.4 80.2
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Table A1. Cont.

Gross Fixed Capital
at Current

Prices (PPS)

Total Labor Force
(×1000 Persons)

GDP per Capita in
PPS Index

(EU28 = 100)

Median
Equivalised Net

Income
[Purchasing Power

Standard
(PPS)]—2018

Final Consumption
Expenditure of

Households
[Current Prices,
Million Euro]

Population—2018

Satisfaction with
financial situation

Intramural R&D
expenditure

(GERD) by sectors
of performance

[Euro per
inhabitant]

Pupils and
students enrolled
All ISCED 2011
levels excluding
early childhood

educational
development

Participation rate
in education and

training (last 4
weeks) by sex and
age. From 25 to 64
years. Percentage

Life expectancy at
birth

Urban population
exposure to air

pollution by
particulate matter

[Particulates
< 2.5µm]

Mean 5.90714286 488.85 3,872,286.429 11.56785714 80.225 13.275
Standard Error 0.19134228 86.49583843 942,453.4172 1.463814449 0.523864986 1.018423216

Median 5.8 281.75 1,792,249 9.4 81.5 12.95
Standard Deviation 1.01248816 457.6929559 4,986,994.728 7.745777993 2.772032948 5.388989117

Sample Variance 1.02513228 209,482.8419 2.48701 × 1013 59.99707672 7.684166667 29.0412037
Kurtosis −0.3674502 −0.514620128 1.455757741 0.550769838 −0.864099668 0.149557265

Skewness −0.0743634 0.888998451 1.644603126 1.007501236 −0.778315177 −0.212994905
Range 3.9 1479.7 16,110,645 30.5 8.5 24.3

Minimum 3.7 27.9 82,343 0.9 75 0
Maximum 7.6 1507.6 16,192,988 31.4 83.5 24.3

Carbon dioxide
[thousand tonnes]

People at risk of
poverty or social

exclusion
[thousand persons]

Final energy
consumption

[Million tonnes of
oil equivalent

(TOE)]
Mean 112,130.516 3924 40.14642857

Standard Error 30,703.5494 967.6611291 10.04674016
Median 43,570.865 1667 17.725

Standard Deviation 162,467.912 5120.381402 53.16235191
Sample Variance 2.6396E × 10 26,218,305.7 2826.235661

Kurtosis 6.71719926 1.04478003 3.634446153
Skewness 2.39557289 1.556049423 1.987717623

Range 728,021.85 16,352 214.71
Minimum −1974.29 89 0.66
Maximum 726,047.56 16,441 215.37
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