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Abstract—This work introduces a novel, analytic framework
for modelling security attacks in Internet of Things (IoT) infras-
tructures. The devised model is quite generic, and as such, it could
flexibly be adapted to various IoT architectures. Its flexibility
lies in the underlying theory; it is based on a dynamic G-
network where the positive arrivals denote the data streams that
originated from the various data collection networks (e.g., sensor
networks), while the negative arrivals denote the security attacks
that result in data losses (e.g., jamming attacks). In addition,
we take into account the intensity of an attack by considering
both light and heavy attacks. The light attack implies simple
losses of traffic data, while the heavy attack causes massive data
loss. The introduced model is solved subject to the arrival and
departure rates in terms of (a) average number of data packets
in the application domain and (b) attack impact (loss rate). A
comprehensive verification discussion accompanied by numerous
numerical results verify the accuracy of the proposed model.
Moreover, the assessment of the presented model highlights
notable operation characteristics of the underlying IoT system
under light and heavy attacks.

Index Terms—G-Networks, Internet of Things, Modelling,
Security, Queuing Theory.

I. INTRODUCTION

Uilding a generic architecture for the Internet of Things

(IoT) is a very complex task [1], since there are many
layers that have to be considered. The IoT reference model
consists of four different layers (device layer, network layer,
service support and application support layer, and application
layer) engaging a variety of devices, link layer technologies,
applications and services. The rationale behind this difficulty
lies in the high level of heterogeneity of the inner subsystems
of the IoT architecture [2]. Real world IoT deployments are
fundamentally heterogeneous, where the co-existence of dif-
ferent types of network technologies, platforms, and protocols
poses serious challenges for both academia and industry [3]. In
a further aspect, in order to design and apply countermeasures,
a robust security modelling is required for mapping and
analyzing the potential security and privacy threats against the
things, the devices, the applications, and the provided services.
From a system perspective, the realization of a complete and
secure IoT architecture, together with the required backend
network services and devices, still lacks an established best
practice because of its novelty and complexity [1]. From
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a market perspective, the adoption of a clear and secure
IoT paradigm is also hindered by the lack of a clear and
widely accepted business model that can attract investments
to promote the deployment of these technologies [4].

IoT systems will foster the development of new, promising
services and applications by utilizing a vast amount of data in
open, and often unprotected, areas. In addition, security has
emerged as one of the most arduous high-level requirement
of IoT deployments. For example, a hospital that is equipped
with wireless human body sensors entails a high-quality and
a highly insecure IoT system operation. To this end, a precise
security system model is of paramount importance in order
to effectively monitor the wireless sensors and then take
countermeasures upon a security attack takes place.

On the other hand, G-networks have been applied in
many communication and networking domains, since they
are characterized by flexibility, efficiency, and great scale.
For instance, the routing process in communication networks
subject to energy efficiency is modelled using a G-network in
[5]. The subtle feature of G-networks in this work is flexibility,
since G-networks fit into the routing aspect by formulating
the control overhead of the routing process with negative
arrivals. In a quite different research field, the authors in
[6] presented a performance model of OpenFlow networks
based on queueing theory. The packet forwarding process of
the OpenFlow switches is formulated using simple queueing
systems. OpenFlow networks were then analyzed in terms of
packet forwarding performance. The authors presented and
solved its closed-form expressions of average packet sojourn
time and probability density functions. In [7], the authors
demonstrate how to model system management tasks such
as load-balancing and delayed download with backoff penalty
using G-networks with restart. By placing two or more queues
either in parallel or in line, the authors highlight the way
of using G-networks in modelling communication network
components in an efficient and accurate way.

In this paper, we explore the theory of multiplicative net-
works (also referred to as G-networks) [8] in order to tackle
IoT security challenges. G-networks have been used in various
applications in modelling computing systems and networks
(for example, flow control in computer networks, modelling
the effect of viruses in networks, etc.) as well as in solving
problems of pattern recognition, combinatorial optimization,
etc. [9]. In this work, we follow the G-network modelling
paradigm, and we propose a security threat model in order to
achieve comprehensive security management in [oT systems.
The proposed model is capable of estimating the data losses



in the IoT system with respect to the average number of
data streams that the application domain finally receives. In
addition, the intensity of the attack is measured in terms of
percentage loss in the application domain.

In the light of the aforementioned queueing-based model
paradigms, the efficacy of using G-networks for modelling
communication models is indicated. These paradigms display
the flexibility of queuing theory in applying rigorous models.
Thus, the G-network concept is adopted in this work as the
main modelling tool for formulating a generic IoT system.
Next, the key contributions of this paper are summarized
below:

o A novel IoT system model is proposed that considers all
underlying IoT subsystems, such as the data collection
networks, the gateway network, and the application do-
main. A queueing model is constructed for supporting
the operation of such an IoT system. Security attacks
are assumed in a generic way, meaning that a variety
of different attacks may fit into the introduced model.
Furthermore, two attack types are modelled; a light and
a heavy attack. The intensity of each attack type is
modelled using a simple data packet drop and a batch
data stream loss respectively.

o A sophisticated queueing network model is proposed
for modelling the performance of an IoT system under
light/heavy attack. Our paper formulates the closed-form
expressions subject to the arrival and departure rates,
which are considered as known parameters. Furthermore,
the average number of data packets that exist in the
application domain is calculated. Lastly, the impact of
a light and a heavy attack is modelled and solved.

e A rigorous verification environment is presented indi-
cating the accuracy of the proposed model. Simulation
results coincide with the results of the analysis, further
confirming the correctness of the presented analysis.

The remainder of the paper is organized as follows. Sec-
tion II reviews research efforts on designing security models
for TIoT systems. Section III describes the introduced IoT-
enabled security model. In Section V, the proposed analytic
model is assessed in multiple simulation experiments and
various numerical results are presented and discussed. Finally,
Section VIconcludes the paper and discusses future extensions.

II. RELATED WORK

The concept of IoT security is not novel. In fact, various
official documents consider it as a prime factor that will
influence the adoption of the IoT initiative [10], [11], [12].
More significantly, these documents suggest that as objects,
devices and infrastructures in the physical world grow more
digitized, the approach to IoT security requires a shift from IT
security architecture to IoT security architecture [13]. While
this shift is central to the IoT security strategy, the current
research has not comprehensively investigated how to manage
security in [oT in a way different than ’traditional’ Information
Technology (IT) security [14].

Current security frameworks for IoT systems mainly include
IT-like architectures for providing and managing access con-
trol, authentication and authorization. For example, Ning et. al

[15] proposed such a system architecture that offers a solution
to the broad array of challenges in terms of general system se-
curity, network security, and application security with respect
to the basic information security requirements of data confi-
dentiality, integrity, availability, authority, non-repudiation, and
privacy preservation. On the other hand, Zhang et al. [16]
proposed a two-dimensional security architecture integrated
with related safety technologies in order to secure IoT sys-
tems against possible threats. The authors in [17] followed
a more holistic design, describing a systemic and cognitive
approach for IoT security. In their work, they consider three
main axes; effective security for tiny embedded networks,
context-aware and user-centric privacy, and the systemic and
cognitive approach for IoT security. In [18], Ukil considers the
embedded device security only, assuming that network security
is properly in place, and provide the requirements of embedded
security, the solutions to resists different attacks and the tech-
nology for resisting temper proofing of the embedded devices
by the concept of trusted computing. Some professionals have
also considered using Radio-frequency identification (RFID)
for further authenticating some of these connected devices
[19].

The relation of the IoT domain with the fog/edge computing
is presented in [20]. The authors investigate the association
of cyber-physical systems and 10T, where existing architec-
tures, enabling technologies and security and privacy issues
in IoT are surveyed. The work includes plenty paradigms
and applications of the integration between IoT and fog/edge
computing such as smart grid, smart transportation and smart
cities. Similarly, the authors in [21] proposed a polynomial-
based filtering scheme which can perceive false injected data
effectively. The scheme is able to demonstrate a high resilience
to the number of compromised nodes without relying on
static routes and node localization. The work studies the
replacement of the well-known Message Authentication Codes
(MACs) by the introduced scheme since it allows better
authentication process. In particular, each node stores two
types of polynomials: authentication polynomial and check
polynomial, derived from the primitive polynomial. These el-
ements are used for endorsing and verifying the measurement
reports. An application of IoT cyber-physical system in power
grid networks was presented in [22]. The authors identify
the problem and develop efficient algorithms to identify the
optimal meter set. Two defence mechanisms are introduced: a
protection-based defence and a detection-based defence. The
former one identifies and protects critical sensors and makes
the system more resilient to attacks. The latter one develops
the spatial-based and temporal-based detection schemes to
accurately identify data-injection attacks. A similar approach
in [23] studied the vulnerability of the distributed energy
routing process. The authors investigated novel false data
injection attacks against the energy routing process. Various
attack scenarios were explored, in which the adversary may
manipulate the quantity of energy supply, the quantity of
energy response and the link state of energy transmission.

There are also several research projects funded by various
government bodies that directly or indirectly are studying the
needs of secure [oT architectures. One of these projects, [oT-A



TABLE I
NOTATIONS AND SYMBOLS

M = {M;i,M>,--- ,My} | Number of data collection networks

Aari, i=1,2,---,N Data packets arrival rate

Agp 1 =1,2,--- N Light security attacks arrival rate

pi, t=1,2,--- N Data collection network service times

p;;. Routing probabilities of data packets

pi_j Routing probabilities of attacks

Qi Utilization of node %

K; Average number of data packets in node ¢
under attack

K l’ Average number of data packets in node ¢
in a secure IoT
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Fig. 1. The layers of the assumed IoT architecture.

[24], is aiming at providing an architectural reference model
for the security of IoT systems. In their model, the authors
take into account service privacy and IoT access security
aspects throughout the architecture design for dealing with
service accommodation, identification and IoT-A platform
realizations.

The major drawback in all above mentioned works is
that they have either been designed for certain types of IoT
applications or they focus on one aspect of IoT security, and as
such, they do not achieve security management in IoT systems
as a whole. Contrary to the previous works, in this paper,
we explore the theory of G-Networks in order to formalise
the operation of an IoT architecture and efficiently tackle
the security issues that are inherent in this ecosystem. In the
subsequent section, we describe the proposed security threat
model for IoT systems.

III. SYSTEM MODEL
A. 10T Modelling Under Light Attack

In our work, an IoT architecture is assumed to consist
of M = {My,Ms,---, My} data collection networks, a
common infrastructure communication network (i.e., gateway
subsystem) in the middle, and an upper application domain.
Figure 1 illustrates the layers of the assumed IoT architecture.
Table I summarizes the notations used in our analysis. The
set of data collection networks belong to the device layer.
The communication infrastructure network define the middle
layer between the data collection process and the application
domain. A gateway infrastucture forwards the data streams

collected in the data collection networs to the upper layer. The
application domain aggregates the service support and applica-
tion support as well as the application layers in a single layer.
We formalise the operation of an IoT architecture adopting the
G-network theory, which is introduced as an open network that
generalises the Jackson theory in evaluating its performance
[25]. As the next generation network paradigm implies, the
IoT architecture deals with packet-based data streams that are
being carried by the underlying transport infrastructures. In
addition, service-related functions are independent from the
underlying technologies. Thus, we can infer that the network
layer, which is formulated by the gateway subsystem, is based
on a packed-based communication fashion between the lower
(device layer) and the upper (application layer) layers. Each
ordinary customer in the adopted G-network represents a data
stream of an average length of B Bytes. We also consider
negative customers in the G-networks representing the security
attacks in the IoT system under examination. A negative
customer differs from an ordinary (positive) customer in that
upon arrival at an IoT subsystem, it kills a positive customer, if
any at this subsystem, thereby reducing the number of positive
customers at the subsystem by one. As a result the negative
customer quits the network receiving no service. Normally,
triggers are also considered in a G-network as customers.
However, triggers have no use in the context of this paper.

The data collection networks feed the gateway subsystem
with data streams. Then, the gateway subsystem forwards data
streams to the application domain where they are aggregated
and form the application data streams. Thus, the application
subsystem consumes the data packets, so they exit successfully
the G-network. Normally, a secure IoT architecture is formu-
lated with positive arrivals only. However, in the context of
this analysis, we assume both positive and negative arrivals
in every data collection network. The positive arrivals denote
the data streams that are generated from the IoT devices
inside the data collection networks (sensors, actuators, data-
capture devices etc), while the negative arrivals symbolise
security attacks in the data delivery from the data collection
networks to the gateway subsystem. In this way, security
attacks threatening the data integrity are formulated including
Denial of Service (DoS) attacks, jamming attacks, man-in-the-
middle attacks, etc. [26].

Each one of these data collection networks is a single-
server with infinitive buffer capacity. Hence, the IoT archi-
tecture can be formulated by an open G-network with N + 2
nodes (subsystems). Every data collection network receives
a (Poisson) flow of positive customers (data packets) with
rate Aaii, 1 =1,2,---,N and a (Poisson) flow of negative
customers (attacks) with rate )\57 . =12, N. Accord-
ingly, a light attack can be seen as a negative customer (a
single attack) that kills only a single positive customer (data
packet). For example, a short jamming attack in the middle of
a Wireless Sensor Network (WSN), which can be represented
by the 7 data collection network, destroys data packets with
a rate of A, data packets per time unit. Figure 2 show the
introduced cross-layer model approach.

In the applied G-network, we define the term ’service time’
as the routing time from the time a data stream is generated in
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Fig. 2. The cross-layer model approach.

an IoT device (e.g., sensor node) to the time this data stream
is delivered to the IoT gateway (stemming from the sink node
of each data collection network). In other words, the service
time denotes the routing ability of the data collection network
in delivering data packets towards the gateway in the network
layer. The service times of the data streams are assumed to be
exponentially distributed with parameter p;, ¢ = 1,2,--- | N.
It is worth mentioning that the differentiation of the arrival
and service times of each data collection network realise the
heterogeneity of the underlying IoT system, i.e., every inner
data collection network is different in terms of capacity (ar-
rivals) and efficiency (departures); however, all data collections
networks are capable of collecting traffic streams and forward
them to the IoT gateway.

A light attack in the data collection network implies that
data streams are destroyed. As previously mentioned, a neg-
ative arrival kills a data packet and then quits the network
without receiving any service at the data collection network.
As a result, only data streams are delivered by the gateway
subsystem.

The gateway acts as a single G-network node. It receives
data streams from the NV data collection networks and forwards
them in the application domain with a service time iy 1.
The service time of the gateway corresponds to the data
packet delivery rate of the underlying communication network
between the data collection networks and the application upper
layer. In essence, it denotes the network throughput of the IoT

communication network. Upon their departure at the gateway
subsystem, the data streams are considered delivered in the
application layer.

The routing probabilities Pj,j and p; ; denote the probability
of moving from node 7 to node j for a data stream and a
security attack respectively. In the light of the aforementioned
analysis, the routing probabilities are formed as follows:

pi=1Vi,1<i<N,p;,=1Vi,1<i<N (1)

)

pJNH = p(J)r,N+2 = 0’pE,N+1 =Po,Nt2 = 0 2)
Pingr = Ly =0, Vi, 1<i< N 3)
PNi1i = 00N =0, Vi, 1 <i <N +1 4)
pE+1,N+2 =Ly N2 =0 (5)
pE‘FQ,O =LPNj2,0=0 (6)

Let A, Vi, 1 <i< N+1land\;,Vi,1 <i< N+1 denote
the average arrival rate of the real traffic (data streams) and the
attack flows respectively. The system of non-linear equations

is formed accordingly, where ¢; = )\;/\_{M stands for the node
utilization:
N+1
N =03 D ™
j=1
N+1
NS =N D aipy ®)
Jj=1

Lemma IIL.1. Given an IoT system, modeled as a G-network
with negative customers, the average arrival rate of the real
traffic and the attack flows is given by:

A=A A = A0, Vi, 1 <i <N 9)
MNigr = zN: Ny (10)
o j=1 Aot K
)‘E+1 =0 (11)
+ )‘Kﬂ

ANi2 = N+1HN+1 = mﬂN-H =
o mpi, 8

B Z;'Vzl ,\U:\JO;J:MNJ + MN+1MN+1
Ang2 =0 (13)

Proof. Given that the routing probabilities that come from the
data collection networks are one way to the gateway node
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The average data packet rates in the gateway is calculated as
follows:

N
A1 =D aipf; = qipn + s + -+ avpy =
j=1
g J
D YT Dy SR o SR
j=1 j=1 Ay oy j=1 Aog 1

Since negative customers (security attacks) quit the network
(Ping1 = 0,Vi,1 <@ < N +2) receiving no service upon
killing a data stream, the average arrival security attacks in the
gateway is zero:

Avi1 =0 a7
In a similar way, the average rates in the application domain
are:

A
ANi1 T BN+
Zf\i _>‘o+,j Wi
_ I=t gt T
- N )‘Ctj HN+1
D e Wﬂj + UN+1

J

+ _ _
ANio = AN+1HN+1 = UN+1 =

(18)

Since negative customers (security attacks) quit the network
(pi_,N_s_2 =0,vi,1 < i < N + 2) receiving no service upon
killing a data packet, the average arrival security attacks in the
application domain is again zero:

Ayio =0 (19)

O

Lemma IIL.2. The average number of data packets (capacity)
of each one of the N + 2 nodes of the G-network, denoted as
K, are given as follows:

+
=M vil<i<N Q)
Aoi + Hi = Ag;
N A
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N 0.5

=1 3= J: ~Hg
0,5

HUN+2 — T HN+1
N 0.,j

J=1 3= .
Ao,jHHG

HitHRN+1

Proof. Given unbounded queue lengths and single-server G-
network nodes, it holds that K; = 137‘(1 Vi, 1 <i < N+1
[27], [5]. Considering the average queue length in the data

collection networks, it holds that:

At
; — At
K’L:]-q _ )\,,Jril«jr :>\7+ i /\+
— i M i i T A
L v : (23)
A
Oi Vi,1<i< N
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O

The average number of data packets is computed in the
gateway subsystem as follows:

)\;#»1
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By applying Ay, ; = 0 in Eq. (25), it yields:
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In the same way, the average number of data packets that is
finally delivered in the application domain is:

A+
N+42
qN+2 ANj2 N2
Kyia = = @7)
1—gn42 1 — )‘;+2

ANfotinN+2



Given that Ay, = 0:

)\+
N+2 At
K _ N2 N+2
Nt2 = T T
_ AN42 HN+2 N+2
KUN+2
+
At
é\r:l Afgiu'w
0,5 THi
T F, HN+1 (28)
>
N i+
j=1 ’\(T,j'*'"'j HjTHN+1
N o
J=17% Ly
0,jtHi
UN+2 — ¥ UN+1
2J .
=1 o, i HjtHN41

B. Attack Impact

In order to model and measure the impact of the attack in the
IoT system, we devise the Threat Impact Metric (TIM). TIM
measures the intensity of the attack in terms of data packet
loss. The metric is recorded in the application layer as the
rate of the lost data packets (due to the ongoing attack) to the
total data packets delivered in the application domain. Given
that Eq. (22) expresses the average number of the delivered
data packets in the application domain in an IoT under light
attack, we define the average delivered data packets, denoted
as Kjy_,, in an attack-free IoT network where no negative
arrivals exist as follows:

N +

Zj:l )\O,j
K/ _ Zj'\r=1 >‘o+,j+NN+1
N+2 — N +

i=170,5
N+42 —
HN+ SN AN

HN+1

(29)
HN+1

Then, the threat impact metric is defined as follows:

K - K
TIM = —N+2_ Z N2 (30)
KN+2
In essence, TIM measures the average number of the lost data
packets caused by the security attack in the data collection

networks.

C. IoT Modelling Under Heavy Attack

In this subsection, we extend the previous model by con-
sidering a massive attack in the inner data collection networks
of the IoT system. The heavy attack concept may be related
to a massive threat, such as a consistent DoS attack or a
distributed jamming attack. The main structural model is
preserved, thus the IoT system under examination consists of
M = {My, Ms,--- , My} data collection networks at the left,
a common gateway subsystem in the middle (My 1), and an
application domain at the right (My42) where the incoming
data streams are consumed. Once more, we consider that each
data collection network experiences positive and negative cus-
tomers, denoted as data packet arrivals and (massive) security
attacks respectively. In order to differentiate the intensity of
the attack, the batch removal concept is adopted [8]. The batch
removal idea defines that a negative customer may kill a batch
of positive customers, where the batch size is random and

defined by some probability distribution. Assume a node that
contains y; data streams. A negative customer (security attack)
arrives at this node. The random variable A; symbolizes the
number of the data packets that a security attack kills upon its
arrival at node . Obviously, if y; < A;, then the node remains
with no data packets at all, and its queue is emptied. Then, the
security attack quits that node, without receiving any service.
Lastly, A,,q. denotes the maximum number of data packets
an attack can kill. The average rates of the real traffic and
the attack flows are identical with those in the case of a light
attack, i.e.,:

N+2

A =0+ G
j=1

3D

N+2
NS =N Y aimp;;

j=1

(32)

However, the node utilisation is now changed:
_ M
A; filds) + i

The function f;(z) stands for the attack intensity in terms of
positive customer kills:

qi (33)

1-— Z:il Aiﬂir
filw) = —T= ——
Given an IoT system under heavy attack, modeled as a
G-network with negative customers and batch removal, the

average arrival rate of the real traffic and the attack flows is:

(34)

A = AT = ALV I<i< N (35)
N
)\EH = Z qjltj (36)
j=1
N
Ai1 =Dy (37
j=1
Ao = N+1AN+1 (38)
ANt2 = AN+1HUN+1 (39

By observing the equations Eq. (36) to Eq. (39), it is clear that
a non-linear system of equations exists; hence, it is difficult
to express it further subject to the average arrival rates of the
data collection networks. In a similar way, the average number
of the data packets in each one of the NV + 2 IoT nodes is
expressed in a generic form:

_ 4
I—q

Lemma IIL.3. Given a fixed random variable P[A; = B] = 1,

the solution of q;, denoted as s;,0 < s; < 1, where q;,V1 <

i < N, stems from the third-degree equation: F(q;) = p;q; —
(2ui + (B4 1D)Ag; + M) + (i + Ag; + 220 a — Ay =0

(40)

)



Proof. If we apply P[A; = B] =1 to Eq. (34), it yields:

1-32, Ba’ _ 1-BY 2"
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Given that )7, 2" = %, Eq. (41) becomes:
1-By% 1-2-Bxr
1—x
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Eq. (33) now becomes:
A+
&% = 1B VI<i< N (43)
Ai (1q—q1:)21 T A
Further, by applying Eq. (35), it yields:
AL .
4 ; VI<i<N (44
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Eq. (44) is solved subject to g;:

i1 — @) = Agi(gi — ¢ (B+1) + pagi(1 — ¢;)* =
g — (25 + (B + 1A + M%) a7
(i +Ag; + 20 — NG =0

(45)

The solution of Eq. (45) is ¢; = s;, where 0 < s; < 1 in
order to ensure the stability of each ¢ data collection node.
O

It is now easy to define the average number of data packets
in the gateway:

+
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Similarly, the average number of data packets in the applica-
tion domain is given by:
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1 —qgnyo 1 _ N4z
HN42
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Finally, TIM is defined by combining Eq. (29) and Eq. (47):

A
Kyio— Knt2

TIM = (48)

!
KN+2

TABLE II
MODEL EXPLOITATION IN DIFFERENT ATTACK FORMS
Form of Attack Intensity | Detection Criteria | Applicability
DoS and jamming Light TIM High
DDoS Heavy TIM and High
service termination
Physical damage Light Implicit TIM Medium
Node capture and Light Implicit TIM Medium
controlling
Sybil Attack Light Implicit TIM Low
Eavesdropping N/A N/A N/A
Sinkhole Light TIM High
Wormbhole Light TIM High

IV. PRACTICAL EXPLOITATION

The focus of this section is twofold. First we study possible
practical exploitation opportunities of the proposed model
in various security domains. Second we discuss potential
expansion of the proposed model in practical IoT application
domains.

In the context of exploiting our model in different security
domains, the most important threats in the IoT domain are
examined in terms of intensity, detection criteria and applica-
bility. The intensity expresses the level of the ongoing attack,
i.e., light or heavy. The detection criteria define the way of
exposing an attack based on the proposed model, i.e., the
TIM metric. Lastly, the applicability indicates the ability of
the proposed model to perceive the ongoing attack in IoT
domains. Eight total attack forms are investigated, namely the
DoS and the jamming attack, the Distributed DoS (DDoS)
attack, the physical damage, the node capture and controlling,
the Sybil attack, the eavesdropping, the sinkhole attack and the
wormhole attack. Table II summarizes the impact comparison
subject to different kind of attacks.

A DoS attack occurs when the IoT infrastructure is flooded
with useless traffic flows by an external attacker resulting in
resource exhaustion, service termination and IoT application
unavailability [28]. Normally, DoS falls in the light attack
category. However, if the DoS attacks occurs in multiple
domains of the underlying data collection networks of the
IoT infrastructure then it is deemed as a DDoS attack and
its density is high. The proposed model may expose a DoS
attack by measuring the data losses (TIM) in the devices layer
and the communication infrastructure layer as well. In the case
of a DDoS attack the recorded data losses will be higher and
the occurred unavailable services due to the attack will be also
more intense. The model will monitor the application layer for
losses and application/service denial. The applicability of the
proposed model in these two forms of attack is high.

Physical damage is a kind of attack that can be considered
as a subcategory of the DoS attack. External attackers may
harm the provisioning of IoT services by capturing, destroying
or even physically hindering the IoT devices, sensors and
actuators. This is a realistic attack in the IoT context, because
things might be easily accessible to anyone (e.g., a street
light)[29]. These physical damages will implicitly cause data
losses. Hence, the model will perceive the anomaly by observ-
ing the average number of packet loss either in the gateway
or in the application domain. However, the applicability of the



TABLE III
MODEL IMPACT IN I0T APPLICATION DOMAINS

Application Domain
Smart Grid

Impact
Confidentiality of
energy consumption information
Integrity of vehicle networks data
Protection of smart applications and
services (waste and metering management)

Smart Transportation
Smart Cities

introduced model regarding physical damages is medium since
the anomaly detection comes through implicit observations.
Node capture and device controlling fall in the same category
as the physical damage.

In a Sybil attack, a single node presents multiple identities
to other nodes in the network [30]. Usually Sybil attacks
pose a significant threat to routing protocols by reducing
the effectiveness of multi-path routing, fault-tolerant schemes
and topology building. As a result, alternative routing paths
will not be available in case of emergency. In addition, the
implications of the attack in the routing performance may
result in data losses. Thus, this type of attack may be detected
by measuring the TIM metric in the gateway subsystem.
Nonetheless, the model will be able to detect a Sybil attack,
if the attacker causes data losses due to routing or other
implications. Otherwise, the presented model is not able to
perceive any kind of threat in the IoT infrastructure.

Eavesdropping is another popular attack in wireless net-
works, WSNs and communication networks. External attackers
’listen’ to communication channels in order to extract infor-
mation between the data collection networks and the gateway.
Due to the passive nature of this attack the implications in
the IoT infrastructure are low but hard to be detected. As a
result the proposed framework seems unable to expose such a
passive attack.

On the other hand, sinkhole and wormhole attacks are
related with the data collection network domain, where the
main data gathering takes place. Both cause complications
in delivering information from the IoT devices to the upper
layers. Sinkhole may create a ’black’ hole inside the data
collection network, where critical information is dropped.
Similarly, a wormhole link creates a ’bad’ communication link
which causes packet drops since this link is not a working
communication path. In both cases, the result is demonstrated
by observing the data losses in specific data collection net-
works. Hence, the TIM metric is capable of reporting such
kind of attacks since IoT applications in the upper layer will
be underutilized. The proposed model can be quite helpful in
detecting sinkhole, wormhole and even other similar attacks
such as the selective forwarding attack.

In the context of possible expansion of our model in prac-
tical IoT application domains, we discuss the most important
IoT applications such as smart grid, smart transportation and
smart cities subject to potential functioning of the model
presented in this paper. Table III summarizes the potential
impact of the proposed model in the most important IoT
domains. Smart grids consist of a large number of smart
meters. Smart meters are realized as IP-based IoT devices
which communicate with each other via wireless communi-

cation links. External attackers can easily capture these smart
meters, nodes in fog/edge computing infrastructure, and obtain
or modify the data collected [20]. The proposed model is
able to contribute to detecting such attacks by measuring and
analysing the data losses in the upper layers.

Another significant IoT paradigm is smart transportation.
The evolution of IoT leads to the emergence of Internet of
Vehicles (IoV) which is an IoT domain of paramount im-
portance [31]. Intelligent transportation management, control
system, communication networks, and computing techniques
are integrated to make transportation systems reliable, effi-
cient, and secure [32]. Mobile things, e.g., drones and IP-based
vehicles exchange traffic flows each other for processing all
that information in order to make intelligent decisions, e.g.,
optimal path determination. However, these systems seem to
be vulnerable to adversaries, where malicious attacks may
cause traffic information loss and misleading information
sharing. Our scheme could contribute to protect the confi-
dentiality and the integrity of the exchanged information by
applying an efficient detection mechanism in the underlying
IoT transportation infrastructure.

Smart cities can be considered a complex [oT paradigm
which enables a set of compelling smart services and appli-
cations giving emphasis in public resource management (e.g.,
energy and water), reduction of operational public costs and ef-
ficient public administration [1]. All supported application and
services behind the smart cities paradigm should be protected
by security detection mechanisms in a cross-layer approach.
For instance, a smart metering IoT system that is focused
on measuring the energy consumed in smart houses should
be secured in the device layer (data collection networks),
the gateway layer (network communication links) and in the
application layer (smart phone application) [33]. The proposed
IoT model could establish a large-scale secured interconnected
heterogeneous network for IoT smart city applications, where
distributed anomaly detection frameworks could effectively
identify potential threats in the whole IoT system.

V. VERIFICATION AND NUMERICAL RESULTS

This section presents the evaluation environment and the
numerical results of the conducted simulation experiments.

A. Verification Environment

A verification environment was design to assess and evalu-
ate the proposed security model. A generic IoT infrastructure
was considered as a simulation basis for applying various types
of attacks. The adopted generic [oT infrastructure could realize
a wide range of real testbeds. For example, the Constrained
IoT (CIoT) could be adopted as the main IoT infrastructure
[34], where CIoT nodes are connected at the physical layer
by IEEE 802.15.4 wireless links, whereas IPv6 is used at
the network layer in combination with IPv6 over Low-Power
Wireless Personal Area Network (6LoWPAN) and the Routing
Protocol for Low-power and lossy networks (RPL). The under-
lying Operating System (OS) could be the Contiki while each
node is equipped with a TelosB interface. The Constrained
Application Protocol (CoAP) is used in the application layer.



CoAP is a specialized web transfer protocol for use with CloT
nodes. Another option is Message Queuing Telemetry Transfer
protocol (MQTT) that runs in the upper levels of the adopted
CloT infrastructure. In any case, it is important to point that
the introduced IoT system model of this paper is suitable for a
wide range of IoT applications since it expresses the behaviour
of an IoT network under attack independently of the exact
attack form and the strict hardware and software interfaces of
the IoT system.

To this end, we developed an IoT-based simulation environ-
ment in Matlab. An IoT system was implemented consisting of
N data collection networks, a gateway layer (node N +1), and
an application domain (node N +-2) that eventually receives the
data streams originated among the connected data collection
edges. The data collection networks consist of nodes that are
connected at the physical layer by IEEE 802.15.4 wireless
links. Each data collection network is directly connected to the
gateway node. The gateway node runs at the network layer in
combination with the 6LoWPAN protocol. Data streams from
the data collection nodes are forwarded to the gateway. The
gateway receives the data streams from the data collection
networks and then forwards these streams to the application
domain. CoAP protocol is used for providing web transfer
services and connecting CIoT with the lower network layers.
The performance of the underlying IoT system is related to the
application domain efficiency, since the application consumes
the data streams coming from the IoT edges.

Each data collection network receives data stream with a
Poisson arrival rate equal to )\afi, 1 < ¢ < N. Furthermore,
each data collection network, as well as the gateway and the
application domain, forward data streams with a departure rate
of u;,1 <4 < N+ 2. Rate uy1 denotes the delivery ratio
of the gateway node, i.e., its throughput. On the other hand,
rate g2 stands for the consuming rate of the application
domain. Data streams are consumed by the application node,
and then, they are exported from the IoT network.

Two attack types were considered in the verification envi-
ronment: a light and a heavy attack. The light attack mode
corresponds to a simple [oT threat that targets the data stream
integrity. A light attack can be realized by a DoS or a
jamming attack in the IEEE 802.15.4 wireless links, wormhole
or sinkhole attacks in the underlying WSN domains and a
physical damage in one or more CIoT devices. In our case,
we consider a light attack, as a jamming attack, in a wireless
sensor network that is represented by the data collection
network in our simulation environment. A constant jammer
repeatedly emits a radio signal in data collection domains. As
a result the constant jammer can effectively prevent legitimate
traffic sources from transferring data streams to the upper
network layers. The intensity of the attack is measured based
on the )\0_7 ;»1 <1 < N arrivals in the data collection networks.
A heavy attack instead, corresponds to a distributed attack that
may happen in multiple domains in a simple data collection
network, e.g., a DDoS attack. The heavy attack causes multiple
data stream losses. Each heavy attack acts with a rate of
Aois1l <@ < N. As a result, a group of B data streams
are lost for each negative arrival of a heavy attack action.

B. Performance Metrics

The performance evaluation as well as the verification of
the analytic equations are presented in terms of two perfor-
mance metrics; (a) the average number of data streams in the
application domain, and (b) the TIM parameter, as defined in
Section III-B. Moreover, in each presented case, the stability
of each of the IoT nodes is respected, i.e, the utilization of
each of the N + 2 nodes (g;) has to be within (0, 1).

The results of the conducted experiments are presented in
three forms. First, the average number of data streams in the
application domain is presented. In each of these figures, three
curves are plotted, namely the secure IoT, the lightly attacked
IoT, and the heavily attacked IoT. Secure IoT implies an IoT
system without any threat being in place. In the lightly attacked
scenario, the IoT is under a light attack, meaning that each
of the data collection networks are being attacked by a light
attack as described in Section III-A. Accordingly, the heavily
attacked IoT curve corresponds to the heavy attack model as
analyzed in Section III-C. In the second form, TIM parameter
is plotted in highlighting the attack impact in terms of data
streams losses. The corresponding figures present the results
of the conducted experiments in two curves. The former one
expresses TIM under light attack, while the latter one plots
TIM under heavy attack. The last form is used to provide
evidences about the accuracy of the presented analysis. For
each one of the conducted experiments a table summarizes the
error of the analysis in terms of absolute difference between
the analytic and the simulated values.

C. Data Collection Networks Impact

In this subsection, the results of the conducted experiments
are presented as a function of the number of the data collection
networks (V). N ranges from 1 to 20, while the arrival and
the departure rates as well as the batch level are kept stable.
In particular, the arrival rate in each data collection network
is identical and equal to 1 data stream per time unit. The
arrival rate of the security attacks is 0.5 data streams per time
unit, keeping an 2 : 1 ratio regarding the positive to negative
arrivals. Finally, the departure rate of each data collection
network is 2 data streams per time unit so as to ensure the
stability of the IoT system. Accordingly, the utilisation of each
data collection network becomes:

M1
C Agitmi 05+2

¢ =04<1 (49)
In addition, the gateway delivery rate was set to 20 data
streams per time unit in order to ensure the stability of the

gateway node. Thus, the gateway utilisation becomes:

. T
_ AN AE L T et
dN+1 = =l = (50)
UN+1 UN+1

When the number of data collection networks is minimum,
i.e., 1, the gateway utilisation becomes 0.04, while in the
case of a maximum number of data collection networks it
yields 0.8. Hence, in both cases the stability of the gateway
node is ensured. In a similar way, the application consuming
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Fig. 3. Average number of data streams in the application domain as the
number of the data collection networks is changed.

(departure) rate is kept 30 yielding a ratio of 2 : 3 regarding
the ratio of the gateway to the application domain. Lastly, the
batch level is fixed and equal to 5. That results to a loss of
5 data streams upon a negative arrival in each data collection
network assuming the heavily attacked IoT scenario.

Figure 3 shows the average number of data streams in
the application domain as the number of the data collection
networks is changed from 1 to 20. By observing the progress
of the three curves in the figure, it is easy to infer that
the impact of both attacks is significant. In particular, the
impact is progressively getting larger as the number of the
data collection networks are increased. This is expected due
to the fact that as the number of the data collection networks
becomes larger, the data stream losses are getting larger as
well, since more attacks take place. It is worth mentioning that
about 0.8 less data streams appear in a light attack compared
to the secure IoT case. The situation is escalated in the case
of the heavy attack where the delivered data streams are even
less (reduced at 1).

Figure 4 illustrates the TIM values as the number of data
collection networks is altered. Again, the impact of the attack
becomes more intense as the IoT network depends on more
collection edges. TIM takes values from 0.21 (0.27) to 0.43
(0.52) with respect to the light (heavy) attack mode. In the
worst case, where TIM = 0.43 (I'IM = 0.43), at least half
of the expected data streams are lost due to security attacks
in the collection domains, which could be catastrophic for the
application that expects those data streams for preparing an
output service to the final users. Also, it is quite interesting
that the progress of TIM parameter is almost linear, meaning
that a potential threat may become more powerful in large-
scale IoT systems with many unprotected collection networks.

The accuracy of the introduced analysis is justified by the
numerical values of Table IV. This table summarizes the
absolute difference between the analytic and the simulated
values. The values are expressed in the form of 10~%. In
general, the observed error is getting larger as the IoT system
becomes larger, i.e., when having more data collection net-
works. However, that error is marginal, since the maximum
recorded difference reaches 75- 1074, having in mind that the
modelled IoT system consists of 22 independent nodes.
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TABLE IV
DIFFERENCE ERROR BETWEEN THE ANALYSIS AND SIMULATION AS THE
NUMBER OF DATA COLLECTION NETWORKS IS CHANGED

.10~ % absolute difference vs number of data collection networks (1-20)
1 2 3 4 5 6 7 8 9 10

Secure 0 19 4 14 3 6 18 37 11 20
IoT 11 12 13 14 15 16 17 18 19 20
23 14 2 5 21 28 12 46 20 69

1 2 3 4 5 6 7 8 9 10

Lightly 5 5 6 8 4 |14 |10] 3 | 21| 7
attacked 11 12 13 14 15 16 17 18 19 20
ToT 13 5 4 25 4 8 53 | 22 | 73 | 62
1 2 3 4 5 6 7 8 9 10

Heavily 1 2 4 5 12 16 10 12 21 20
attacked 11 12 13 14 15 16 17 18 19 20
IoT 14 8 4 15 14 20 15 32 40 75

D. Forwarding Rate Impact

The impact of the forwarding rate in the data collection
networks is assessed in this subsection. The number of the data
collection networks is 10. p;,V1 < ¢ < N varied from 1.5 to
2.5 with a step of 0.5. The arrival rate in each data collection
network is identical and equal to 1 data stream per time unit.
The arrival rate of the security attacks is 0.5 data streams per
time unit. As a result, the data collection networks utilisation
is in the range of ¢; = m =0.5t0¢q = 051% =0.33.
Thus, the stability of the IoT system is ensured. Furthermore,
the gateway delivery rate is set equal to 20 data streams per
time unit, while the application consuming (departure) rate is
set equal to 30 data streams per time unit.

Figure 5 illustrates the average number of data streams in
the application domain as the forwarding rate of each data
collection network is varied from 1.5 to 2.5. Accordingly,
Figure 6 depicts the TIM values subject to the forwarding
rate change and Table V outlines the analysis error. Two main
findings may be pointed out from the obtained curves and
numerical results. Firstly, as the departure rate (or forwarding
rate) in data collection networks increases the impact of both
attack modes disseminates. This phenomenon is attributed
to the fact that a high-throughput data collection network
forwards more data streams per unit time, hence the probability
of losing a data stream due to an attack is smaller. In other
words, high-capacity collection networks may contribute to the
alleviation of many attack results since they can provide a safer
domain in which the collection of the valuable information
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could be more efficient. For example, TIM in light attack
mode begins from about 0.33 and ends at 0.23 given that
the forwarding rate was just increased by a unity from 1.5
to 2.5. Secondly, Table V demonstrates the accuracy of the
proposed model. The maximum error reaches 49 - 10, while
the average error is about 15 - 10~*. Moreover, analytic and
simulated numerical values are almost identical for all the
number of rates (Figure 5 and Figure 6), a fact that indicates
the accuracy of the presented analytic framework.

E. Batch Level Impact

This subsection is devoted to the study of the batch level
impact. In the following figures, the batch level is varied from

TABLE V
DIFFERENCE ERROR BETWEEN THE ANALYSIS AND SIMULATION AS THE
FORWARDING RATE IS CHANGED

.10 % absolute difference vs forwarding rate (1.5-2.5)
Secure 1.5 1.6 1.7 1.8 1.9
IoT 16 | 26 7 0 5 45
2.1 22 | 23 24 | 25
16 | 22 20 | 28 | 35
Lightly 1.5 1.6 1.7 1.8 1.9 2
attacked 25 22 49 19 15 5
ToT 2.1 22 | 23 24 | 25
8 0 10 14 | 10
Heavily 1.5 1.6 1.7 1.8 1.9 2
attacked 12 9 4 11 24 12
IoT 2.1 22 | 23 24 | 25
22 25 10 17 | 11
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Fig. 7. Average number of data streams in the application domain as the
number of the batch level is changed.

1 (equal to a light attack) to 10. Once more, the arrival rate in
each data collection network is identical and equal to 1 data
stream per time unit. The arrival rate of the security attacks
is 0.5 data streams per time unit. The forwarding rate in each
data collection network is 2 data streams per time unit. Also,
the gateway delivery rate is set equal to 20 data streams per
time unit, while the the application consuming (departure) rate
is set equal to 30 data streams per time unit. As previously,
the stability of the IoT system is ensured.

Figure 7 illustrates the average number of data streams
in the application domain as the number of batch level is
changed. As expected, the heavily attacked [oT curve is altered
only, while the two others remain stable. The average number
of data streams in the application domain is about 0.5. The
light attack induces almost 28% losses. The remaining data
streams are stable as the batch level is changed. On the
contrary, the heavily attacked IoT curve presents an interesting
progress. Initially, it is identical with that of the light attack
when B = 1. Then, it is getting more pressing, i.e., it reduces
the average number of data streams by 0.2 and 0.3 when
B = 2 and B = 3 respectively. In addition, when B = 4
the impact of the heavy attack is stabilised. This is due to the
fact that values larger that B = 5 cause no more losses in
the data collection networks since the average number of data
streams in the data collection nodes is unlikely to be more
than B = 5. Thus, given the arrival rates and the forwarding
rates in the data collection nodes, the heavy attack impact is
maximised when B = 5.

Figure 8 verifies the aforementioned remarks. It presents a
stable TIM for the light attack and an increased TIM for the
heavy attack that reaches its maximum value when B = 5
and then remains stable. This point signals the upper bound
a distributed attack may have. It points out the maximum
negative impact given specific values of arrival and departure
rates.

Once again, Table VI indicates the accuracy of the presented
analysis, even though the heavy attack scenario is assessed
only. The observed error is maximized when B = 10, reaching
an absolute difference of 40 - 1074,

F. Gateway Delivery Rate Impact

Even though the gateway node is not directly affected by
either the light or the heavy attack, it is important to investigate
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TABLE VI
DIFFERENCE ERROR BETWEEN THE ANALYSIS AND SIMULATION AS THE
BATCH LEVEL IS CHANGED

.10~ % absolute difference vs batch level (1-10)
Secure ToT 1 2 3 4 5 6 7 8 9 10
24 9 31 2 9 2|0 11 18 15
Lightly 1 2 3 4 5 6 7 8 9 10
attacked IoT 4 3 5 10 14 | 0 | O 5 5 33
Heavily 1 2 3 4 5 6 7 8 9 10
attacked IoT 5 12 9 12 20 | 6 | 4 | 19 33 | 40

how the impact of the external threat is influenced by the
gateway delivery rate. In the following figures the gateway
delivery rare (or the gateway node departure rate) is varied
from 20 to 200 data streams per time unit. At the same time,
the consuming rate (or the departure rate) of the application
domain is adjusted to this change with respect to a fixed ratio,
which is kept 2 : 3 in order to avoid violating the IoT system
balance. The other parameters remain unchanged; the data
collection arrival rate is equal to 1 data stream per time unit
for all collection nodes, the arrival rate of the security attacks
is 0.5 data streams per time unit, the forwarding rate in each
data collection network is 2 data streams per time unit, and
the batch level is fixed and equal to 5 data streams per attack
(or negative arrival).

Figure 9 shows how the average number of data streams
are affected by the change in the gateway delivery rate. It
should be stressed that the average number of data streams
is getting lower as the rate becomes larger. This is attributed
to the fact that the gateway forwards faster the data streams
to the application domain. In the same way, the application
domain consumes faster the incoming data streams from the
gateway node. Eventually, as the data streams that remain
in the application domain become lower, the affected data
streams due to the security attack become less.

Figure 10 sheds light on the security impact as the gateway
throughput is changed. Given that the average number of data
streams depends on the gateway delivery rate, as Eq. (28)
dictates, the threat impact is changed subject to the gateway
rate change. Initially, the impact is reduced until py41 = 60.
Then it remains almost stable and finally, it slightly drops
again (uny4+1 = 200). This phenomenon indicates that high-
throughput gateway nodes might positively, yet slightly, affect
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Fig. 9. Average number of data streams in the application domain as the
gateway delivery rate is changed.
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the absorption of external attacks.

Table VII summarizes the analysis error for all 10 values of
the gateway delivery rate. At this case, the error is quite limited
since the rate of both positive and negative arrivals in the
data collection networks remains fixed and only the gateway
delivery rate is changed. Hence, the error rate depends only
on one node (gateway) rather than N nodes as in the previous
cases.

G. Attack Rate Impact

Finally, in this subsection, the rate of the attack is examined.
The negative arrival rate is changed from 0.1 to 1.5 data
streams per time unit. The data arrival remains 1 data stream
per time unit and the departure rate is fixed at 2 data streams
per time unit for all the data collection networks. The delivery
rate of the gateway is 20 data streams per time unit and the
consuming rate of the application domain is fixed and equal

TABLE VII
DIFFERENCE ERROR BETWEEN THE ANALYSIS AND SIMULATION AS THE
GATEWAY DELIVERY RATE IS CHANGED

104 absolute difference vs gateway delivery rate (1-10)
Secure ToT 1 2 3 4 5 6 7 8 9 10
24 | 2| 5| 8|3 |4|3]|0 0 0
Lightly 1 2 3 4 5 6 7 8 9 10
attacked IoT 4 0 1 (7|4 |02 1 8 1
Heavily 1 2 3 4 5 6 7 8 9 10
attacked IoT 0 1 2 4 2 3 2 9 12 14
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gateway delivery rate is changed.
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Fig. 12. TIM values as the gateway delivery is changed.

to 30. The batch level is fixed and equal to 5 data streams
per attack (or negative arrival). In essence, this subsection
investigates the case where the arrival rate of the security
attacks becomes larger than that of the data streams.

Figure 11 depicts the average number of data streams as a
function of the change in the attack rate. As expected, both
attack modes become more intense as the negative arrival rate
is increased. Given an average number of data streams equal
to 0.5, the light attack reduces this number up to 0.24 when
the negative arrival rate is maximized. In the same way, the
heavy attack applies even more impact to the IoT system by
reducing this number up to 0.22. Thus, almost half of the
expected incoming traffic is lost when the negative arrival rate
becomes 50% larger than the traffic arrival rate. Figure 12
verifies this statement. The impact of both attack modes
becomes even stronger following an almost linear increase.
Finally, Table VIII summarizes the error analysis, which is
quite limited. The maximum absolute difference between the
analysis and the simulation appears when the negative arrival
rate is 0.4 in the case of the secure IoT, and it is equal to
34-1074

VI. CONCLUSIONS

A novel analytic model for formulating an IoT system under
attack is presented in this paper. The G-network concept is
adopted since it is suitable for modelling security attacks by
considering negative arrivals. The proposed model is presented
in detail and key performance metrics are introduced. The ac-
curacy of the provided closed-formed equations is extensively

TABLE VIII
DIFFERENCE ERROR BETWEEN THE ANALYSIS AND SIMULATION AS THE
ATTACK ARRIVAL RATE IS CHANGED

.10~ 4 absolute difference vs attack rate change (0.1-1.5)
Secure 0.1 02 ] 03] 04]05]06]07]038
IoT 7 2 15 | 34 | 18 | 23 3 7

0.9 1 1.1 1.2 1.3 1.4 1.5

2 9 7 17 10 17 24
Lightly 0.1 02 ] 03] 04]05]06]07]038
attacked 15 11 12 41 5 0 29 6
IoT 0.9 1 1.1 1.2 1.3 1.4 1.5

10 21 24 13 8 13 21
Heavily 0.1 02 ] 03] 04]05]06]07]038
attacked 2 5 7 11 4 12 9 3
IoT 0.9 1 1.1 1.2 1.3 1.4 1.5
12 5 3 11 16 22 24

assessed in a realistic simulation environment. Simulation
results verify the robustness of our model, while considerable
performance behaviours are highlighted. Our future plans
include the expansion of the G-network model in analyzing
more forms of attack in upper layers. For instance, we intend
to analyze the impact of routing attacks in the network layer
by using a more complex analytic model compared to the
one presented in this paper. In addition, our future endeavours
will focus on combining modern threat detection systems
with analytic models. For example, we design a visual-based
security threat detection scheme for IoT applications which
will be able to directly exploit the research outcomes of this
work to effectively expose various external attacks in multiple
IoT layers.
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