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Abstract: We present a wide range of problems concerning minimum cost network 

flows, and  give an overview of the classic linear single-commodity Minimum Cost 

Network Flow Problem (MCNFP) and some other closely related problems, either 

tractable or intractable. We also discuss state-of-the-art algorithmic approaches and 

recent advances in the solution methods for the MCNFP. Finally, optimization software 

packages for the MCNFP are presented. 
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1. INTRODUCTION 

Network Optimization [2], [25], [66], [72], [87] makes a large part of 

Combinatorial Optimization [57], [73], and present a model often used for a large 

number of real-world applications [63] in communications, informatics, transportation, 

construction projects [96], water resources management [50] and supply chain 

management [11], [12]. A wide category of Network Optimization problems constitute 

the MCNFP, and several other well-known optimization problems are special cases of 

MCNFP. 

mailto:sifalera@uom.gr
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Let G = (N, A) be a directed network with n nodes and m arcs, where N and A 

are the sets of nodes and arcs, respectively. Each arc (i,j) ∈ A has a cost cij that denotes 

the unit shipping cost along the arc (i,j). Each arc (i,j) is also associated with an amount 

xij of  flow  on  the  arc,  a  lower  bound  lij  and  an  upper  bound uij of  the  flow;  thus 

lij ≤ xij ≤ uij. However, if uij = + ∞, then the MCNFP is called uncapacitated (also known 

as transshipment problem). We associate a number bi with each node i ∈ N, which 

indicates its available amount of supply or demand. Node i will be called a source, sink 

or transshipment node, depending on whether bi > 0, bi < 0, or bi = 0, respectively. This 

way, a plethora of real-world applications (e.g., in logistics) requiring the flow of various 

products from warehouses (supply nodes) to markets (demand nodes) through a number 

of transfer points (transshipment nodes) can be efficiently modeled. If 0i
i N

b , then the 

network G will be a balanced network. Thus, the single-commodity capacitated MCNFP 

can be stated formally as follows [2]: 
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In the  above formulation, constraints of type 
:( , ) :( , )

. . ik ji i

k i k A j j i A

s t x x b , ∀ i ∈ 

N  are   known  as  the  flow  conservation  equations,  while   constraints  of  type  lij ≤ xij 

≤ uij are called the flow capacity constraints. 

In matrix notation MCNFP can be formulated as a linear program of the form 

min c
T
x : Ax = b, l ≤ x ≤ u, where A ∈ ℝn×m is the n×m node-edge incidence matrix of the 

graph G and c, x, l, u ∈ ℝm, b ∈ ℝn. The complexity of MCNFP is determined by the type 

of cost function for each arc. In the above case with linear cost function, the MCNFP is 

solvable in strongly polynomial time. However, several other variants of MCNFPs 

consider a convex, concave, or generally nonlinear cost function. 

Section 2 presents several special cases and generalizations of the MCNFP. 

Here, we also discuss some closely related, either tractable or intractable, problems. 

Section 3 is an overview of solution methods regarding the classic linear MCNFP; some 

recent advances are also given. Availability of MCNFP optimization solvers, instance 

generators, and educational web-based software are presented in Section 4. Finally, a 

short summary follows in Section 5. 
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2. MCNFP VARIANTS, SPECIAL CASES, AND GENERALIZATIONS 

The importance of the MCNFP, apart from its applicability to various areas, 

stems from the fact that several other well-known problems constitute its special cases. 

Such examples are the Transportation Problem (TP), the Linear Sum Assignment 

Problem (LSAP), and the Shortest Path Problem (SPP). 

The TP can be represented by a bipartite graph G(S,D,A) = G(N,A), where S, D 

are two disjoint sets of nodes such that |S| = nS, |D| = nD and N = S ∪ D. Notations |S| and 

|D| stand for the cardinality number of the sets S and D, respectively. Here, the supply 

and demand nodes are denoted by i ∈ S and j ∈ D, respectively. An arc (i,j) ∈ A is 

directed from nodes of S to nodes of D. The mathematical formulation of the TP with an 

nS×nD cost matrix c, an nS×1 supply vector bS, and an nD×1 demand vector bD such that 

i jS D
i S j D

b b  is as follows: 
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The TP is a special case of the MCNFP, where the n×1 (supply or demand) vector b has 

been partitioned to b = {bS, bD}. 

Furthermore, the LSAP [18] can also be represented by a bipartite graph 

G(S,D,A) = G(N,A),  where  S, D  are  two  disjoint  sets  of nodes such that |S| = |D| and 

N = S ∪ D. The only difference between LSAP and TP is that now we have bS = bD = 1, 

∀i ∈ S, j ∈ D, and binary decision variables. The mathematical formulation of the LSAP 

is as follows: 
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The LSAP is a special case of the TP and consequently of the MCNFP, where the values 

of the n×1 (supply or demand) vector b are now restricted only to 1 or –1, for the supply 

or demand nodes, respectively. 

Moreover, the SPP is also a special case of the MCNFP, where the objective is 

to find the minimum distance between two given nodes (e.g., nodes s and t). Here, the 

values of the n×1 vector b are now restricted only to 0, 1 or –1. The mathematical 

formulation of the SPP is as follows: 
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The node-edge incidence matrix of the graph of a MCNFP and all its special 

cases (i.e., TP, LSAP, SPP) have the combinatorial property of total unimodularity. 

Therefore, an efficient integer solution can be easily found by solving the corresponding 

relaxation linear programming problem, provided b and u are integer-valued. 

Although, the MCNFP and the above special cases can be efficiently solved in 

polynomial time, some generalizations of the MCNFP are intractable and thus cannot be 

efficiently solved. Such a problem is to find an integer flow for the minimum cost multi-

commodity flow problem, which is known to be NP-complete [30]. Furthermore, the 

time-varying MCNFP [19][65] (also known as dynamic flows or flows over time) has 

also been proved to be NP-hard. In this generalized version of the static MCNFP, the 

cost, transit time and capacity of an arc vary by time. Thus, more decision variables are 

required for the representation of the waiting times at all vertices along each route. This 

type of problem has several variations: i) no flow is allowed to wait at any vertex (zero 

waiting times); ii) waiting at any vertex is not subject to any constraints (arbitrary waiting 

times); or iii) a flow can wait at a vertex (bounded waiting times). 

 A large number of real-world applications can be modeled by using minimum 

cost network flows with multiple objectives. A recent review of exact and approximation 

algorithms for both the continuous and integer case of multiple-objective MCNFPs has 

been presented by Hamacher et al. in [49]. The biobjective MCNFP is a special, well-

studied case of multiple objective MCNFPs, with either continuous [81] or integer [82] 

flow values. Recent algorithmic approaches for the solution of biobjective MCNFP 

variants also include the papers [26] and [83]. Moreover, both multiple objectives and 

multiple hierarchies MCNFPs, in cases with arcs having fuzzy costs and capacities, have 

been investigated by Shih & Lee [84]. This generalization is very interesting because 

fuzzy set theory, probability methods, and interval computations (i.e., MCNFP with 

interval costs [23][51]) are well suited for modeling uncertainty in real-world 

applications. Recent work on Fuzzy MCNFP includes papers by Ghatee & Hashemi 

[40][41], and Ghatee et al. [42]. 

Additionally, attention of several researchers has also been attracted by 

nonlinear extensions of the classic MCNFP since linear costs are not always realistic. 
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Thus, if we consider a concave cost function for each arc, then this problem is called the 

concave minimum cost network flow problem. The concave MCNFP, with a concave 

cost function c΄ij(xij) for each arc, can be stated formally as follows: 
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Thus, local optimum (minimum) concave MCNFP solutions are not necessarily 

global optimum (minimum) solutions. Although this problem is NP-hard even for single 

source uncapacitated MCNFP with fixed-charge arc costs [47], some simpler cases of the 

problem allow only a few arc costs to be concave and the remaining, that are linear, are 

solvable by strongly polynomial algorithms [90]. Recently, Fontes et al. presented a 

dynamic programming approach [32] in order to obtain an optimal solution to the single-

source uncapacitated MCNFPs with general concave costs, independent of the type of 

cost functions and the number of nonlinear arc costs considered. The same authors also 

presented a Branch-and-Bound (BB) method [33] with better computational performance 

capable for solving larger size problems. Several applications include the concavity 

property of the objective function, such as production based models with start-up costs. 

Furthermore, if the shipping cost over an arc is a convex, rather than a linear 

function of the number of units shipped along that arc, then this problem is called the 

minimum convex-cost network flow problem. Such problems arise naturally due to 

factors such as system congestion and queuing effects, (e.g., urban traffic networks, 

communication networks). In cases where the problem has a piecewise linear convex-

cost objective function, a transformation into a classic MCNFP is possible. However, a 

significant drawback is that the number of arcs of the network considerably increased [2]. 

The convex separable integer minimum cost network flow problem is solvable in 

polynomial time [64]. Recently, Végh presented the first strongly polynomial algorithm 

for separable quadratic minimum-cost flows [92]. 

Another equivalent problem is the Minimum Cost Circulation Problem, where 

all supply and demand values are set to zero. Furthermore, if the flow of the MCNFP is 

not conserved (i.e., have attenuations or augmentations), then this problem is called the 

Generalized MCNFP. In this latter case, a gain factor (positive flow multiplier) is 

associated with each arc. Applications of the Generalized MCNFP may include flow of 

energy in thermal power plants, cash flows in different currencies, etc. Wayne [95] 

proposed the first polynomial combinatorial algorithm for the Generalized MCNFP. 

Specifically, this algorithm directly manipulates the underlying network and actually 

solves the equivalent Generalized Minimum Cost Circulation Problem. 

In their recent paper, Vaidyanathan & Ahuja [91] also considered some 

specially structured MCNFPs that were previously unstudied. Such a special structure, 

for example, is when nodes lie on a circle (or line in general), the flow is allowed in both 

directions, and the costs of flow between a pair of nodes in the clockwise and the 

counterclockwise directions are different. Specifically, they presented new, fast 
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algorithms based on successive shortest-path algorithm that exploit the special structure 

of the problem. 

Moreover, the cost (capacity) inverse MCNFP seeks to modify the cost 

(capacity) vector as little as possible to make a given feasible flow form a minimum cost 

flow of the network. A recent paper of Jiang et al. [53] measured the modification of the 

cost of the arcs by the weighted Hamming distance. Güler & Hamacher [48] analyzed the 

capacity inverse MCNFP for rectilinear (L1) and Chebyshev (L∞) norms. 

The MCNFP is closely related to several other network flow problems. For 

example, the MCNFP is a special case of the submodular flow problem introduced by 

Edmonds & Giles [27]. If a linear fractional objective function is used, then the problem 

is called the linear fractional MCNFP. Recently, Xu et al. presented a new algorithm for 

the linear fractional MCNFP in [97]. Zhu et al. [98] showed that the MCNFP, where 

some or all arcs have variable, rather than fixed, lower bounds (also known as MCNF-

VLB) is NP-hard. Finally, Krumke &Thielen [58] considered a variant of the MCNFP 

where the flow on each arc in the network is restricted to be either zero or above a given 

lower bound. This variant is known as the MCNFP with minimum quantities. Krumke 

&Thielen in their paper showed that the MCNFP with minimum quantities is strongly 

NP-complete. 

 

3. SOLUTION ALGORITHMS FOR THE MCNFP 

Computational algorithms for finding solution to network flow problems are of 

great practical significance. The first polynomial time algorithm for MCNFP was 

developed by Edmonds & Karp [28]. They showed how to transform the out-of-kilter 

method into a polynomially bounded method by iterative scaling of the right-hand side 

data. Tardos [86] proposed the first strongly polynomial algorithm for MCNFP. The 

existence of a strongly polynomial algorithm distinguishes MCNFP from the general 

linear programming problem. 

Since then, the operations research community has developed a variety of 

algorithms and data structures for solving MCNFP. A large number of different 

polynomial time algorithms for MCNFP exist. However, the classical network Simplex 

algorithm remains the best choice for solving MCNFP. Network Simplex algorithms 

compute basic solutions for the MCNFP that can be represented by spanning trees [13]. 

Furthermore, Cunningham [22] proposed the use of strongly feasible trees, a method to 

ensure finiteness in the Network Primal Simplex Algorithm (NPSA). Other well-known 

algorithmic methods for the solution of the MCNFP are the cycle-cancelling algorithm, 

the out-of-kilter-algorithm, and the successive shortest path algorithm. 

Interior Point Methods have also been proposed and applied to solve large-scale 

network flow problems [78]. A survey on Interior Point Methods for network flow 

problems can be found in [77]. Most state-of-the-art solution algorithms for the MCNFP 

use sophisticated data structures such as dynamic tree data structure [85] or Fibonacci 

heaps [35], elaborate storage schemes (for network Simplex type algorithms) such as the 

eXtended Threaded Index (XTI) method [9] that are also based on efficient scaling 

techniques. 

The capacity-scaling algorithm of Edmonds & Karp in 1972 was the first scaling 

algorithm [28] for the solution of the MCNFP in polynomial time. Since then, several 

variants of scaling techniques have been proposed in the literature. Gabow & Tarjan 
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(1989) presented faster scaling algorithms for the TP, AP, and the MCNFP [36]. Ahuja & 

Orlin (1992) presented a scaling network Simplex algorithm [3]. Their algorithm can be 

regarded as a scaling version of Dantzig’s primal Simplex pivot rule. Ahuja et al. (1992) 

combined several scaling methods such as capacity-scaling approach, excess-scaling 

approach, cost-scaling approach, and dynamic tree data structure in [1]. Goldfarb and Jin 

(1999) proposed an excess scaling algorithm in [44]. 

The first polynomial time specialization of NPSA for MCNFP using cost-

scaling techniques was proposed by Orlin (1997) [68]. The running time of that algorithm 

is O(min{n
2
m log nC, n

2
m

2
 log n}), where n, m, and C denote the number of nodes, arcs, 

and maximum absolute arc cost if arc costs are integer, and ∞ otherwise, respectively. 

Also, Orlin in [68] gave a low degree bound of O (nm log n) on the diameter of the 

network polytope. Currently, the fastest strongly polynomial time algorithms for the 

capacitated MCNFP are the algorithms by Orlin [67] and Vygen [94]. Orlin’s algorithm 

[67] is a variation of Edmonds & Karp scaling technique that runs in O(m log n (m + n 

log n)) and reduces the capacitated MCNFP to a sequence of O(m log n) shortest path 

problems. Also, Vygen [94] presented a dual algorithm that achieves the same running 

time as Orlin [67], but working directly with the capacitated MCNFP rather than 

transforming it to an uncapacitated MCNFP as in Orlin [67]. 

Recently, exterior point Simplex-type algorithms for the solution of the 

uncapacitated MCNFP have also been developed. This type of algorithm can cross over 

the infeasible region of the primal (dual) problem and find optimal solution reducing the 

number of iterations needed. The main idea of exterior point simplex-type algorithms is 

to compute two paths/flows. Primal (dual) exterior point simplex-type algorithms 

compute one path/flow which is basic but not always primal (dual) feasible; and the other 

is primal (dual) feasible but not always basic. A Network Primal Exterior Point Simplex 

type Algorithm (NEPSA) for the MCNFP was presented in [71]. Furthermore, a 

preliminary geometrical interpretation of a Dual Network Exterior Point Simplex type 

Algorithm (DNEPSA) for the MCNFP was described in [38]. The mathematical proof of 

correctness of DNEPSA, a detailed comparative computational study of DNEPSA and 

the classic Dual Network Simplex Algorithm (DNSA) on sparse and dense random 

problem instances, a statistical analysis of the experimental results, and finally some new 

results on the empirical complexity of DNEPSA, were recently published in [39]. These 

computational results have shown that DNEPSA is about 1.22 times faster than the 

classic DNSA in terms of the number of iterations, and about 1.57 times faster in terms of 

the CPU time. This computational study was based on several randomly generated 

MCNFP instances with varying density ranging from sparse problems (2%) to dense 

problems (40%), varying number of nodes from 200 to 700, and varying number of arcs 

from approximately 800 to 195,000. This algorithmic approach has been applied not only 

to other classic network optimization problems [70], but also to the general linear 

programming problem [79]. 

Gopalakrishnan et al. [45] have recently proposed a least-squares minimum-cost 

network flow algorithm. The authors take advantage of the special least-squares 

properties that network flow problems possess in order to address the problem of 

degeneracy in networks. Moreover, other new algorithmic approaches for the MCNFP 

include the Belief Propagation (BP) algorithm. BP is a general purpose distributed 

heuristic commonly used in Artificial Intelligence, which can be implemented for a wide 

range of constrained optimization problems. Gamarnik et al. [37] proved that the BP 
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solves the capacitated MCNFP exactly in pseudo-polynomial time when the optimal 

solution is unique. 

Finally, exploiting available massively parallel environments has significant 

computational benefits [7]. Thus, efforts have also been made for designing efficient 

parallelization of MCNFP algorithms. Orlin & Stein designed parallel scaling algorithms 

for the TP and MCNFP in [69]. Thulasiraman et al. presented a parallel algorithm for the 

dual transshipment problem in [89]. A parallel implementation of NPSA on a shared-

memory multiprocessor was reported by Peters [74] and also later by Barr & Hickman in 

[10]. A few years later, Beraldi et al. [14] proposed efficient parallel implementations of 

the auction/sequential shortest path and the e-relaxation algorithms for solving the linear 

MCNFP. The same authors also presented parallel algorithms for the solution of the 

MCNFP with convex separable cost function in [15]. 

 
4. OPTIMIZATION SOFTWARE FOR THE MCNFP 

Since the MCNFP presents a linear programming problem, it can be efficiently 

solved by well-known optimization solvers, such as the Gurobi Optimizer1 [17] or IBM 

ILOG CPLEX Optimizer2 [52]. However, several other state-of-the-art implementations 

exist that exploit the network structure of the MCNFP and have publicly available source 

code for download. 

Such an implementation is the MCF solver, which is an efficient implementation 

of NPSA developed by Löbel [61]. Among other well-known MCNFP solvers is the 

RELAX-IV written by Bertsekas & Tseng. Their routine implements the relaxation 

method described in [16]. It is noteworthy that there exists a NEOS Server interface [31] 

to RELAX-IV that will accept inputs in various formats3. Furthermore, Portugal et al. 

[75] recently published the description of their implemented Fortran subroutines for the 

solution of the MCNFP using the interior point network flow algorithm PDNET. They 

report that, for several classes of problems, PDNET has been shown to be faster than 

modern commercial implementations of the NPSA. Moreover, Goldberg & Cherkassky 

developed the CS2 solver, which is based on a cost-scaling push-relabel method [43]. 

Other well-known implementations of MCNFP solvers are the RNET [46], the NPSA 

code by Kennington & Helgason NETFLO [54], and the NET_SIMPLEX4 C++ 

implementation by Jensen & Berthelsen.  

A recent extensive experimental evaluation of the above state-of-the-art 

algorithms, namely the CS2, RELAX-IV, and MCF, was presented by Király & Kovács 

in [55]. Also, Frangioni and Manca [34] have compared the performances of four 

different efficient implementations of algorithms for the MCNFP under cost 

reoptimization, in the context of decomposition algorithms for the multicommodity 

MCNFP. 

                                                 
1 Available at: http://www.gurobi.com/products/gurobi-optimizer.  
2 Available at: http://www.ibm.com/software/integration/optimization/cplex-optimizer. 
3 Available at: http://www.neos-server.org/neos/solvers/lno:RELAX4/DIMACS.html. 
4 Available at: http://plato.la.asu.edu/ftp/other_software/net_simplex_binaries. Available as 

binaries provided by H. Mittelmann. 

http://www.gurobi.com/products/gurobi-optimizer
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.neos-server.org/neos/solvers/lno:RELAX4/DIMACS.html
http://plato.la.asu.edu/ftp/other_software/net_simplex_binaries
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Apart from the general purpose, commercial or not, linear programming solvers 

or the computer codes from independent researchers, one can solve the MCNFP by 

calling optimization libraries such as LEDA [62], LEMON [24], or using other 

optimization software packages such as the SAS/OR software and the legacy NETFLOW 

procedure [80]. LEDA stands for Library for Efficient Data types and Algorithms and is 

a C++ software library that contains a collection of robust and efficient implementations 

of algorithms and data structures for combinatorial and geometric computing. LEDA 

provides the MIN_COST_FLOW() function, based on a capacity scaling and successive 

shortest path computation that can be used to compute a minimum cost flow in a directed 

graph. 

The Library for Efficient Modeling and Optimization in Networks (LEMON) is 

a C++ template library that provides efficient implementations of algorithms and 

common data structures by focusing on network optimization. LEMON is an open source 

project, maintained by the Egerváry Research Group on Combinatorial Optimization, at 

the Operations Research Department of the Eötvös Loránd University, Budapest, 

Hungary. Specifically, LEMON provides users with the possibility to solve the MCNFP 

by using implementations of not only the NPSA with various pivot strategies, but also the 

capacity scaling algorithm based on the successive shortest path method, the cost scaling 

algorithm based on push/augment and relabel operations, and using cycle-canceling 

algorithms, two of which are strongly polynomial. The computer codes of all the 

previously mentioned optimization solvers for the MCNFP are publicly available, and are 

presented in Table 1. 

 

Table 1: Publicly available network optimization computer codes for the MCNFP, 

(accessed on Nov. 3, 2012) 

Solver URL 

CS2 http://www.igsystems.com/cs2  

MCF http://typo.zib.de/opt-long_projects/Software/Mcf  

DIMACS (solvers & generators) 

LEMON Graph Library 

ftp://dimacs.rutgers.edu/pub/netflow  

http://lemon.cs.elte.hu  

PDNET http://www.research.att.com/~mgcr/pdnet  

RELAX-IV http://web.mit.edu/dimitrib/www/RELAX4.txt  

 

To facilitate the exchange of problem generators and/or algorithm 

implementations, standard problem definitions and input/output formats have been 

proposed in the literature. However, the majority of the MCNFP solvers take input in the 

well-known DIMACS format [20], which is widely used after the first international 

algorithm implementation challenge at the Center for Discrete Mathematics and 

Theoretical Computer Science (DIMACS) in 1991. 

Each new implementation is usually thoroughly tested using either benchmark 

problems that might have arisen naturally as real problems, or randomly generated 

problem instances. Regarding the MCNFP, several well-known random problem 

generators exist. Such generators allow the researchers to produce MCNFP instances 

with one-way or two-way arcs, a varying number of nodes (either source or sink nodes), 

varying graph density, and custom lower and upper bounds for uniform distribution of 

arc costs and/or arc capacities. 

http://www.igsystems.com/cs2
http://typo.zib.de/opt-long_projects/Software/Mcf
ftp://dimacs.rutgers.edu/pub/netflow
http://lemon.cs.elte.hu/trac/lemon
http://www.research.att.com/~mgcr/pdnet
http://web.mit.edu/dimitrib/www/RELAX4.txt
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Lee & Orlin developed the GRIDGEN [60] generator in C. Their generator can 

either read the input parameters from the standard input or from a batch file in order to 

generate multiple sets of data at a time. Moreover, Goldberg has developed the MESH 

generator in C [20], which produces instances of the minimum-cost circulation problem 

in the DIMACS format. Also, Klingman et al. [56] developed the NETGEN generator in 

Fortran that produces not only random, capacitated or uncapacitated MCNFP instances, 

but also transportation and assignment problems. The RAND-NET generator was 

presented by Arthur & Frendewey [6] in order to provide users with the ability to create 

problems with controlled size and structure, and with known solutions. 

Α number of educational optimization software packages also exist for the 

MCNFP. For students, teaching solution algorithms for the MCNFP sometimes seems 

difficult to be grasped because they need to generate a sequence of rooted trees. The 

scope of such tools [4] is not the solution of large scale instances, but rather a step-by-

step visualization [59] of solution algorithms for the MCNFP in order to enable the OR 

instructors to explain each iteration of the algorithm visually and with minimal effort. 

Vanderbei developed a network Simplex pivot tool5 that can be used for solving the 

MCNFP. Recently, Baloukas et al. [8] presented an animated demonstration6 of the 

classic NPSA for the uncapacitated MCNFP. Andreou et al. [5] also developed 

visualization software7 of the NEPSA. These educational optimization software packages 

implemented as Java applets are freely available and highly interactive, and can be 

accessed through the Web. Moreover, they have a number of helpful features, such as 

using colored eligible arcs, showing the solution process through textual information and 

depicting the relevant steps in pseudo code using multiple views. 

Finally, a network optimization model may constitute a part of a model base 

used by a Decision Support System (DSS). Although a plethora of DSS applications exist 

in the literature [29], [93], several DSSs embed various modifications of minimum cost 

network flow models. For example, Rakshit et al. [76] described a DSS that used a 

minimum cost network flow model in order to identify and solve flight crew shortages. 

Also, Thibault [88] presented a DSS that contained a MCNFP variant with additional 

performance and survivability requirements for solving a telecommunications network 

design optimization problem. 

 
5. SUMMARY 

The classic linear MCNFP and a number of some closely related problems have 

been presented. Emphasis was also given on state-of-the-art solution techniques and 

sources of optimization software for the MCNFP. Although the classic linear MCNFP 

can be efficiently solved in strongly polynomial time by algorithms that exploit the 

network structure of the problem, there are several other intractable generalizations (e.g., 

time-varying MCNFP). Therefore, further research effort is required, using various 

approaches such as approximation algorithms or metaheuristics, in order to tackle such 

cases. 

                                                 
5 Available at: http://www.princeton.edu/~rvdb/JAVA/network/nettool/netsimp.html.   
6 Available at: http://users.uom.gr/~thanasis/NetworkSimplex.html.  
7 Available at: http://users.uom.gr/~sifalera/ORIJ.  

http://www.princeton.edu/~rvdb/JAVA/network/nettool/netsimp.html
http://users.uom.gr/~thanasis/NetworkSimplex.html
http://users.uom.gr/~sifalera/ORIJ
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We believe that effort made to include the most recent and relevant literature on 

MCNFPs in this article will provide a starting point for studying the MCNFP variants, its 

algorithms and applications and make readers interested in these problems.   
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