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SUMMARY

This paper presents a stochastic algorithm for virtual network service mapping in virtualized network
infrastructures, based on Reinforcement Learning (RL). An exact mapping algorithm in line with the current
state of the art and based on integer linear programming is proposed as well, and the performances of
the two algorithms are compared. While most of the current works in literature report exact or heuristic
mapping methods, the RL algorithm presented here is instead a stochastic one, based on Markov decision
processes theory. The aim of the RL algorithm is to iteratively learn an efficient mapping policy, which
could maximize the expected mapping reward in the long run. Based on the review of the state of the art, the
paper presents a general model of the service mapping problem and the mathematical formulation of the two
proposed strategies. The distinctive features of the two algorithms, their strengths and possible drawbacks
are discussed and validated by means of numeric simulations in a realistic emulated environment. Copyright
c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background and Aim

Network Function Virtualization (NFV) [1] refers to the substitution of dedicated network
function devices with functionally equivalent software modules running on commercial-off-the-
shelf (COTS) hardware, through software virtualization techniques. NFV is expected to bring
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significant advantages, including [1]: i) increased capital and operational efficiencies; ii) rapid
service deployment and customization/reconfiguration of Virtual Network Functions (VNFs) [2]
and the underlying hardware; iii) a more stimulating service ecosystem; iv) increased flexibility
in management of network functions, etc. Additionally, the sharing of infrastructure resources,
workload migration and powering down is expected to bring relevant energy savings. Aside of the
new capabilities offered, NFV demands for improved or entirely new orchestration and management
functions, business models and architectures [3]. Since NFV allows for dynamic coupling of VNFs
and the supporting hardware, new orchestration logic is needed to govern the process of services
instantiation, termination and overall life-cycle management. In particular, this paper focuses on the
problem of service mapping, that is, the problem of intelligently assigning network infrastructure
resources to Network Service (NS)† to be instantiated, as detailed in Section 3. The aim of the
paper is to propose and test two different service mapping algorithms: an innovative one, based on a
stochastic learning technique, and a state of the art one based on Integer Linear Programming (ILP).
The two algorithms are compared and their performance is assessed on a realistic simulation base.
The results presented in this paper are the outcome of the research performed in the context of the
European FP7 project T-NOVA [4].

1.2. Main Contributions

The main contributions of the paper are:

1. The proposition of a general modeling framework for the service mapping problem, based on
graph theory, and the subsequent derivation of a Markov decision process model, which is at
the base of the Reinforcement Learning (RL) algorithm presented.

2. The proposition of a novel RL algorithm for service mapping, providing a solution that seeks
to maximize the performances in the long run, whereas previous works in literature have
mainly focused on exact or heuristic methods maximizing performance indicators at current
time.

3. The proposition of a second, exact method for service mapping, based on ILP, and the
comparison of the characteristics of the two algorithms and the performances achieved. The
simulations are based on realistic settings and data taken from a specialized database for
testing algorithms in NFV environments.

Previous efforts of the authors and the T-NOVA project in the field of service mapping can be found
in [5] and [6], providing: i) a first discussion of the reference scenario and modeling framework; ii)
a high-level discussion of the two mapping strategies proposed, with in particular a first proposition
of the RL method, limited to the case of single VNF mapping, and only outlying a possible way of
extending it to the complete NS mapping case; iii) early simulation results mainly focused on the
ILP method for what concerns complete NS mapping. The key novelties of this paper with respect to
[5] and [6] are: i) an extended state of the art in service mapping methods; ii) a radical improvement
of the RL algorithm, with an improved formulation of the state space and the reward function, and
a deeper extension and investigation of the RL method in the general case of complete NS mapping
(i.e. mapping of NS composed by more than one VNF); iii) an improvement of the ILP algorithm,

†A NS is a service composed by one or different specific VNFs [2].
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Figure 1. ETSI reference framework for NFV (picture
from [1]). Figure 2. T-NOVA reference architecture.

to increase load balancing capabilities; vi) an actual comparison of the two algorithms running on
the same simulated test scenarios (a delicate task due to the entirely different nature of the two
algorithms).

1.3. Paper Organization

The remainder of the paper is organized as follows: Section 4 presents a review of the state of
the art in service mapping; Section 2 deals with the reference scenario and architecture considered
in this paper; Section 3 defines and models the service mapping problem; Section 5 and 6 detail,
respectively, the design of the RL and the ILP service mapping algorithms; Section 7 presents and
discusses simulation results; Section 8 concludes the paper and outlines future works.

2. REFERENCE SCENARIO AND ARCHITECTURE

This section presents the reference scenario and the NS orchestration architecture developed in the
T-NOVA project [4] and assumed for the design of the mapping algorithms. The interested reader
is referred to [1], [2], [5], [6], [7] for more details. The assumed NFV architecture is in line with
the European Telecommunications Standards Institute (ETSI) high level framework for NFV, as
reported in Figure 1: NS provisioning leverages virtual compute, storage and network resources
made available by the virtual infrastructure manager through control of physical hardware resources.
Key actors and systems relevant to frame the discussion in this paper include:

1. VNF/NS Function Providers: the actors responsible for VNFs and NSs provisioning, and for
maintenance of the related service descriptors [2], i.e. the templates reporting VNFs/NSs data
essential for correct orchestration.

2. Infrastructure Repository: a system which stores and makes available information on the
physical network infrastructure supporting virtualization. Such information is abstracted
by the virtualized infrastructure manager, described below. Together with service catalogs,
described below, this is the main system that the service mapping module has to interact with
in order to gather the needed inputs for solving the problem.

3. Marketplace: the system in charge of contract management, purchase of NSs, Service Level
Agreement (SLA) management, billing, etc.
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4. NFV Orchestrator: the system responsible for the technical VNF/NS life-cycle management
(request receipt, NSs on-boarding, instantiation of VNF managers, service reconfiguration,
scaling, events management, performance measurement, service termination, etc.). The
orchestrator hosts, among the others, the service mapping module, which has been designed
in a flexible way in order to allow the integration of different service mapping algorithms.

5. NS/VNF Catalogs: NS/VNF repositories including key data for service orchestration.
6. NS/VNF Manager: system managing the complete life-cycle of a VNF/NS instance.
7. Virtualized Infrastructure Manager (VIM): the actor responsible for control and management

of compute, storage and network resources. It implements the decision of the mapping
algorithm. It further provides the information on resources’ occupancy, events notifications,
performance, etc., which are fed into the infrastructure repository.

The functional architecture involving such actors and systems is represented in Figure 2. The
interested reader may find detailed information about the above NFV architecture in [7].

3. PROBLEM DESCRIPTION AND MODEL

In this section, the service mapping problem is modeled and stated. In the following, | · | denotes
the cardinality of a set and {xi}i∈I the set of the elements xi, for i varying in the set of indices I .

3.1. Problem Modeling

The service mapping problem is modeled based on graph theory; the proposed modeling framework
subsumes the key findings in literature and is in line with the ETSI indications [1]. The following
directed graphs are considered [5]:

• Network Infrastructure Graph. G(NI) = {VNI , ANI}. VNI and ANI are, respectively, the
sets of vertices and edges of the Network Infrastructure (NI) graph. Each vertex represents a
Point of Presence (PoP) while the edges stand for the links between the PoPs. A network PoP
[2] is the location where a NS is implemented‡.

• Network Service Graph. G(NS) = {VNS , ANS}. VNS and ANS are, respectively, the sets of
vertices and edges of the generic NS graph. The vertices and edges represent, respectively,
VNFs and the virtual links in between.

The reader may find in the ETSI documents the detailed representation of the above-mentioned
NS and VNF forwarding graphs. The above graphs provide a basic representation of the NI and NS
topologies; they are further enriched with the information on the current availability of infrastructure
resources, and the information on the resources required by the services to be mapped:

• RAPoPr represents the aggregate availability of resources of type r ∈ R at PoP ∈ VNI . R
denotes the set of network resource types (e.g., memory, CPU, bandwidth, etc.).

• RA(PoPs,PoPd)
r captures the availability of resource of type r on the physical link between

PoPs ∈ VNI and PoPd ∈ VNI .
• RRVNFr is the amount of resource of type r required by the VNF ∈ VNS .

‡The terms PoP and Datacentre (DC) are used interchangeably throughout this paper.
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Figure 3. Example of first level service mapping problem (a) and solution (b) (picture from [5]).

• RR(VNFs,VNFd)
r is the amount of resource of type r required by the virtual link between

VNFs ∈ VNS and VNFd ∈ VNS .

Depending on the resource type, the above parameters can be either real numbers (e.g., for memory,
CPU, bandwidth requirements) or integers (e.g., to model presence or absence of resources, the
number of resources available or required, etc.). The proposed RL-based mapping algorithm will
also make use of the knowledge of the type of NS/VNF mapped. Therefore, it is assumed in the
following that the NSes and the VNFs belong, respectively, to the set TNS of NS types, and to the
set TVNF of VNF types. In practice, TNS and TVNF can be either exactly determined, when their
cardinality is small, or designed based on quantization of the relevant NSs/VNFs parameters.

The adopted modeling philosophy is general enough to capture the commonly encountered
resource requirements or availability specifications, like maximum tolerated link delay, minimum
bandwidth required, constraints on NS endpoints location, etc. The focus of this paper is on the so
called first level service mapping problem; that is, the problem of mapping the VNFs composing a

Figure 4. Service mapping sequence diagram (picture from [5]).
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NS to the available PoPs in the network infrastructure (see an example in Figure 3). The sequence
diagram in Figure 4 details the basic interaction flows underpinning the provisioning of NS mapping
services.

3.2. Problem Statement

Based on the above modeling notation, this section defines the first-level service mapping problem
the paper aims to address.
Problem 1 (First Level Service Mapping).
Given:

• a network infrastructure G(NI) = (VNI , ANI), with knowledge of currently available PoP
resources RAPoPr and link resources RA(PoPs,PoPd)

r ,
• a NS instantiation request, with knowledge of: the NS topology G(NS) = {VNS , ANS}, the

NS node requirements RRVNFr and the NS link requirements RR(VNFs,VNFd)
r ,

• a service mapping reward criterion, which associates a reward to each mapping outcome,

find a feasible mapping of the VNFs composing the NS to the infrastructure PoPs, and a feasible
mapping of the NS virtual links to PoP paths, such that all the node and link constraints are satisfied
and the mapping reward criterion is optimized./

In the next two sections, the proposed RL and ILP formulations of the service mapping problem
are detailed. The ILP formulation is aligned with the state-of-the-art exact methods found in
literature, and serves here also as a benchmark of the performances achieved by the RL algorithm.

4. RELATED WORK

NFV is being increasingly investigated by the research and the industrial communities. Regarding
service mapping, over the past years the attention has been focused on DC networks. Works such
as [8], [9] and [10] discuss cloud platform implementations that allow to assign clusters of NSs to
DCs taking into account performance guarantees, but without consideration of the functionalities
of a service chain. The authors in [11] discuss service composition considering NSes chaining.
Similarly, [12] discusses a heuristic mapping algorithm for assigning Virtual Machines (VMs) to
servers in a DC. The paper addresses the case of NSes composed by multiple VNFs, pointing out that
the typical case addressed in literature regards instead the mapping of single VNFs. Interestingly,
[12] discusses the relation of the proposed automated service mapping procedure with the existing
cloud management systems, with particular regard to OpenStack [13].

An heuristic solution for the mapping of chained VNFs is proposed in [14] that uses a
transformation of network topology graphs into simplified trees to reduce the complexity of the
decision problem. From the methodological perspective, the above works are mainly based on
heuristic algorithms that seek to optimize DC networks key performance indicators, such as inter-
rack traffic.

Other fundamental works (see e.g., [9]) address the problem of NS modeling, with the aim
of solving the inefficiencies implied by the previously adopted models, such as the hose, VOC
(Virtual Oversubscribed Cluster) and pipe models [9]. The technique developed in [9], named TAG
(Tenant Application Graph), avoids the overprovisioning inefficiencies stemming from the use of
the other modeling techniques by accurately capturing the bandwidth requirements for the VMs to
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STOCHASTIC AND EXACT METHODS FOR SERVICE MAPPING 7

be deployed. The TAG is a graph-based model in which VMs, or tiers of VMs, are associated with
the nodes of the graph, and VM ingress and egress link requirements (e.g., bandwidth requirements)
are modeled by directed edges in the graph. The NS models used in this paper are an extension of the
TAG model. Subsequent works have started to investigate the problem of mapping NSes (i.e., chains
of VNFs) in a wide area context, considering the infrastructure resources available in a network of
DC with multiple PoPs.

In the recent work [15], Riggio et al. introduce an algorithm for mapping VNF chains to a
virtualised network infrastructure, focusing on the case of WLANs. The paper proposes a general
NS modeling framework, compliant with the ETSI modeling approach [15]. The paper address both
the problems of VNF node mapping to substrate network nodes and VNF virtual link mapping to
network paths. The mapping strategy proposed in [15] sequentially visits the VNFs to be mapped,
starting from the one with maximum connectivity degree. Each visited VNF is then mapped to
the network nodes which are highest on a cost metric scale which accounts for the node residual
resources available, and the congestion level of the path connecting the network node with the
one hosting the previously mapped parent VNFs. The VNF virtual link mapping problem is solved
based on a shortest path computation. Results presented in [15] report performance metrics widely
used in the literature, such as NS acceptance rates and node/link utilization levels. Reference [16]
presents another interesting and advanced contribution. The authors propose a service mapping
algorithm based on ILP, in which the NSes to be mapped and the network infrastructure are
modeled as undirected graphs, with specification of topology and node/link resource availability
and requirements. The paper also investigates the so called “lookahead” mapping feature (previously
introduced by the references in [16]), according to which more NSs are embedded at the same time.
The efficiency of the solution increases as the number of services simultaneously mapped increases
(more service requests can be accommodated and, at the same time, network resources are better
exploited, at the expenses of increased computation times).

Dealing with ILP methods, [17] discusses an advanced ILP service mapping algorithm for multi-
domain service mapping, focusing on the problem of limited information disclosure among service
providers and infrastructure operators. MIDAS [18] proposes an architecture for the coordination
of on-path flow processing setup, assuming the wide-scale deployment of middleboxes in the
network. MIDAS relies on Multi-Party Computation to partition NSes among multiple providers in a
distributed manner. References [19] and [20] also propose other ILP formulations, the first utilizing
also the Gomory-Hu Tree Transformation on the substrate network graph to reduce the complexity
of the problem and the latter takes also into account, in the cost function, the reliability of the
network infrastructure. In [20] the authors also propose a game-theory based heuristic algorithm
that shows higher scalability and differentiates itself from other works in literature also for the fact
that it first maps the virtual links and only after deals with the nodes. References [21] and [22]
discuss the case in which a NS chain consisting of several VNFs can be realized in different ways
(the process of choosing the actual implementation “shape” for the requested NS being referred
to as “service decomposition”). The authors propose a mapping algorithm which also integrates
a service decomposition phase, allowing to select the most suitable service configuration at run
time. A heuristic and an ILP model for solving the problem are presented and discussed. Another
contribution that deals with the topology of services is reference [23], where the authors propose
an heuristic solution to the problem of joint design and mapping of chains of VNFs, minimizing
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the total consumed bandwidth. Reference [24] presents a context-free language to build a model of
NS chaining requests. A mixed integer quadratic programming mapping strategy is also presented,
and three different objective functions are evaluated using Pareto techniques: (i) maximization of
available data rate on substrate network links, (ii) minimization of used infrastructure nodes and (iii)
minimization of the path latencies.

Soft computing optimization techniques have been proposed as well. The early work [25]
provides an interesting example, proposing a mapping algorithm based on binary PSO (Particle
Swarm Optimization). Five different target functions are proposed (the relevant ones for the
following discussion being: minimization of used network nodes, minimization of used network
links, minimization of the mapping cost). Virtual link mapping relies on shortest path computation,
with the cost matrix being given by the available link resources. The interested reader is referred to
references in [25] for a discussion of other soft computing, approximate, evolutionary optimization
techniques which have been applied to the service mapping problem.

Other interesting contributions are [26], which proposes a decentralized auction algorithm based
on consensus and highlights the advantages of such method with respect to centralized control
schemes, and [27] where two heuristic algorithms are presented to map VNFs robustly against faults
or disasters that may affect the network topology.

Reference [28], one of the recent works on service mapping, presents a modular virtualization
architecture that enables policy-based management of VNFs. An information model is introduced to
describe and abstract network resources and VNFs. The paper reports also an interesting discussion
about the possible synergies between NFV architectures and Software-Defined Networks (SDN). A
simple shortest path virtual link mapping algorithm is proposed and tested in a small-scale testbed,
together with the proposed policy based VNF orchestrating framework. The authors show that
including a rule-based framework allows to orchestrate the VNFs mapping in such a way as to
preserve the SLAs defined for the different clients.

Beyond the above-described works on service mapping, the interest reader is referred to [29] and
[30] for an additional discussion of consolidated state of the art.

5. SERVICE MAPPING BASED ON REINFORCEMENT LEARNING

This section presents a formulation of the service mapping problem based on Markov decision
process theory. Then, based on such reformulation, the proposed RL algorithm is presented.

5.1. Markov Decision Process Modelling of the Service Mapping Problem

The service mapping control problem can be reformulated as a Markov decision process. The
reference control logic is illustrated in Figure 5. At each time k a NS instantiation request is made,
the service mapping module plays the role of the controller, and acts based on a mapping policy
π(s(k)), which decides the mapping action a(k) based on the current state of the system s(k) and the
received service request w(k). As a result of the control action, a mapping reward r(k) is received,
modeling the mapping success or failure, and the system transits to a new state s(k + 1).

The design of the proposed RL algorithm is based on Markov decision process modeling of
the service mapping problem. A Markov decision process is a tuple {S,A, T, r}, in which S

defines a discrete and finite state space, A defines the discrete and finite set of possible mapping
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STOCHASTIC AND EXACT METHODS FOR SERVICE MAPPING 9

Figure 5. High level control scheme for the proposed service mapping algorithm (picture from [5]).

actions, T is the matrix of the state space transition probabilities and r is a reward function.
Dynamic programming methods can be used to solve the Markov decision process by finding an
optimal policy which maximizes the cumulative mapping reward in the long run. Since the dynamic
programming approach cannot be implemented in a real scenario, due to scalability limits (the well-
known “curse of dimensionality” [31]), this paper proposes an on-line strategy for the iterative
derivation of a sub-optimal mapping policy by means of a RL algorithm.

Each element of the tuple is defined in the following subsections, focusing on the atomic action
of mapping a single VNF to a PoP. In Section 5.2, the complete service mapping RL algorithm will
be detailed, which fulfills the mapping of all the nodes and links of the NS to be instantiated.

5.1.1. State Space S Giving a state space formulation for Problem 1 implies accepting a trade-off
between modeling accuracy and scalability of the mapping algorithm. In the following, an aggregate
formulation for the state space will be considered, to let the algorithm scale to realistic scenarios.
The state space S is chosen as a quantized representation of the occupancy level of the infrastructure
resources, with the addition of information on the NS that is going to be mapped next. Let us denote
with sji the quantized occupancy level of the resource of type j in PoP i (e.g. 10%, 20%, etc.). The
state of resources occupancy at the i-th PoP is thus captured by the vector si = [s1i , s

2
i , , s

|R|
i ]T (|R|

is the number of different resource types). Hence, the overall state space S will be given by the
collection of all the possible above resources occupancy vectors and, as said, the information on the
NS being mapped.

S = {si, NS, i = 1, ..., |VNI |, NS ∈ TNS} (1)

It is assumed that, at each mapping time k, the controller avails of a measurement of the state
of the system s(k). Such feedback information is available in practice through the infrastructure
repository, which makes possible to measure the occupancy level of the machines inside the PoPs.
The knowledge of s(k) is fundamental to understand whether a feasible solution to the mapping
problem exists or not, and to have a feedback on the outcome of the mapping actions. The number of
occupancy levels considered should take in to account the number of PoPs and resources considered
in the scenario, as the number of states is equal to L|R|·|V

NI | · TNS , where L is the number of
quantization levels, |R| is the number of resource types and TNS is the number of NS types. The
informative power of the state decreases as the number of occupancy levels is lowered, but its most
important information, which is the identification of the almost saturated PoPs where the VNFs
should in general not be mapped, is preserved even with only two levels and a high quantization
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threshold. In this case the state elements would tell if the corresponding PoP is close to the saturation
of its resources or not. A higher number of levels could lead to marginally better performances but
will increase both the spatial and the temporal complexity of the problem, as it will be clarified in
the following.

5.1.2. Action Space A The action space defines the set of possible mapping decisions for the
generic VNF composing the service. Since the algorithm deals with first level service mapping,
possible actions consist in the choice of one of the |VNI | PoPs where to map the service. Let us
introduce the Boolean decision variable ai = {0, 1}, which is equal to one if and only if the current
NS is to be mapped at PoP i. Then the action space will be given by the collection of the above
decision variables.

A = {ai, i = 1, ..., |VNI |} (2)

The mapping actions are decided based on a stochastic, iteratively learned policy (conversely to the
ILP algorithm, which provides a deterministic approach to service mapping).

5.1.3. Transition Matrix T The generic entry t(s, a, s′) of the transition matrix T defines the
probability of a system transition from state s to state s′, when action a is taken. Even by assuming
typical stochastic distributions for the service arrivals and terminations (e.g., Poisson arrival rates
and exponential dwelling times), it is not easy to derive an exact transition matrix for the problem in
question (see e.g. an example of derivation of T in [32]), since an aggregated state space formulation
has been chosen to favor the scalability of the algorithm. On the one hand, this precludes the
possibility of computing explicitly the optimal policy based on the Bellman iteration [33], on the
other hand, the proposed mapping algorithm will make use of model-free learning techniques which
do not rely on the knowledge of T . Also, the computation of the optimal policy would be infeasible
for the realistic scenarios dealt with in this paper.

5.1.4. Reward Function r The reward function r specifies the reward deriving from each mapping
action. Several formulations of the reward function can be chosen to steer the controlled system
towards the desired performance (e.g., costs minimization, reward maximization, load balancing,
maximization of the acceptance rate, etc.). A basic and sufficiently general formulation is given
in the following, in which the mapping reward for a VNF depends on the mapping outcome
(acceptance, if the proposed mapping leads to a feasible network configuration, rejection otherwise)
and on the VNF/NS type (tV NF ∈ TV NF , tNS ∈ TNS , to model possible different rewards
associated to different services).

rk+1 =

{
r(tV NF , tNS) if the mapping succeeded (3a)

0 otherwise (3b)

Different choices for r can be made, for instance: by associating a unitary reward to each NS
mapping, the modeled problem would be the one of maximizing the overall cumulative number
of services allocated; by assigning different rewards to each NS type, a priority order for the
allocation of the various NSes can be enforced, not necessarily linked or proportional to their
resource requirements.
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5.2. Proposed Service Mapping Algorithm Based on Reinforcement Learning

The proposed RL algorithm is sequential, in the sense that the VNFs and their virtual links are
sequentially mapped. No specific visiting order is considered in this paper, since currently available
NS are characterized by very simple topologies (investigating improved visiting orders, as in [15],
will be considered in the future to further increase performances). The core of the algorithm is
a VNF stochastic mapping policy, detailed below, which uses RL to solve the Markov decision
problem described in the previous sections. In particular, the standard Q-Learning [33] algorithm
is used to iteratively estimate the state-action value function Qπ(s, a), that is, the value function
that expresses the future expected cumulative reward achieved by the system when starting from
state s, performing action a, and following policy π thereafter. Based on the knowledge of Qπ, the
following ε-greedy policy is considered, as customary in RL applications [33].

π(s, a) =

{
1− ε if a = argmax{Qπ(s, a)} (4a)

ε/(|A| − 1) otherwise (4b)

where π(s, a) represents the probability of taking mapping action a when in state s. According to
(4a), at the generic mapping time, the controller will select with probability 1− ε the action yielding
the maximum expected reward, according to the current value of Qπ (i.e., a = argmax{Qπ(s, a)});
otherwise, it will select a random action. The inclusion of some randomness through the parameter
ε allows for exploration and increased speed in the learning phase [33]. In the following, a
dynamic ε−greedy policy is considered, in the sense that the randomness in the action selection is
progressively lowered as the number of iterations goes up. This behavior models the need, intrinsic
in RL, to balance the exploitation of the knowledge obtained from the past experience, represented
by the Qπ matrix, and the exploration of new state-action pairs, which is crucial especially in the
first iterations when the agent is still not familiar with the problem. The speed of decaying for
this parameter should be inversely proportional to the size of the Qπ matrix, and should be tuned
accordingly.

The Q action-value function is iteratively updated according to the Q-Learning strategy, as
mapping events arrive.

Qπ(sk, ak)← Qπ(sk, ak) + αk[rk+1 + γmax
a

Qπ(sk+1, a)−Qπ(sk, ak)] (5)

In (5), k is the discrete time, αk is the so called learning rate at time k and γ ∈ [0, 1] is a discount
factor, weighting the current rewards versus the future ones representing how much of the current
reward the agent is supposed to risk for an higher future expected reward. The parameter αk
represents how the current reward has to be weighted with respect to the previous experiences,
stored in the previous value of Qπ(s, a) before the update. To guarantee the convergence of the
algorithm this parameter should be chosen in such a way that

∑
k αk =∞ and

∑
k α

2
k <∞ [34].

To ensure those two conditions, while guaranteeing an high learning rate for the first iterations,
where the agent is still exploring the state-action pairs, the sequence of αk has been chosen as
α(k) = α0/(1 + bk/T c). The symbol b·c denotes rounding to the lower integer while the parameter
α0 represents the starting value of the sequence, which should be chosen close to one and is lowered
every T iterations, where T is proportional to the dimension of the matrixQπ. The above mentioned

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2016)
Prepared using nemauth.cls DOI: 10.1002/nem



12

convergence condition for αk is respected as it can be shown that
∑

k α
2
k = T ∗ ζ(2) = T ∗ π2/6,

where ζ is Riemann’s Zeta function.
Equation (5) can be seen as a feedback rule in which αk is a gain factor and [rk+1 +

γmaxaQπ(sk+1, a)−Qπ(sk, ak)] is the error between a mixed observed/estimated state-action
value for the pair (sk, ak), i.e. rk+1 + γmaxaQπ(sk+1, a), and the last available value of Qπ in
such pair, Qπ(sk, ak).

The above laws (4a-4b) and (5) together define the VNF mapping algorithm adopted. The
complete NS mapping algorithm is derived by including a virtual link mapping phase, as follows.
Let VNFi denote the generic i-th VNF to be mapped at current time. Let PAVNFi

and CHVNFi

denote, respectively, the set of parent and children§ VNFs of VNFi that have already been mapped
before VNFi. Similarly, let PAlinkVNFi

and CH link
VNFi

denote, respectively, the sets of links connecting
the nodes in PAVNFi and CHVNFi to VNFi. Given the above, the NS mapping algorithm has to map
the links PAlinkVNFi

and CH link
VNFi

to feasible paths in the infrastructure graph, linking the PoP in which
VNFi has been mapped to the PoPs where the VNFs in PAVNFi and CHVNFi , respectively, have
been previously mapped. Given the generic link l ∈ {PAlinkVNFi

∪ CH link
VNFi
}, the link mapping strategy

considered in this work is based on a weighted shortest path computation between the source
VNF and the destination VNF connected by the virtual link l. For the shortest path computation, a
weighted adjacency matrixW is considered in order to favor balancing of link resources, as follows:

W = {wij = aNIij
∑
r

OL
(PoPi,PoPj)

2

r }(i,j)∈ANI (6)

where OL(PoPi,PoPj)
r is the % occupancy level of resource r at physical link between PoPi and

PoPj , aNIij ∈ {0, 1} is the (i, j) entry of the adjacency matrix of the network infrastructure graph.
OL is updated at each mapping event based on the information from the infrastructure repository.

The proposed complete NS mapping algorithm is summarized below.
Algorithm 1 (Service Mapping Based on Reinforcement Learning).
Inputs: G(NI), G(NS), RRVNFr , RR(VNFs,VNFd)

r , RAPoPr , RA(PoPs,PoPd)
r (infrastructure and

service parameters; measurement of current infrastructure occupancy level).
Outputs: Mapping of each VNF of the NS to a PoP; mapping of each VNF link to a path between
the chosen PoPs.
Procedure:

1: Initialize Qπ(s, a).
2: Initialize cumulativeReward to 0.
3: Initialize failureFlag to false.
4: Wait to receive incoming NS activation request.
5: Retrieve NS data: G(NS), RRVNFr and RR(VNFs,VNFd)

r .
6: Determine current state based on (1) and NI measures (i.e. RAPoPr and RA(PoPs,PoPd)

r ).
7: for i = 1 to |VNS | do
8: if (VNFi is an endpoint) then
9: Compute mapping of VNFi according to customer request, if given.

10: else

§Given two linked VNFs in a generic NS, say VNFi and VNFj , VNFi is called parent of VNFj if VNFi has an outgoing
link towards VNFj . Similarly, VNFj is called children of VNFi.
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11: Compute mapping of VNFi based on Q-Learning policy (4a-4b).

12: endif
13: Check feasibility of resulting PoP resource usage (see (8e) in Section 6).
14: Compute mapping of ingress and egress virtual links of VNFi based on weighted shortest

path - see (6).
15: Check feasibility of resulting physical link resource usage and link delay (see respectively

(8d) and (8c) in Section 6).
16: if (link feasibility and PoP feasibility) then
17: Set positive reward r for processed VNF.
18: else
19: Set reward r = 0 (failure) and set failureFlag to true.

20: endif
21: Update the state through (1), based on failureFlag and processed VNFs.¶

22: Update Qπ(s, a) function based on (5).
23: if (failureFlag is true) then
24: return mapping failure notification and goto Step 3

25: endif
26: endfor
27: if (failureFlag is false) then ‖

28: Set positive reward r for processed NS.
29: Update Qπ(s, a) function based on (5).
30: Add r to the cumulativeReward archived by the agent. ∗∗

31: endif
32: return mapping solution and goto Step 3

In conclusion, notice that the SM algorithm is only in charge of computing a mapping solution,
if one exists, while then they are the infrastructure manager entities that actually implement the
mapping solution found by the algorithm. Hence, if the algorithm fails in computing the mapping
of one of the VNFs, the SM algorithm returns a mapping failure notification in output (Step 23), but
no VNF has to be deallocated from the infrastructure (since none was allocated yet). In this regard,
notice also that the state update performed at Step 5 above is an actual measurement of the current
state of the infrastructure, since it is based on the measurements received from the infrastructure
manager (refer also to Fig. 4). On the other hand, the state update in Step 20 is done to take into
account the resources that have to be progressively “reserved” for the new VNFs as their mapping
is computed by the algorithm.

¶If failureFlag is true, then the state is rolled back to the original one computed in Step 7 and is taken as the next state
in 5 for the Q update. If failureFlag is instead false, then the state is updated through (1), based on the state measured at
step 7 and taking into account the additional resources that have to be reserved for the VNFs processed up to the current
time.
‖Notice that the Q matrix is updated after both the VNFs and the NS mappings. This is because the aim of the algorithm
is to maximize only the reward relative to the NS mappings, but to give a more informative and immediate feedback
we also associate a smaller reward, that is not taken in to account in the cumulative reward that is used to evaluate the
performances of the agent, for successful VNF mappings and a zero reward to discourage actions that lead to allocation
failures.
∗∗This cumulative reward represents the sum of all the successful NS mapping rewards and will be used to evaluate and
compare the RL and ILP algorithms’ performances in the simulations.
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6. SERVICE MAPPING BASED ON INTEGER LINEAR PROGRAMMING

This section details the proposed ILP formulation for the service mapping problem. Two sets of
optimization variables are introduced: yhp is a binary decision variable equal to one if and only if
VNF h is assigned to PoP p, xhkpq is a binary decision variable equal to one if and only if the virtual
link (h, k) in graph G(NS) is mapped onto a physical path of the graph G(NI) which includes the
physical link between PoPs p and q. The ILP formulation can be stated as follows.
Algorithm 2 (Service Mapping Based on Integer Linear Programming).
Inputs: G(NI), G(NS), RRVNFr , RR(VNFs,VNFd)

r , RAPoPr , RA(PoPs,PoPd)
r (infrastructure and

service parameters; measurement of current infrastructure occupancy level).
Outputs: Mapping of each VNF of the NS to a PoP; mapping of each VNF link to a path between
the chosen PoPs.
Procedure: Find the node and link mapping by minimizing the objective function

α
∑
h∈VNS

∑
p∈VNI

bhpy
h
p + β

∑
r∈R

∑
(h,k)∈ANS

∑
(p,q)∈ANI

RRhkr xhkpq (7)

subject to the constraints

∑
p∈VNI

yhp = 1, ∀h ∈ VNS (8a)

∑
(p,q)∈ANI

xhkpq −
∑

(q,p)∈ANI

xhkqp = yhp − ykp , ∀(h, k) ∈ ANS ,∀p ∈ VVI (8b)

∑
(p,q)∈ANI

δpqx
hk
pq ≤ ∆hk, ∀(h, k) ∈ ANS (8c)

∑
(h,k)∈ANS

RRhkr xhkpq ≤ RApqr , ∀(p, q) ∈ ANI ,∀r ∈ R (8d)

∑
h∈VNS

RRhr y
h
p ≤ RApr , ∀p ∈ VNI ,∀r ∈ R (8e)

yhp ∈ {0, 1}, ∀h ∈ VNS ,∀p ∈ VNI (8f)

xhkpq ∈ {0, 1}, ∀(h, k) ∈ ANS ,∀(p, q) ∈ ANI (8g)

yingressV NFingressPoP = 1 (8h)

yegressV NFegressPoP = 1 (8i)

/

Parameter bhp in (7) is a measure of the saturation level of PoP p. The objective function (7) is thus a
weighted sum of two components: (i) a term that is inversely proportional to the resources available
in the various PoPs, (ii) a term that represents the overall link resource usage. The coefficients α
and β are the weighting parameters. The presence of the first term discourages the agent to congest
the network, which, due to the presence of the random requested end points would degrade the
acceptance rates. Constraints (8a) ensure that each VNF h is mapped exactly to one PoP. Conditions
(8b) ensure that for a given pair of VNFs h and k assigned respectively to PoPs p and q, the edge
(h, k) is mapped to a network infrastructure path connecting p and q. Constraints (8c) ensure that
the resulting delays are within the SLA limits. ∆hk represents the maximum tolerated delay for the
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NS# RRVNFCPU RR
(VNFs,VNFd)
bandwith ∆sd

NS1


60
54
24
42
42



RR

(1,2)
bandwith = 18

RR
(1,3)
bandwith = 8

RR
(1,4)
bandwith = 14

RR
(1,5)
bandwith = 14


∆1,2 = 151

∆1,3 = 151
∆1,4 = 151
∆1,5 = 151



NS2


144
72
135
54
81
81




RR

(1,2)
bandwith = 24

RR
(1,3)
bandwith = 45

RR
(3,4)
bandwith = 18

RR
(3,5)
bandwith = 27

RR
(1,6)
bandwith = 27




RR

(1,2)
δ = 151

RR
(1,3)
δ = 151

RR
(3,4)
δ = 151

RR
(3,5)
δ = 151

RR
(1,6)
δ = 151



NS3


384
216
336
288
240



RR

(1,2)
bandwith = 72

RR
(1,3)
bandwith = 45

RR
(1,4)
bandwith = 96

RR
(1,5)
bandwith = 80



RR

(1,2)
δ = 151

RR
(1,3)
δ = 151

RR
(1,4)
δ = 151

RR
(1,5)
δ = 151


Table I. Main parameters of the simulated NSes.

link between VNFs h and k, while δpq represents the delay associated to the link between PoPs
p and q. Constraints (8d) guarantee that inter PoP link resource limits are not violated, whereas
constraints (8e) account for node resource limits for each PoP. Conditions (8f) and (8g) express the
binary domain constraints for the variables used. Conditions (8h) and (8i) model the possibility to
request the allocation of the ingress and egress VNFs to specific PoPs.

7. SIMULATION RESULTS

7.1. Simulation Setup

The numerical simulation setup relies on the benchmark set for the virtual network mapping problem
available in [35]. The set provides realistic NS and NI topologies to replicate various NFV scenarios,
scaling from small/medium applications to very large ones. The methodology used to generate
the dataset in [35] is explained in [36]. Since the present paper focuses primarily on presenting
a new approach to service mapping and showing experimentally its validity, we have focused on
just one of the networks available in the above dataset, which is representative of todays medium
NFV applications, both in terms of network and services dimensions (i.e. number of PoPs and
number of VNFs, respectively). The test setup is as follows: three NS types are considered, with
characteristic parameters as reported in Table I. The three NSes represent, respectively, “light”,
“medium” and “heavy” NSes in terms of resources requirements. The considered resources are CPU
and link bandwidth. Also, for the services selected from [36] it holds RR(i,j) = RR(j,i), but the
framework presented here does not require this limitation in general. A constraint on the maximum
tolerated delay for each VNF link is included as well. The simulated network infrastructure is
constituted by 20 PoPs (see Figure 6). Such network is representative of the complexity of real
virtual network mapping problems: reference [36] describes how the network infrastructure was
derived from realistic networks using the nem-0.9.6 tool [37]. Also, the chosen NSes are composed
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Figure 6. 20-PoP network infrastructure with indication of link bandwidth and delay characteristics
(bandwidth and delay values are separated by a point).

by VNFs associated to the following four kind of “slices”: Web slice, Stream slice, P2P slice, VoIP
slice [36].

The simulation scenario is generated as follows: service arrivals are generated according to a
Poisson distribution of diverse arrival rate λ. Services dwell times are generated according to
an exponential distribution of parameter µ. Based on Littles law [38], the arrival rate is varied
in the simulations in order to vary the service load to the system, referred to as “load factor”,
LF . Specifically, the load factor is defined as the ratio of the amount of resources that would be
occupied by the NSes, at a generic time, in a stationary environment and assuming that all the
NSes were accepted (i.e. ignoring mapping constraints), to the total amount of resources available
in the empty infrastructure. The load factor is computed for each resource type. It can be thought
of as a measure of the average level of demand of a resource type, in a stationary environment
(i.e. when the NS arrival rates and dwell times have a stationary distribution). The load factor can
be greater than one, meaning that more resources are requested that the ones physically available
in the infrastructure (conversely, notice that mapping may fail also when the load factor is lower
than one). In the present case, the load factor associated to a given resource type can be computed

as LFr =
∑|TNS |

i=1 RR
NSi
r /(λiµi)∑

i∈V RA
PoPi
r

, where TNS is the set of NS types, RRNSi
r is the total amount of

resources of type r required by NSi and, by definition of the respective distributions, 1/λi is the
mean arrival rate of the i-th type of service and 1/µi is the mean dwell time. Thus, according to
the Little law††, RRNSi

r /(λiµi) is the average demand of resource type r by NSes of type i. For

††The Little law (see e.g. [38]) states that in stationary conditions the average number of elements in a system is given
by the product of the average elements arrival rate and the average elements dwell time into the system.
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simplicity, λ and µ are assumed equal for all the NS types, µ is kept constant at 0.001 and λ is
varied by inverting the above formula for LF , thus allowing to test the algorithm in different desired
demand-level scenarios. At each birth time, the type of the NS associated to the service request
is determined by random extraction. Also, for each service request, two endpoints are randomly
associated to two VNFs and forced to be placed in two randomly selected PoPs, as modeled by
constraints (8h) and (8i). The deriving service request is then processed by the proposed Algorithms
1 and 2. At each service request or termination event, the state of the network is consistently
updated according to the parameters of the NS in question, and the decision taken by the control
algorithm. Each of the simulation results reported below are obtained by compiling the results across
many test runs, each spanning over a time horizon of 10000 time steps. Finally, the following RL
parameters have been selected: ε in (4a-4b) has been set to 0.9, halved every 1000 iterations. In
(5) the discount factor γ has been set to 0.89 and kept constant, while the learning rate has been
chosen as α(k) = 0.9/(1 + bk/5000c). The choice of the time horizon T is always such that the RL
algorithm archives convergence even at the lowest load factors. This is proven by the fact that the
acceptance rates of the various services do not show significant differences for values of T higher
than 6000 and the cumulative reward increases almost linearly with T .

The state space is quantized selecting for each PoP only two occupancy levels. The above
choice of simulation parameters leads to a Q matrix of dimensions 220 · 3 · 20, which with double
precision corresponds to approximately 480MB of memory (in general, the Q matrix has dimensions
L|NI| · |TNS | · |NI|).

In the following, two simulations are performed, aimed at comparing the performances of the two
algorithms when:

1. The maximization of the total service acceptance rate is sought.
2. The maximization of the total mapping reward is sought.

In all the simulations the rewards associated to the whole NS mapping have been chosen as the sum
of the rewards associated to the respective VNFs. Finally, the entire simulation scenario has been
implemented in Matlab 2011b.

7.2. Maximization of total service acceptance

The objective of this simulation is to compare the performance achieved by the two algorithms
when a unitary reward is returned for the successful mapping of a NS, independent of the type of
the NS. This scenario is therefore equivalent to seek the maximization of the total allocations, as the
cumulative reward can be thought of as the number of allocated services.

Figure 7 reports the total cumulative reward achieved. As expected, for low load factors, rewards
increase linearly. After a load factor of 0.8, the total reward growth decreases because of congestion
in the network. The decrease is more evident for the ILP algorithm. For the first three values
of the load factor, the two algorithms achieve comparable performances, with the ILP algorithm
slightly outperforming the RL algorithm. This is because of the exact nature of the ILP algorithm.
Then, as the resource consumption in the infrastructure increases, and efficient long-term resource
management becomes more critical, the RL algorithm outperforms the ILP one, accepting up to
10% more requests for the highest load factor considered. The same behavior is seen also in the
total acceptance rates, as shown in Figure 8.
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Figure 7. Total cumulative reward (unitary NS rewards).
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Figure 8. Total acceptance rate (unitary NS rewards).
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Figure 9. NSes acceptance rates achieved by the ILP algorithm (unitary NS rewards).

The distinct acceptance rates for the three different NS types are reported in the following Figures
9 and 10. As expected, the percentages are decreasing as the load factor increases. Also, the higher

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Network Mgmt (2016)
Prepared using nemauth.cls DOI: 10.1002/nem



STOCHASTIC AND EXACT METHODS FOR SERVICE MAPPING 19

0.1 0.2 0.4 0.6 0.8 1 1.2

20

30

40

50

60

70

80

90

100

Load Factor

A
cc

ep
ta

nc
e

ra
te

N
Si

[%
]

NS3
NS2
NS1

Figure 10. NSes acceptance rates achieved by the RL algorithm (unitary NS rewards).

the resource requirement characterizing a NS type is, the lower is the resulting acceptance rate.
We can notice in Figure 9 how the ILP controller decreases the three acceptance rates uniformly,
while in Figure 10 it is clear that the proposed RL controller favors the services with lower resource
requirements, and penalizes the heaviest ones. This behavior is expected, since the RL controller,
in order to archive a maximum reward over the whole time horizon, prefers to reserve resources for
the more profitable (in terms of reward/resource ratio) types of NSes. On the other hand, the ILP
solution does not take into account the future requests at all, and hence is not able to take a similar
decision.

7.3. Maximization of cumulative mapping reward

The objective of this second simulation is to compare the performance achieved by the two
algorithms when different rewards are returned for the successful mapping of the three different
types of NSes. In particular, the rewards are chosen as 1, 4 and 1 for NS1, NS2 and NS3, respectively,
thus making the second type of NS the one with the best reward/resource ratio. The outcome in
terms of acceptance rates for the RL controller is reported in Figure 11. It can be noticed that the
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Figure 11. NSes acceptance rates achieved by the RL algorithm (heterogeneous NS rewards).
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Figure 12. Total cumulative reward (heterogeneous NS rewards).
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Figure 13. Total acceptance rate (heterogeneous NS rewards).

acceptance rate curve for the RL controller changes, especially in the second half of the figure,
where the acceptance rate of NS2 (the NS with highest reward associated) increases at the expenses
of the acceptance rate of NS1 and NS3. The acceptance rates achieved by the ILP algorithm do not
change significantly from the previous simulation, and are hence omitted. This is again due to the
fact that the ILP controller minimizes its target function instant by instant (i.e., request by request)
and it is not affected by the different rewards. Considering the cumulative reward shown in Figure
12, in this simulation it can be noticed that the RL algorithm spaces the ILP one faster, and for
the highest load factor archives an average reward 18% higher than the ILP-based controller. It is
interesting to notice in Figure 13 how the cumulative acceptance rate for the two controllers is very
similar, highlighting how the problem this time could not be reduced to the maximization of the
overall allocations, but favors the agent that is able to choose which services to allocate more.

8. CONCLUSIONS

This paper has presented a new algorithm for service mapping in virtualized network infrastructures,
based on Markov decision process modeling and Reinforcement Learning (RL) theory. A state of
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the art Integer Linear Programming (ILP) formulation has been also presented, for comparison
purposes. The proposed formulation of the Markov decision process modeling of the service
mapping problem is more scalable compared to the previous formulations in [5] and [6]. Both the
formulations allow for the possibility of choosing the reward function most tailored to the control
objectives. The simulations highlighted how the proposed RL controller is able to outperform the
ILP one, when the long term efficient management of the available resources is more important,
such as in the cases of high load factors and in the presence of prioritized services. The strengths
of the proposed RL algorithm are: i) the learning ability, which allows to control systems whose
dynamics are uncertain or time varying, and ii) the maximization of performances in the long run,
appearing as a promising and differentiating feature with respect to most of the works currently
present in literature, which are either based on exact optimization algorithms or on heuristics, iii)
the fact that each iteration is composed of elementary computations, allowing a potentially higher
speed compared to optimization methods. On the other hand, the strengths of the ILP algorithm
are: i) it relies on an exact method, implying no learning times; it is very effective in small/medium
scenarios, only limited by the computational power on the machine it runs on and the optimization
solver used, ii) optimizing instant by instant can still be the optimal choice in certain scenarios,
for example in cases where the load factor is low or the resources available are less scarce. Future
improvements can be sought in exploring other reinforcement learning techniques, such as different
state space aggregations, value function and policy approximation (see e.g. [31], [39]).

Finally, to combine the strengths of the two algorithms, an algorithm based on Model Predictive
Control (MPC) is at study, as it allows to achieve the optimization of the system performances in a
time windows in the future of the current time.
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