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Abstract 

We consider an inventory installation, controlled by the periodic review base stock (S, T) policy and facing a 

fixed-rate deterministic demand which, if unsatisfied, is backordered. The supply process is unreliable, so 

supply deliveries may fail according to an independent Bernoulli process; we refer to such failures reflecting 

the supply service quality and being internal to the supply chain, as endogenous disruptions. We seek to 

jointly determine the two policy variables, so to minimize long-run average cost. While an approximate

model for this problem was recently analyzed, we present an exact analysis, valid for two common

accounting schemes for inventory cost evaluation: continuous and end-of-cycle costing. After developing a

unified (and exact) average cost model for both costing schemes, the cost for each scheme is analyzed. In 

both cases, the optimal policy variables and cost prevail in closed-form, having an identical structure to those 

of EOQ (with backorders). In fact, under continuous costing, the optimal solution reduces to EOQ for perfect 

supply. Analytical properties, demonstrating the impact of deteriorating supply quality on the optimal policy, 

are established. Moreover, computations reveal the cost impact of deploying heuristics that either ignore 

supply disruptions or rely on inaccurate costing information. 
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1. Introduction

Supply uncertainty directly affects the performance of production-inventory networks, increasing 

operating costs and reducing customer service. It is not surprising, therefore, that the development of models 

for encapsulating and effectively managing all types of supply uncertainly has evolved into an active 

research objective with a rich body of results. In general, the associated literature can be divided into two 

broad areas; namely, supply under random yield and supply under disruptions. Since the problem we study

here relates with both these areas, we start with a brief review of findings in both areas. 

Yield uncertainty occurs when the quantity supplied differs from that ordered by a random amount. 

Most studies in the field restrict attention to stochastically proportional yield models, where the yield (a

random variable) is a fraction of the quantity ordered. Silver (1976) proposed one of the earliest 

modifications of the basis EOQ model to accommodate proportional yield. Assuming that defectives are

replaced on receipt, the optimal lot-size is obtained in closed-form. An extension of this model to incorporate 

complete and partial backorders was proposed in Karlo and Gohil (1982). Also assuming a finite inspection

time, Salameh and Jaber (2000) provided a further extension, which has effectively formed the basis for an 

ongoing surge of supplementary findings (e.g. Voros, 2013, Hauck and Voros, 2015, Alamri et al., 2016). A 

review of EOQ-type proportional yield models is presented by Khan et al. (2011).

Proportional yield uncertainty has also been studied in association with stochastic demand. Gerchak et 

al. (1988) first studied an inventory model where both the demand and yield rate are uniformly distributed, 

while Henig and Gerchak (1990) extended this work for general form of yield uncertainty. Because of the 

practical difficulties imposed by stochastic demand, several heuristic approaches have also appeared; good 

examples include Bollapragada and Morton (1999), Li et al. (2008) and Huh and Nagarajan (2010). For 

comprehensive (but somewhat dated) review of stochastic demand uncertain yield models, we refer to 

Grosfeld-Nir and Gerchak (2004).

Turning to supply disruptions, these correspond to sudden interruptions of the supply process and the 

associated research was instigated by Parlar and Berkin (1991). They studied an EOQ-type model under 

"wet" and "dry" supply periods of random length. Supplies are available during “wet” periods, while they 

unavailable throughout “dry” periods. A correction of this model was later published by Berk and Arreola-

Risa (1994), while Parlar and Perry (1996) allowed for non-zero reorder points and backorders (only) during

“dry” periods. For this model, Heimann and Waage (2007) proposed an approximate solution, while Snyder
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(2014) proposed a simple but effective approximation to the optimal order quantity for exponentially 

distributed "wet" and "dry" periods. Turning to stochastic demand models, Gupta (1996) extended Parlar and 

Perry (1996) for Poisson demand and a continuous review ( , )r Q control policy, while Mohebbi (2004) 

allowed for compound Poisson demand and for the "wet" and "dry" periods to follow a general and a 

hyperexponential distribution respectively. Under the periodic review ( , )S T  policy, Schmitt et al. (2010) 

considered disruptions that follow an infinite-state discrete-time Markov chain, each state resulting from a

fixed number of consecutive disrupted periods. They showed that the optimal order-up-to level prevails by 

solving a classic Newsboy formulation.

In the models above, supply disruptions are effectively exogenous to the supply chain, not necessarily 

related to the supplier efficiency (e.g. natural disasters, terrorist attacks, accidents etc). There are also 

models, however, where the disruptions are endogenous, so reflect the inherent quality of the supply process 

(e.g. supplier inability to deliver, supplies of unacceptable supplies quality etc). The usual assumption here is 

that supply deliveries either materialize or fail according to a Bernoulli process (e.g. Okyay et al. 2014). 

Clearly, with this type of disruptions, the length of "wet" and "dry" periods directly relate to the supply 

Bernoulli process. So, endogenous disruptions effectively constitute a limiting case of proportional supply 

yield (with 100% or zero yield losses). Güllü et al. (1997) investigated a base-stock policy under 

deterministic dynamic demand with the supply following an independent non-stationary Bernoulli process 

and proposed a Newsvendor-like solution for the optimal order-up-to level. Argon et al. (2001) studied a 

deterministic demand system where demand is affected by the previous period backorders under an 

independent supply Bernoulli process and numerically obtained the order-up-to level that maximizes profit. 

Warsing et al. (2013) studied a ( , )S T  base stock policy under stochastic demand and a correlated Bernoulli 

supply process. Using a discrete time Markov chain analysis to determine steady-state probabilities, they 

analytically evaluated optimal order-up-to levels, which for specific demand processes, are obtained in 

closed-form (so they can be directly evaluated). Recent reviews of models with disruptions, mainly focusing

on exogenous disruptions are given in Schmitt et al. (2015), Paul et al. (2016), Snyder et al. (2016) and 

Schmitt et al. (2017). 
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A common feature of the above studies is that they ignored the review interval (or equivalently the order 

quantity) as a decision variable, only optimizing the order-up-to level. Under the EOQ (with backorders) 

paradigm and an independent Bernoulli supply process, Skouri et al. (2014) solved a two-dimensional 

constrained optimization problem, to obtain closed-form expressions for both  the optimal order quantity and

the re-order level.  The analysis is exact for relatively low supply delivery failure probability, but becomes 

approximate as this probability increases. Subsequent studies have applied and extended this study. Ritha 

and FrancinaNishandhi (2015) used the model in a single-vendor and multi-buyer context to explore the 

effects of imperfect supply on system cost. Salehi et al. (2016) adapted the model for partial backorders and 

lost sales. Taleizadeh (2017) extended the original model allowing for partial backorders and lot 

prepayments. It is also worth noting that using analogous assumptions to Skouri et al. (2014), Rezai (2016) 

and Taleizadeh and Dehkordi (2017) have incorporated sampling inspection plans within the EOQ 

framework, while Taleizadeh et al. (2016) considered reparation of imperfect products. 

A final note is necessary. Invariably, in all previous papers that have considered the base stock periodic 

review ( , )S T  policy, inventory costing follows an extreme version of discrete accounting, the end of cycle 

scheme. Under this scheme, inventory costing is exclusively based on the end-of-cycle inventory level,

totally ignoring inventory profile variations within the cycle. In contrast, the latter is always considered in 

EOQ-based or continuous review ( , )r Q inventory modes, which employ the traditional continuous

accounting scheme. Rao (2003) showed how to analyse the base-stock ( , )S T  policy under continuous cost 

accounting, while Lagodimos et al. (2012) extended this to other periodic review policies. For the 

inaccuracies that may result by the deployment of end-of-cycle costing, the studies of Rudi et al. (2009) and 

Avinadav and Henig (2015) are most interesting. We further explore this issue as part of the present work. 

In this paper we study a single-echelon inventory system controlled by the periodic review ( , )S T base 

stock policy. Demand is deterministic with a fixed rate, while the supply process is unreliable characterized 

by endogenous disruptions following an independent Bernoulli process. The objective is to jointly determine 

the review interval and the order-up-to level that minimize long-run average total cost (under both 

continuous and end-of cycle accounting). Other than providing an extended exact formulation and analysis 

for the approximate model in Skouri et al. (2014), the main contributions of this paper are the following: (i) 

we present exact closed-form solutions for the optimal order-up-to level S and the review interval T  (for 
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both costing schemers) and discuss their association with those of the classical EOQ (with backorders) 

model;  (ii) we present analytical properties relating the optimal decision variables and cost with the supply 

process quality; (iii) we provide results showing the consequences of using the inaccurate end-of-cycle 

costing scheme or ignoring the supply process quality on the system cost performance.  

The remainder of this paper is organized as follows. Section 2 gives the model notation and assumptions 

used while Section 3 presents a unified exact long-run average cost model, valid for both costing schemes. 

The analysis leading to the optimal solution, for continuous and discrete accounting schemes, is presented in 

Section 4 and 5 respectively, while Section 6 provides numerical results. Finally, Section 7 summarizes the 

findings and gives directions for future research. An Appendix presents how the unified cost model can be 

adapted to be used for the analysis of any non-zero lead time. 

 

2. Preliminaries 

In this section we present the basic notation used along with the assumptions underlying the operation of 

the inventory system considered in this paper. 

Notation  

D demand rate (units per unit time) 

S  order up-to-level (decision variable) 

T review (reorder) interval (decision variable) 

K fixed cost (per delivery) 

h unit holding cost (per unit per unit time) 

b unit backordered cost (per unit per unit time) 

iI  average inventory for a cycle with starting inventory state i  ( 1,2,...i  )  

i  probability of a cycle with starting inventory state i  ( 1,2,...i  )  

  the ratio /( )b h b    

, x x  the operators max(0, )x x   and max(0, )x x    

*x  globally optimal value of variable x  
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Operating and modelling assumptions 

We study a single-echelon inventory installation controlled by the ( , )S T policy. So, replenishment 

orders are released periodically (in time intervals T), aimed at restoring inventory up to a level S. While 

demand is deterministic, the supply process is unreliable and characterized by endogenous disruptions, 

following a stationary Bernoulli process. Therefore, for each replenishment order, there is a probability p that 

the respective delivery will fail to materialize (leading to a delivery failure). By the control policy used, the 

supply quantity not delivered at the current period routinely increases the next period replenishment order. 

We also use the following assumptions: 

1. The planning horizon is infinite. 

2. Demand rate is known and has a fixed rate. 

3. Shortages are allowed and fully backordered. 

4. Lead time is zero and there are no emergency deliveries. 

5. Supply delivery failures (disruptions) are independent of each other. 

We seek the policy variables S  and T  that minimize long run average cost. Except for one 

assumption, the above problem is equivalent to the one studied in Skouri et al. (2014) that assumed an 

( , )r Q policy coupled with a fixed delivery schedule (without emergency deliveries) in their analysis. In fact, 

by the standard transformations S r Q  and /T Q D , the problem can directly be recast in terms of an

( , )S T policy as assumed here. To facilitate modelling, however, Skouri et al. (2014) further assumed that 

0r  , or equivalently that S DT , rendering their analysis (at least in part) approximate. No such 

restrictive assumption is made here, leading to an exact analysis for two different accounting schemes. 

A final note is necessary. While apparently restrictive, these assumptions totally comply with the 

realities of the so-called fixed or cyclic delivery contracts. Under such contracts, popular in several industries 

(see Parija and Sarker, 1999, Moinzadeh and Nahmias, 2000, Bahroun et al., 2007), a supplier undertakes to 

deliver to a buyer according to an agreed fixed equidistance delivery plan. While the timing of any delivery 

cannot be altered, its exact size is finalized on short notice (representing the lead time, assumed here to be 

zero). Provided that the demand is not too erratic for EOQ-type models to apply (see Silver et al., 1998), the 

system analysed here fits well this industrial setting, so the results could prove valuable (to both supplier and 

buyer) when negotiating the details of the associated delivery plan.  
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3. Model Formulation

Based on the operating assumptions presented in Section 2, we now provide a general unified

formulation of the optimization problem, valid for both cost accounting schemes (i.e. continuous and end-of-

cycle) we study here. In this unified formulation, we make use of the non-decreasing function ( )D t  with 

D(T)=DT, which we denote as the apparent cumulative demand.  As discussed later, the exact specification 

of ( )D t  depends on both the actual demand process and the costing scheme used.  In the following we treat 

( )D t as being the actual cumulative demand imposed on the system over an inventory cycle [0, ]T . 

Under the periodic review ( , )S T  policy, with a reliable supply process, the start-of-cycle inventory 

level is always restored to the nominal state S . So, the long-run system operation comprises of an infinite 

series of identical inventory cycles. However, under random endogenous disruptions, the start-of-cycle 

inventory level becomes a random variable, S XDT ; depending on the size of the failed delivery XDT , it 

can thus attain several distinct states i , each occurring with some probability 
i . It is well established (e.g.

Skouri et al., 2014) that, when delivery failures follow an independent Bernoulli process, X is a geometric

random variable ( )X Geo p ; so the state probabilities
i coincide with the geometric mass function:

1( 1) (1 ), 1,2,...i

i P X i p p i       .

Consequently, under delivery failures, the long run system operation now comprises of an infinite number of 

different inventory cycles, each occurring with some probability 
i and with starting inventory levels

(states) differing by multiples of DT. Figure 1 shows a possible sample path for the specific case where the 

apparent cumulative demand function is ( )D t Dt . Observe that, in the event of a delivery failure 

(disruption), the start-of-cycle inventory does not increase, while it is always restored at the nominal level S

following any successful delivery. 

Based on the above and using the function D(t) as the cumulative demand, the total system long-run 

average cost (per unit time) can be expressed as: 

1

( , ) ( , ) ( )
K K

C S T G S T h I b I
T T

   


 


 



     (1) 

where ( , )G S T denotes the average holding/backorders cost over all inventory cycles, while 
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 
0

1
( 1) ( )

T

I S DT D t dt
T

 
    

 

and  
0

1
( 1) ( )

T

I S DT D t dt
T

 
    

                                                       

(2)  

give the average non-negative inventory and backorders for any inventory cycle with starting state  , 

corresponding to starting inventory level ( 1)S DT  . We wish to evaluate: ,min ( , )S T C S T . 

Although exact, due to the presence of the ,x x   operators, the above formulation does not lead to an 

easily solvable optimization problem. For this reason, let us now define the new variable /m S DT    . 

Observing (1) and recalling that the total demand in any cycle is DT , it is not hard to see that I I 

   for 

τ m  and I I 

    for 2τ m  , while at 1τ m   it may happen (depending on the specification of D(t)) 

for both 0I
   and 0I

  to hold simultaneously. Furthermore, observe that from the definition of I


, it 

also holds that ( )mI I m DT     for τ m  while 2 ( 2)mI I m DT      for 2τ m  . So replacing 

these observations in ( , )C S T  
we obtain: 

1

1 1 1

1 3

2

1 2

( , , ) ( ) ( 2) ( )

          (3)

m

m m m

m

m

m m

m

K
C S T m h m DT b m DT h I bI

T

h I b I

 
 

  

  


 



  

       

 

 

 

 
 

 
 

    

 

 

where 
i  are the state probabilities defined above. So, under this general formulation, the following 

constrained optimization problem prevails: , ,min ( , , )S T m C S T m
 
s. t. /m S DT    . To solve this problem, we 

first need to customize it for each costing scheme, so to obtain workable models for the integrals

1 1m mhI bI 

  , mI 
 and 2mI 

 . For this purpose, the detailed specification of the apparent cumulative demand 

function ( )D t  as applied to each scheme is necessary.  

As discussed in Rao (2003) and Lagodimos et al. (2012), the key factor differentiating accounting 

schemes for inventory control is demand information. Continuous costing assumes that demand information 

is fully available. So, the inventory profile used for cost evaluation directly reflects the imposed demand 

process (deterministic or stochastic), so ( )D t  coincides with the actual cumulative demand. In discrete 

costing, however, inventory information is only available in discrete time periods, reflecting the total demand 

in each period. So, exact inventory evaluation is only possible at the end of each period. To obtain the 

inventory profile within each period, the end-of-period inventory is then assumed to represent inventory level 

throughout the period. Hence, the apparent cumulative demand now becomes ( )D t d , where d
 is the total 
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demand in period   and t  is any instant within this period. Note that the end-of-cycle costing scheme is an 

extreme version of discrete costing, with the costing period taken to be equal with the inventory cycle. 

4. Continuous Cost Model Analysis

This costing scheme has been traditionally used in the analysis of deterministic EOQ type models as well 

as that of stochastic models employing the continuous review ( , )r Q  policy. To our knowledge, Rao (2003) 

was first to analyze the periodic review ( , )S T  policy under continuous costing, effectively allowing the 

results for this policy to be directly associated with those of the former models. Now, since under continuous 

costing,  ( )D t  coincides with the actual cumulative demand (see Section 2), and we assume that demand is 

deterministic with a fixed rate D , clearly ( )D t Dt , for any [0, ]t T . So, the integrals in (2) become: 

 
22

1 1

( 1)( )

2 2
m m

b m DT Sh S mDT
hI bI

TD TD

 

 

 
   ,

2
m

DT
I S mDT  

   
 

, 2

3

2
m

DT
I mDT S



 
   
 

The above follow directly by noticing that 1 1m mhI bI 

   effectively represents an inventory profile virtually 

identical to that of the classical EOQ (with backorders) model, mI 
 and 2mI 

  represent trapezoidal profiles

whose exact size follows from the definitions in (2). Therefore, replacing in (3) and using the definitions of 

i , after some algebra the long-run average cost (per unit time) under continuous costing prevails:

 
22 2

1

(1 ) 1 (1 ) ( 1)(1 ) ( )
( , , )

1 1 2 2

3
(1 )

2 2

m mm m

m m

hDT m p p p p b m DT SK bTDp p p h S mDT
C S T m

T p p TD TD

DT DT
h p S mDT bp mDT S





        
     

 

   
         

   
(4)

So we need to minimize the above s. t. /m S DT    . We are now in the position to formally analyze this

problem to evaluate the optimal values of the decision variables ( , , )S T m .

Lemma 4.1: (i) For any given m , the function ( , , )C S T m  is jointly convex in ( , )S T ; (ii) The optimal m is 

given by * log(1 ) / logm p    , where /( )b h b   .

Proof: (i) For any m , the first and second order partial derivatives of ( , , )C S T m  in S and T are: 

2 2

2 2

( , , ) 1 ( )
( ) ( ) (1 )( ) (2 2 1),
1 2 2 2 2(1 )

m mC S T m K p m D S h b D
hD h b p p p m mp p

T T p DT p

 
           

  
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( , , ) (1 )( )
( ) (1 )( ),

m
m mC S T m p p h b S

h p h b mp p h b
S TD

  
      


 

2 2

2 3 3

( , , ) 2
( ) (1 )mC S T m K S
h b p p

T T DT


   


, 

2

2

( , , ) (1 )( )mC S T m p p h b

S DT

  



 and  

2

2

( , , )
( ) (1 )mC S T m S
h b p p

S T DT


   

 
.                                                                      

Since 
2

2

( , , ) (1 )( )
0

mC S T m p p h b

S DT

  
 


 and  

2
2 2 2

2 2 4

( , , ) ( , , ) ( , , ) 2 ( )(1 )
0

mC S T m C S T m C S T m K h b p p
H

S T T S DT

     
     

    
,                                  

So, ( , , )C S T m  is jointly convex in ( , )S T . 

(ii) Setting ( , , ) / 0C S T m S    we obtain the unique, by (i) above, optimal S  for given ( , )T m : 

( (1 ) 1 )
1 ( ) m

DT h
S m p

p h b p
   

 
.                                                                                                                (5) 

Since (by the constraint) /m S DT    , we clearly need that ( / ) 1m S DT m    is satisfied. Replacing  

/S DT  from (5), these inequalities become 1mp   and 
1 1mp    , while by taking logarithms lead to 

the  unique *m N  that satisfies the required  relation.                     □ 

 

Interestingly, expression (5) giving the locally optimal S  for given ( , )T m  corresponds exactly to a standard 

Newsvendor formulation.  As discussed in deriving in (4), there are m  inventory cycles with only positive 

inventory and one with both positive inventory and backorders. So, the Newsvendor condition becomes

11
( ) / / ( )

m

m S mDT DT b h b
    

  , where the last term gives the fraction of time the inventory level 

of cycle m +1 is non-negative. Replacing the probabilities
 , (5) follows. This observation permits us to 

physically interpret *m  as the floor below which any order-up-to level S  cannot satisfy the Newsvendor 

probability. So, we expect *m  to increase with an increase in either the system uncertainty (i.e. delivery 

failure probability p ) or the service level target /( )b h b    imposed (as actually indicated by Proposition 

4.1.ii).   

 

Proposition 4.2: The globally optimal policy variables  
* *( , )S T  are: 
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*

* *

*

2 2 2 1 *

2 (1 ) ( )

[ ( ) ( )(1 2 )(1 ) ]

m

m m

K p p h b
T

D h h b p h h b m p p

 


      
and *

*
* *( (1 ) 1 )

1 ( ) m

DT h
S m p

p h b p
   

 
, while 

the optimal total cost is 
* *2 /C K T . 

Proof: Replacing S  (at the optimal *m m ) from (5) in (4), we obtain the partially optimal (in S ) average 

total cost *( , )C T m : 

* *

*

* 2 2 2 1 *

*
( , ) ( ) ( )(2 1)(1 )

2(1 )( )

m m

m

K DT
C T m h h b p h h b m p p

T p h b p

         
  

. 

By Lemma 4.1.(i), 
*( , )C T m  is clearly convex in T ; so, the optimal *T  prevails as the unique solution of 

*( , ) / 0C T m T    as given above, while *S  follows directly. It can be shown that since 
*mp h h b  , the 

denominator of *T  is always positive. Finally setting *T T in 
*( , )C T m , the expression for *C  prevails.    □                                   

 

There is a remarkable similarity of the problem globally optimal solution as given above with that of the 

classical EOQ (with backorders) problem. First notice that, for perfect supply process quality,

*

0
lim log(1 ) / log 0
p

m p


     ; replacing in the expressions of Proposition 4.2, the corresponding 

solutions of the EOQ (with backorders) model prevail: 

0
0

bDT
S

h b



, 0

2 ( )K h b
T

hbD


 and 0 02 /C K T . 

Equally important, however, is that the structure of the problem solution in Proposition 4.2 is identical to that 

of the EOQ solution, only differing by constants (representing the supply process uncertainty). It can be 

safely stated, therefore, that the continuous costing model we have presented here is a direct extension of the 

EOQ (with backorders) model so to incorporate independent Bernoulli delivery failures.    

 

Lemma 4.3. The following properties hold: (i) The optimal *m is step-wise increasing in p ; (ii) The optimal

*T  is decreasing in p ;  (iii) The ratio
* */S DT  is increasing in p ; (iv) The optimal cost 

*C is increasing in 

p .  

Proof. (i) Let ( ) log(1 ) / logf p p  , so * ( )m f p    . But ( )f p  is increasing in p , since 

2( ) / log(1 ) / (log ) 0df p dp p p    and the required result follows. 
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(ii) Since * * *( , ( ))T T p m p and *( )m p varies as (i) above, it is sufficient to show that *T  is continuous in p  

for every (0,1)p and that  

** 1 2 * 1 2 2 *
*

2
* 2 * * 2 1 2 *

( ) ( ) ( 1 ( 1)) ( ( 1))
0

( )(1 2 )( 1) ( )

m m

m m

p h b K h b m p p h p m pT

p DT h h h b m p p h b p

 



          
 

        

.  

Let partition (0,1)  into 1 1 2 1(0, p ),[ , p ),....,[ , p ),.....,[ ,1),n n kp p p  where np  and 1np   are such that 

*( )m p n   for 1[ , )n np p p   and *( ) 1m p n  for 1 2[ , )n np p p  . At the points np it holds that 

log(1 ) / logn p    or equivalently that ( )n

np h h b  . In any partition 1[ , )n np p , *T is clearly 

continuous in p so we need to show continuity at np . Replacing ( )n

np h h b  in *T  we can form the 

functions 
* *( , ( ) 1)T p m p n  and

* *( , ( ) )T p m p n . Since it can be shown that 

* * * * *lim ( , ( ) 1) lim ( , ( ) ) ( )
n n

n
p p p p

T p m p n T p m p n T p K nhD
  

      , *T is continuous at points np
 
and the 

proof is complete. 

Considering now 
*T p  as given above, we need to show that its numerator is negative. Substituting again 

*mp h h b  , after some algebra the numerator becomes
* 1 2 2( ) (1 ) 0mp h b Kh p    , so the required 

relation holds. 

(iii) The proof of continuity is directly analogous to (ii) above. Since 

*

* * *

1
*

2 1 2 1

1 ( ) ( (1 ) ) (1 )
1 0

1 ( ) ( )(1 ) ( )(1 )

m

m m m

h b h p h m m p hm p
m

p p h b p b h p p b h p p



 

       
                

,  

the required relation holds. 

(iv) It follows directly since *T is decreasing in p .                                                                                          □ 

 

The above analytical properties relate to the behaviour of the optimal cost and the respective optimizers as 

functions of the supply process quality p . Observe that, as p  increases, then 
*C  and 

*m  increase while 
*T  

decreases. This behaviour is totally in line with that of stochastic systems under increased levels of (demand 

or supply) uncertainty, which tend to reduce the ordering frequency and increase the necessary safety stock. 

Also note that, since 
*S  is linear in 

*DT  (by Proposition 4.3), we have only analyzed the ratio 
* */S DT  and 

found it increasing in p  (as expected). For the data shown, Figures 2-4 provide examples of the behaviour 
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of these functions in p  for different service level targets. All graphs clearly verify the theoretical 

predictions.  

We are now in the position to compare the above exact analysis with that of Skouri et al. (2014) which 

instigated this work. Viewed as a continuous costing model, Skouri et al. (2014) effectively modelled and 

solved the problem: ,min ( , , 0)S T C S T m 
 

s.t. / 0m S DT    . In general, this is an approximate 

formulation easier to solve (since, by arbitrarily fixing variable m , the exact three-dimensional problem 

became two-dimensional). It happens, however, when by the exact model * 0m   (actually obtained for 

relatively small p ), both the Skouri et al. (2014) model and its respective solution to be actually exact. 

Figure 5 presents a comparison between the exact and the approximate optimal cost as function of p , for 

the example data shown. To plot the graph, for each p , we first found the optimal 
* *( , )S T  for each model 

separately. We then evaluated the resulting cost by using the true cost expression (4). Observe that (as 

expected) both models perform identically for 0.25p   (when optimal * 0m  ). However, for larger p , the 

Skouri et al. (2014) model becomes approximate, leading to solutions that can considerably increase total 

cost.  

 

5. End-of-cycle Cost Model Analysis 

The end-of-cycle costing schemes has been traditionally used for cost evaluation in periodic review 

inventory systems.  Under this scheme, inventory is evaluated at the end of each cycle and is assumed to 

represent inventory for the entire cycle (see Section 3). Therefore, for a fixed-rate deterministic demand,  

( )D t DT  for any [0, ]t T . Using this, the inventory profile (in all inventory cycles) has a rectangular 

shape. Therefore, it always holds that 1 0mI 

 
 
and 2 1m mI I DT 

    , and replacing in (3) we obtain: 

1

1

1 2 1 1

( , , ) ( ) ( 1)                               (6)
m m

m m

m m

K
C S T m h m DT b m DT h I b I

T

  
 



     

             
   

     

 

Now, also taking into account that  mI S mDT   and 1 ( 1)mI m DT S

    , the following result restricts the 

state space of decision variable S .  

 

Lemma 5.1. For any T , the optimal policy satisfies: /S DT m   and 0mI    
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Proof. Consider any RS  . Since 1m mI I DT 

  , we can write mI xDT   and 1 (1 )mI x DT

    where 

 0,1x . Replacing this in (6) together with the definition of the probabilities 
i  and observing that the first 

two terms in (6) represent weighted sums of arithmetic series, we can finally rewrite ( , , )C S T m as: 

(1 ) 1
( , , ) ( )

1 1

m m
m

hDT m p pK bDTp
C S T m DTx h p h b

T p p

             
. 

The last term above is linear in x . So, depending on the sign of ( )mh p h b  , C is minimized at either  

0x  or 1x  ; hence, at optimum, /S DT m    and 0mI   .       □ 

 

Therefore, in order to minimize ( , , )C S T m , we need to only consider values RS  that satisfy Lemma 

5.1; so the problem reduces to evaluating , ,min ( , , )S T m C S T m  subject to /S DT m   . Using (6) with 

S mDT and m  , the long-run average cost (per unit time) under end-of-cycle costing becomes:   

(1 ) ( )
( , )

1

mDT hm p h h b pK
C T m

T p

     
 


.                                                                                           (7) 

Note that, since the above only holds for m  , the constraint in the general problem formulation on (3) 

has now been effectively embedded in objective function. We can now evaluate the optimal decision 

variables ( , )S T . 

 

Lemma 5.2. (i) The function ( , )C T m  is discretely convex in m . (ii) The optimal m  is given by 

* log(1 ) / logm p    , where /( )b h b   . 

Proof. (i) Since m  , we need to examine the first forward difference of ( , )C T m , being 

( , ) ( , 1) ( , )C T m C T m C T m    , where Δ is the forward difference operator. Since now 

( , 1) ( , ) ( )(1 ) 0mC T m C T m DT h b p p       , the first forward difference of ( , )C T m is non-decreasing 

in m  and so is discretely convex in m  (see Yüceer, 2002). 

(ii) The first forward difference of ( , )C T m is 

( , ) ( ) mC T m DT h h b p      .                                                                               
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Clearly ( , ) 0C T m  when mp h h b  . Since, by (i) above, ( , )C T m  is discretely convex in m , there 

always exists a unique *m  such that ( , ) 0C T m   for all 
*m m  and ( , ) 0C T m   for all 

*m m . For this 

*m  the inequalities *( , 1) 0C T m    and *( , ) 0C T m  need be satisfied simultaneously, which imply that 

* * 1/( )m mp h h b p    .  Solving for *m  the required expression follows.     □  

 

This result corresponds directly to the standard Newsvendor condition, as applied to discrete demand 

systems (e.g. Schmitt et al., 2010). Despite the analogies with its continuous costing counterpart in Lemma 

4.1, there is a difference that needs to be pointed out. For the end-of-cycle model, by Lemma 5.1 S mDT  

so the determination of *m  leads directly to the locally optimal S  (for given T ); but, since m  , one 

expects abrupt increases in S  whenever * * 1m m  . This does not happen for the continuous model where 

*m  there only represents the floor of the respective S . It should be noted that an identical expression to *m  

for the end-of-cycle model above was previously derived by Warsing et al. (2013), as the limiting 

(deterministic) case of a stochastic system (under conditions equivalent to end-of-cycle costing). 

 

Proposition 5.3: The globally optimal policy variables  
* *( , )S T  are: 

*

*

*

(1 )

(1 ) ( ) m

K p
T

D hm p h h b p




    
   

and * * *S m DT , while the optimal total cost is * *2 /C K T .  

Proof. By simply setting *m m  in (7), we obtain the partially optimal (in m ) total cost 
*( , )C T m . But this 

is convex in T , since 

2 *

2 3

( , ) 2
0

C T m K

T T


 


 

for every T ; so, the optimal 
*T prevails as the unique solution of 

*( , ) 0C T m T    as given above, while 

*S  follows directly. As in Proposition 4.2 the denominator of 
*T  is always positive. Finally setting 

*T T in 

*( , )C T m , the expression for *C  prevails.         □ 

 

It is worth noting that, despite using a different costing scheme, the optimal cost and the optimizers of the 

end-of-cycle costing model are still structurally identical to those of the EOQ (with backorders) model. 



 17 

 

Lemma 5.4. The following properties hold: (i) The optimal *m is step-wise increasing in p ; (ii) The optimal

*T  is decreasing in p ; (iii) The optimal cost 
*C is increasing in p . 

Proof. (i) Identical to proof of Lemma 4.3.(i). 

(ii) As in the proof of Lemma 4.3(ii), we need to show that *T  is both continuous in p  for every (0,1)p

and that  

*

*

* *

* 2

( ( )( (1 )) )
0

2 ( (1 ) ( ) )

m

m

T K hp b h p m p p

p DpT hm p h h b p

    
 

    
.  

Continuity follows by using identical steps as in the proof of Lemma 4.3(ii). Now by a similar substitution in 

this Lemma the numerator of 
*T p  after some algebra becomes 

* 1 *( ) (1 )( 1) 0mK b h p p m     which 

completes the proof.  

(iii) Identical to proof of Lemma 4.3. (iv).                                                                                                         □ 

 

Therefore, the behaviour of the optimal cost and its optimizers is directly analogous to that for the 

continuous costing scheme (see Section 4). Using identical data to those used for the examples of continuous 

costing, Figures 6 and 7 demonstrate the effects of decreased supply process quality on the optimal cost and 

optimizers.                                                                                  

 

6. Numerical Comparisons  

 Computations were performed in order to obtain insight into the following basic managerial questions, 

directly related with deciding the parameters of an inventory control policy in real applications: What is the 

effect of deploying heuristics that either ignore the existence of supply disruptions or use an approximate 

model on system performance?   

To address these issues, we have considered the continuous costing model optimal solution to represent 

the exact optimal system cost (as happens for deterministic fixed-rate demand). We then used the EOQ (with 

backorders) solution (for the heuristic that ignores the supply process quality) and the end-of-cycle model 

solution (for the approximate cost heuristic). Using either of these models, we first evaluated their respective 
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optimal policy variables and then replaced them to the continuous costing cost function in (4) to determine 

the respective costs. We thus calculated the following performance indicators: 

*

0 0 0
0 *

( , , 0)C S T m C
C

C

 
  and

* * * *

*

( , , )e e e
e

C S T m C
C

C


   

where *C  represents the optimal cost under the continuous costing model, while the subscripts “0” and “e” 

refer to an optimal policy variable evaluated using to the EOQ and the end-of-cycle model respectively. 

Table 1 provides some indicative computational results, all obtained for 100K  , 4000D   and 2h  , 

while the other input parameters ( b  and p ) is indicated on the table. 

First considering the impact of ignoring the effects of supply disruptions, the results indicate a uniform 

behaviour across all settings: as process supply quality deteriorates ( p  increases), the cost difference 
0C  

always increases. The same holds for the respective optimizers that gradually diverge from their optimal 

counterparts. This behaviour is totally expected, since the EOQ optimizers carry no implicit safety stock to 

alleviate the effects of uncertainty. Accordingly, cost differences 
0C  increase and become greater with 

increased of the unit backorders cost. The conclusion is, therefore, clear: the use of models which effectively 

ignore the process supply quality may have very serious cost implications and should clearly be avoided.  

More interesting are the results of using the approximate end-of-cycle cost model for determining the 

ordering policy variables, primarily since this scheme is dominant in the analysis of periodic review policies 

(see Section 3). As indicated in the table, the use of the end-of-cycle model generally increases the cost 

differences
eC . The increase, however, is not uniform, showing a generally smooth trend in p , intercepted 

by sudden  
eC  jumps (observe cases  b=4 and p=0.4 as well as  b=16 and p=0.15). Since this behaviour is 

always linked with an increase in 
*

em , its cause lies with the structure of the end-of-cycle costing model 

optimizers, with 
*

eS  abruptly increasing when optimal 
* * 1e em m   (see discussion for Lemma 5.2). At these 

points, the difference 
* *

eS S  increases, hence the observed deviations in 
eC . As expected, the cost impact 

of this behaviour diminishes for greater
*

em  values (occurring for increased b and p ).   

On the managerial question, therefore, regarding the suitability of the EOQ model or the end-of-cycle 

approximate model for the inventory policy parameters evaluation, our results allow the following 

conclusion: The end-of-cycle costing model, whilst outperforming EOQ, is still suboptimal, leading to 
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serious (even very serious) cost increases; hence, its deployment can only be recommended when the real 

demand process justifies its basic costing assumption (i.e. ( )D t DT  for any [0, ]t T  in Section 5). 

 

7. Concluding Remarks 

Deterministic-demand inventory analysis recently surpassed one hundred years of continuing research 

(Choi, 2014, Cárdenas-Barrón et al., 2014). Following this tradition, we studied a single-echelon inventory 

installation controlled by the ( , )S T  inventory policy with endogenous supply disruptions following an 

independent Bernoulli process. In order to enhance understanding of how costing practices may impact 

inventory decisions, two different accounting schemes were considered. After modeling long-run average 

cost, we determined the optimal policy variables in closed-form. While differing in their details, for both 

costing schemes, the optimal order-up-to level is the solution of a Newsvendor formulation, while the 

optimal review interval prevails by optimizing the partially optimal (in S) cost function. It is worth noting 

that the form and the solution of the continuous costing model, constitutes a direct extension of the classical 

EOQ (with backorders) model, if we allow for no delivery failures (and reduces to the later when 0p  ). 

We provided analytical properties, demonstrating the impact of the supply process quality on the optimal 

total cost and the respective optimizers. The behaviour observed for both costing schemes totally agrees with 

that generally conjectured for stochastic systems under increased (demand or supply) uncertainty. 

Considering the continuous costing model as an exact representation of the actual cost, we explored the 

effect of heuristic decision variables determination, using the solution of either the (inaccurate) end-of-cycle 

model or the classical EOQ model (that ignores supply disruptions). The results demonstrated that, whilst the 

end-of-cycle model clearly outperformed EOQ, the cost increase resulting from either heuristic may be 

considerable. 

There are several possibilities for further research. One promising direction is to deploy the analytical 

results for the deterministic-demand system for optimizing stochastic-demand systems. Consider, for 

example, the model by Warsing et al. (2013), which assumes stochastic demand, while all other assumptions 

coincide to those of the end-of-cycle cost analysis in Section 5. Recall that Warsing et al. (2013) (as all work 

with stochastic demand in the area) only optimized the order-up-to-level S . By appropriately applying 

Jensen’s inequality (see Zheng, 1992 and Lagodimos et al., 2017), it appears possible to show that, for any 
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T , the locally optimal (in S ) cost of the stochastic demand system is bounded below by the respective 

deterministic demand system cost *( , )C T m . But, since the latter is convex inT  (by Proposition 5.3), a finite 

search on T guarantees the determination of the stochastic system globally optimal cost. In addition, it would 

be interesting to explore the performance of a heuristic where the review interval of the stochastic system is 

determined by the EOQ-type closed-form solution in Proposition 5.3. Given the good performance of such 

heuristics observed for inventory systems without disruptions (e.g. Zheng, 1992; Axsater, 1996; Rao, 2003), 

we expect the results of such an investigation to be positive. 

Another direction of research relates with adapting the unified cost model in Section 3 to analyze 

problem variants obtained by relaxing the initial assumptions. One such assumption is the zero lead time 

assumption which, although realistic for certain settings, does not universally apply. To facilitate such 

research, the Appendix shows how the state probabilities 
i and the order-up-to level S of the original cost 

model need be modified to accommodate a deterministic lead time 0L  . Notice that, even under such a lead 

time, the state probabilities (although more complicated) are still computable, since they are given as a 

mixture of known proximity distributions. Therefore, while it does not appear probable that the analysis of 

this relaxed model could lead to a closed-form optimal solution, the determination of the respective optimal 

policy is still possible numerically (using the results of the zero lead time system as bounds).  

We feel that more important, however, is to relax the assumption of independent supply disruptions, 

allowing for the probability of a disruption to decrease if a disruption has already occurred. As in the case of 

a positive lead time, provided that the resulting state probabilities 
i  

could be evaluated, the unified cost 

model in Section 3 (simply by replacing the original 
i  by the appropriate new state probabilities) could be 

directly used for the analysis. Again, even if no closed-form solutions were found to exist, computational 

results could still demonstrate the impact of dependent disruptions for managerial decision making.   

 

Appendix: General lead time 

This appendix presents how the unified cost model in Section 3 needs be modified in order to be used 

when the zero lead time assumption is relaxed.  
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Let us suppose a deterministic lead time 0L  . Since the possible states of the system (i.e. the start-of-

cycle inventory level) remain unaffected by the lead time, we need to reevaluate the associated state-

probabilities i . For this purpose we need to carefully examine the system dynamics.  

With a lead time 0L  , the base stock policy releases replenishment orders in regular time intervals T , 

so as to raise the system inventory position (i.e. quantity on-hand plus on order) at some target order-up-to 

level S . Therefore, immediately after an ordering decision at any t , there will be exactly max{ ,1}n L T     

orders in the pipeline, forming the set { : 0,..., 1}
t kT

B k n


  . Assuming now that all information on supply 

losses (due to possible disruptions) is only available at the instant an order is received, then (for any t ):  

t t nTtB B DT


   

where t  is a Bernoulli random variable with ( 0)tP p  . Therefore, since each order only affects the size 

of the order to be placed nT  time units after its release, the pipeline orders above are mutually independent 

and identically distributed; building on the exposition in Section 3, t kT t kTB X DT   (for 0,..., 1k n  ) 

where the random variables t kTX   
are independent and follow a geometric distribution ( )Geo p . Hence, 

given an ordering decision at t , we can exactly model the system inventory level, t LJ  say, at t L : 

1 1

( ) ( )

0 0

(1 ) (1 )
n n

t L t n k T t kT t n k T t kT

k k

J S DL B S DL DT X
 

      

 

            ,            (A.1) 

where the second equality follows by replacing the size of each pipeline order. Now, the last term above is a 

random variable and represents the supply losses associated with the potential failure of pipeline orders to 

materialize into supplies (due to disruption at the time of their  receipt). For example, if all n  pipeline orders 

materialize (that is ( ) 1t n k T   for 0,..., 1k n  ), there will be zero pipeline losses. Otherwise the losses will 

directly depend on the exact combination of orders that will not materialize.  

To model the probability associated with the pipeline losses, it is convenient to define the random 

variable 

1

(1 )
n

n k k

k

V X


     

where, since all terms in (A.1) are stationary, the random variable indices have been simplified; we seek the 

probability mass function ( )i nP V i   , where 0,1,...i 
 
are the pipeline losses. By conditioning on the 
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number of pipeline orders that may fail (a new random variable N ) and carefully considering the cases that 

may occur, we can eventually write:   

0

1 1

( 0) (1 ) , 0

( ) ( ) ( ) ( ) 1,2,...

n

n

n n

i n n k

i k

P V p i

P V i P N P V i N P N P X i i
  

    

 
          

 
  



 



   
 

Notice the second summation, which ensures that any losses i  presuppose the existence at least N i  failed 

pipeline orders (since the size of a pipeline order is at least 1 DT ). Despite its complicated form, the above 

mass function is (at least numerically) computable. To see this, observe that the random variable N  is 

binomial ( , )N B n p  while each of the variables 
1

k

k

X




  (being sums of   independent identically 

distributed geometric variables) follows a negative binomial distribution 
1

( , )k

k

X NB p





 . 

On the basis of the above, in order for the unified cost model in (3) to hold for analyzing systems with 

any positive lead time, we simply need to replace  

S S DL   and 1 , 0,1,2,...i i i    . 

Finally, an interesting special case arises when L T  always. Since this implies that 1n  , it is 

straightforward that the above probabilities for 
i  reduce to the geometric ( )Geo p  distribution mass 

function, as used in the analysis presented in the paper (focusing on the limiting case where 0L  ).  
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Figure 1. Sample path of the inventory level over time (assuming ( )D t Dt ) 

 

 

 

 

 

Figure 2. *C as a function of p (with parameter α). 
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Figure 3. *T as a function of p (with parameterα). 

 

 

Figure 4. 
* *S DT as a function of p (with parameter α). 

 

 
Figure 5. Comparison of optimal and approximate cost by Skouri et al. (2014). 
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Figure 6. *C as a function of p (with parameter α). 

 

 

Figure 7. *T as a function of p (with parameter α). 
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b p 
Optimal Solution  EOQ Heuristic End-of-cycle Heuristic  

m* T* S* C* T0 S0 ΔC0% me* Te* Se* ΔCe% 

4 

0.05 0 0.176 494.1 1136.3 0.194 516.4 0.7 1 0.345 1378.4 54.2 
0.10 0 0.161 477.4 1241.3 0.194 516.4 2.6 1 0.237 948.7 21.4 
0.15 0 0.148 465.1 1348.9 0.194 516.4 5.6 1 0.188 752.8 9.5 
0.20 0 0.137 456.4 1460.6 0.194 516.4 9.6 1 0.158 632.5 3.9 
0.25 0 0.127 450.7 1577.6 0.194 516.4 14.6 1 0.137 547.7 1.3 
0.30 0 0.116 447.8 1701.5 0.194 516.4 20.5 1 0.121 483.0 0.2 
0.35 1 0.109 468.4 1833.1 0.194 516.4 27.6 2 0.110 882.6 14.1 
0.40 1 0.102 520.4 1964.1 0.194 516.4 36.7 2 0.105 840.2 8.1 
0.45 1 0.095 560.4 2100.6 0.194 516.4 47.7 2 0.099 788.6 3.9 
0.50 1 0.089 592.3 2250.9 0.194 516.4 60.6 2 0.091 730.3 1.4 
0.55 1 0.083 619.2 2423.2 0.194 516.4 75.5 2 0.083 667.7 0.2 
0.60 2 0.077 666.1 2624.6 0.194 516.4 92.8 3 0.077 921.4 3.4 
0.65 2 0.070 729.0 2856.5 0.194 516.4 114.1 3 0.071 849.1 0.7 
0.70 3 0.064 788.3 3139.8 0.194 516.4 140.1 4 0.064 1021.3 2.0 

16 

0.05 0 0.136 508.1 1473.4 0.168 596.3 3.1 1 0.172 689.2 4.5 
0.10 0 0.115 456.0 1732.8 0.168 596.3 10.1 1 0.119 474.3 0.1 
0.15 1 0.103 536.5 1946.0 0.168 596.3 21.9 2 0.109 868.0 12.5 
0.20 1 0.095 592.7 2099.7 0.168 596.3 39.2 2 0.102 816.5 5.8 
0.25 1 0.089 619.6 2247.6 0.168 596.3 59.2 2 0.094 751.5 2.0 
0.30 1 0.083 630.7 2409.3 0.168 596.3 81.0 2 0.085 680.3 0.3 
0.35 2 0.077 661.5 2591.7 0.168 596.3 104.6 3 0.0780 935.9 6.3 
0.40 2 0.072 724.2 2772.0 0.168 596.3 132.3 3 0.074 885.9 2.2 
0.45 2 0.067 761.1 2964.7 0.168 596.3 164.0 3 0.068 820.6 0.3 
0.50 3 0.063 808.9 3186.8 0.168 596.3 199.4 4 0.063 1011.9 2.7 
0.55 3 0.058 872.3 3428.4 0.168 596.3 240.9 4 0.059 941.8 0.3 
0.60 4 0.054 939.2 3710.8 0.168 596.3 288.9 5 0.054 1084.7 1.1 
0.65 5 0.0495 1014.0 4040.5 0.168 596.3 346.1 6 0.050 1190.3 1.4 
0.70 6 0.045 1114.4 4440.3 0.168 596.3 415.7 7 0.045 1263.6 0.9 

24 

0.05 0 0.125 485.3 1601.6 0.165 607.6 5.0 1 0.141 562.7 1.0 
0.10 1 0.104 525.1 1914.1 0.165 607.6 17.1 2 0.110 879.9 15.0 
0.15 1 0.096 601.0 2094.1 0.165 607.6 38.9 2 0.103 827.7 6.3 
0.20 1 0.089 628.5 2251.8 0.165 607.6 64.6 2 0.094 755.9 2.1 
0.25 1 0.083 634.6 2424.2 0.165 607.6 92.2 2 0.085 676.1 0.2 
0.30 2 0.076 674.8 2617.0 0.165 607.6 121.6 3 0.078 931.9 6.1 
0.35 2 0.072 735.6 2797.6 0.165 607.6 156.3 3 0.073 881.0 2.0 
0.40 2 0.067 766.8 2989.4 0.165 607.6 195.4 3 0.068 813.5 0.2 
0.45 3 0.062 818.6 3208.6 0.165 607.6 238.5 4 0.063 1007.7 2.6 
0.50 3 0.058 876.7 3439.6 0.165 607.6 288.7 4 0.059 939.6 0.3 
0.55 4 0.054 939.8 3706.4 0.165 607.6 345.6 5 0.054 1087.0 1.3 
0.60 5 0.050 1003.2 4008.6 0.165 607.6 412.4 6 0.050 1198.0 1.9 
0.65 5 0.046 1092.9 4364.8 0.165 607.6 491.5 6 0.046 1100.6 0.02 
0.70 7 0.042 1204.0 4797.4 0.165 607.6 587.3 8 0.042 1336.6 0.7 

Table 1. Results for optimal policy and heuristics under different settings ( b and p ) 

 


