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Abstract 

Advertisement is one of the most effective ways to spread out the popularity of the product for all 

categories of customers. Consequently, this has a direct impact to aggrandize product’s demand to a great 
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extent. On the other hand, if the maximum lifetime of a product is expired once then it can neither be 

usable nor be re-usable. Thus the date of maximum life time of the product is an essential issue in 

inventory management. Advance payment is another important factor among interrelation of suppliers 

and retailers for a highly demanding seasonal product. Combining these issues, two different inventory 

models for perishable items are formulated under linearly time-dependent increasing holding cost whereas 

demand of the product is dependent on the selling price of the product and the frequency of advertisement 

as well. In the first model, shortages are not considered whereas in the second one, partial backlogged 

shortages are incorporated. In both cases, the optimality of the proposed inventory models is discussed 

theoretically along with its solution algorithm. To validate the proposed models, three numerical 

examples are solved. Finally, the effect of changes of different parameters is studied numerically to 

perform a sensitivity analysis and a fruitful conclusion is done. 

 

Keywords: Inventory; advertising; maximum lifetime; advance payment; partial backlogging 

 

1. Introduction 

Advertising of a product plays an important role in inventory management to create the brand awareness 

and to appraise the brand availability for the customers in different markets. In the advertisement, 

manufacturers/suppliers generally provide the information about their products especially, introduction of 

new product or modified product from the older one. With this information, customers are aware of the 

product and its use. So, the demand of any product is directly dependent on the impact of the 

advertisement. In this connection, manufacturers/suppliers want to publish the advertisements in a popular 

media such as print media, electronic media, among other ways with the help of modern technologies or 

popular persons in order to attract more and more people for purchasing the products. In this study, this 

factor is considered in the demand of the product. 

It is well-known that every product has a maximum lifetime. Within this lifetime of the product, the 

product is in a useable condition for the customers but after the lifetime of the product this must not be 

consumable or used. Thus, it indicates that the expired product is either scrap or thrown in dustbins. If the 

products are not sold within the lifetime, then manufacturers/suppliers lose their all investments in these 

products. In this perspective, lifetime of the product has also huge impact on inventory management. In 

this connection, one can consider several perishable products such as all sorts of vegetables, cookies, 

fruits, cooked-foods, different ingredients for cooking items, sea-foods, meats, poultry, fishes, egg and all 

kinds of dairy products. All kinds of the above mentioned products lose their useable conditions totally 

after a certain time period. Consequently, these products are not in a useable condition after their expired 

date. With this reference, it should be noticed that the different products, like electronic gadget, gasoline, 
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alcohol, medicine, dried food, rice, wheat, among others, which deteriorate or decline over time have also 

an expiry period after which they lose their usability and hence these are not in a condition for sale. Very 

few research works have been done by considering this concept. In the proposed work, this factor is 

included in the formulation of the inventory model. 

For the highly demandable products, the manufacturers or suppliers sometimes request that retailer 

pays in advance a portion of the total purchase cost. In this advance payment scheme, both parties are 

benefited in different ways. In this way, the suppliers or manufacturers reduce the risk of cancelling the 

orders by receiving prepayments. On the other hand, retailer pays the advance payment with alacrity in 

order to ensure on-time delivery. In response to the advance payment, suppliers or manufacturers offer 

different price discounts or some credit facilities or some other kinds of facilities in order to promote their 

business. 

In most of the traditional EOQ inventory models, the carrying cost per unit time is considered as 

constant over the entire replenishment cycle. However, in practice, this assumption is not suitable for all 

perishable items. Since the deterioration rate increases as much as the product approaches to the 

maximum lifetime or expired date, the carrying cost per unit item increases continuously to preserve the 

freshness or the usable condition of the products. To the best of our knowledge, no work has been 

reported in the literature considering this kind of time-varying carrying cost for the maximum lifetime 

related perishable items under advance payment policy. 

 

1.1 Literature review 

The manufacturers/suppliers/retailers provide different kinds of offers or publish the advertisement of the 

product in order to attract more customers. So, they use the popular media such as social media, 

television, newspaper, cinema, poster, etc.  Also, the selling price of an item is one of the decisive factors 

in selecting an item for purchasing. For the first time, this concept of a business technique for decision 

making was introduced by Kotler (1971). He introduced the relationship between pricing and EOQ 

inventory model. After that, Ladany and Sternleib (1974) investigated an EOQ inventory model with the 

variation of selling price effect. Lately, Subramanyam and Kumaraswamy (1981), Urban (1992), Goyal 

and Gunasekaran (1995), Bhunia and Shaikh (2011), Shah et al. (2013), Bhunia and Shaikh (2014), 

Shaikh et al. (2017), Panda et al. (2019) and others introduced some inventory models by considering the 

effect of advertisement on demand. 

Advance payment is another important issue in inventory management. Due to competitive market 

situations and uncertainty of customers, it is observed that supplier requires some advance payment from 

his retailer. The retailer pays the advance payment with the aim of having a guarantee of an on-time 
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delivery. In response to the advance payment, supplier provides price discount or credit facility or other 

kind of facility in order to stimulate the business. To the best of our knowledge, this type of concept was 

introduced by Gupta et al. (2009). Inventory model with stochastic lead time and price dependent demand 

under advance payment has been introduced by Maiti et al. (2009). In this area, after the work of Maiti et 

al. (2009), one may refer to the works of Guria et al. (2013), Taleizadeh et al. (2013), Taleizadeh(2014a), 

Teng et al. (2016), Lashgari et al. (2016), Wu et al. (2016), Taleizadeh (2017), Tavakoli and Taleizadeh 

(2017), Khan et al. (2019a), Khan et al. (2020), among others. 

Every product has a certain lifetime. During this fixed lifetime, the customers can use this specific 

product for their requirement. After this fixed lifetime, the product is totally unusable and it has lost its 

value in the markets. Here, some expiration related works are mentioned. Hsu et al. (2006) first 

introduced expiration concept in an inventory model. After that, Hsu et al. (2007) modified their 

inventory model by using uncertain lead time. Jain and Singh (2011) extended the inventory model of 

Hsu et al. (2007) using several concepts such as multi-echelon, inflation, expiration date dependent 

deterioration, etc. Wu et al. (2014) introduced two-level trade credit in an expiration system. Chen and 

Teng (2015) proposed another new concept such as upstream and downstream delay in the payment. Wu 

et al. (2016) considered the freshness concept of the product in the inventory system. Teng et al. (2016) 

presented the advance payment concept for the expiration date product related to inventory system. Feng 

et al. (2017) proposed expiration related inventory problem like Wu et al. (2016) except freshness of the 

product. 

Most of the deteriorating items do not have constant deterioration rate; in fact the deterioration 

continuously increases with time. For these items, consequently, the carrying cost per unit item may not 

be constant in the whole storage time and this must be an increasing function of the storage time. In this 

line, Ferguson et al. (2007) proposed an inventory model with non-linear carrying cost per unit item based 

on the storage time. Alfares (2007) studied an inventory model with an increasing holding cost for the 

stock-level dependent demand rate. Assuming both the demand rate and carrying cost per unit dependent 

on current stock level, Pando et al. (2012) developed an EOQ inventory model. After that, Pando et al. 

(2013) extended their research work to a profit maximization inventory model by considering that the 

carrying cost is modeled as a non-linear function of the current stock level and the duration of the storage 

time as well. Recently, Shaikh et al. (2019) described a mathematical model for a deteriorating product 

under all-units discount environment considering the per unit holding cost as a linearly increasing 

function of the storage period. 

Selling price of the product is another important factor in inventory management. When a product is 

launched into the market manufacturer is very much alert about the selling price of the product. If the 

price of the product is very high, then the common people are not able to buy this product. So, its impact 
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is directly reflected to the demand of the product. In this connection, one may refer to the recent works of 

Sana (2011), Avinadav et al. (2013), Bhunia and Shaikh (2014), Ghorieshi et al. (2015), Alfares and 

Ghaithan (2016), Tiwari et al. (2018), Khan et al. (2019b), among others. Finally, some of the related 

works are presented in Table 1. 

 

Table 1.Recent research works in the inventory literature. 

Authors Demand Shortage Payment Deterioration Advertisement 
of the product Holding cost 

Thangam (2012) Constant No 

Advanced 
and 

delayed 
payment 

Constant No Constant 

Guira et al. (2013) Variable 
demand Full  Advanced 

payment Constant No Constant 

Taleizadeh et al. 
(2013a) Constant Partial  Delayed 

payment No No Constant 

Taleizadeh. et al. 
(2013b) Constant Full No Constant Yes Constant 

Taleizadeh (2014a) Constant Partial Advanced 
Payment Constant No Constant 

Taleizadeh (2014b) Constant No shortage, 
Full 

Advanced 
Payment Constant No Constant 

Taleizadeh et al. 
(2015) 

Constant and 
price sensitive No No No No Constant 

Chen and Teng (2015) Credit period 
dependent No Delayed 

payment Expiration No Constant 

Teng et al. (2016) Constant No Advanced 
Payment Time-varying No Constant 

Lashgari et al. (2016) Constant No shortage, 
Full, Partial 

Advanced 
and 

delayed 
payment 

No No Constant 

Wu et al. (2016) Constant Partial Advanced 
Payment Time-varying No Constant 

Alfares and Ghaithan 
(2016) 

Price 
dependent No No No No Linearly time 

varying 

Feng et al. (2017) 

Price, 
freshness and 

inventory 
level 

No No Expiration No Constant 

Taleizadeh (2017) Constant Partial Advanced 
Payment No No Constant 

Tavakoli and 
Taleizadeh (2017) Constant Full Advanced No No Constant 

Pervin et al. (2017) Stock 
dependent Partial Delayed 

payment Constant No Linearly time 
varying 
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Pervin et al. (2018a) Stock 
dependent Partial Delayed 

payment Constant No Linearly time 
varying 

Mashud et al. (2018) 
Price and 

stock-
dependent 

Partial No Constant No Constant 

Pervin et al. (2018b) Time-
dependent  Partial No Constant No Linearly time 

varying 

Tiwari et al. (2018) 
Price 

dependent 
demand; 

Partial  Delayed 
payment Expiration No Constant 

Pervin et al. (2019) 
Price- and 

stock-
dependent 

Partial Delayed 
payment Constant No Constant 

Khan et al. (2019a) Price 
dependent Partial Advanced 

Payment Constant No Constant 

This paper 

Advertisement 
and price 
dependent 
demand; 

where price is 
a decision 
variable 

Zero ending 
and partial 

backlogging 

Advanced 
Payment Expiration Yes Linearly time 

varying 

 

In this work, two inventory models (with and without shortages) are formulated for perishable items 

which deteriorate continuously with maximum life time. In addition, the following factors are also 

included: 

(i) The demand is dependent on the frequency of advertisement and selling price of the product.  

(ii) The carrying cost follows a linearly time-dependent increasing function. 

(iii) In shortages case, partial backlogging is considered with variable rate dependent on the 

length of waiting time of the customer. 

(iv) There is an advanced payment policy. 

The corresponding optimal solution, for both inventory models, is proved theoretically. In order to solve 

each inventory model, a solution algorithm is developed. With the aim to illustrate and also to validate the 

inventory models, three numerical examples are solved with the help of proposed algorithms. Finally, a 

sensitivity analysis is carried out with respect to different system parameters for the shortage inventory 

model.  

 

2. Notation and Assumptions 

To describe our system, the following notation and assumptions are presented. 

2.1 Notation 

Symbol Description 
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p  selling price per unit ($/unit) 

0C  replenishment cost per order ($/order) 

pC  purchasing cost per unit ($/unit) 

sC  shortage cost per unit ($/unit) 

lC  opportunity cost per unit ($/unit) 
G  cost per advertisement ($/advertisement) 
g  constant part of the unit holding cost ($/unit/time unit) 
h  coefficient of linearly time dependent cost to hold a unit ($/unit/(time)2) 
a  location parameter of demand rate )0( >a  

b  shape parameter of demand rate )0( >b  
)(tθ  time varying deterioration rate at any instant t )1)(0( <<< tθ (/unit/time unit) 

L  length of the lead time during which prepayments are paid (time unit) 
E  the maximum lifetime or expired date (time unit) 

cI  interest rate of the cost of loan (% / time unit) 

n  number of equally spaced prepayments during the lead time 

α  fraction of the purchasing cost to be paid with multiple prepayments )10( <<α  
γ  advertising elasticity of the demand function 

)(tB  partial backlogging rate which is a function of waiting time t  
δ  backlogging parameter ( 0>δ ) 

S  the initial inventory level (units) 

R  maximum amount of shortage level for second model 
Q  order quantity per replenishment cycle (units) 

1t  stock-in period for the inventory model with shortages (time unit) 

2t  time period of shortages (time unit) 

T  cycle length (for shortages case 21 ttT += ) (time unit) 
( )q t  inventory level at any time t (units) 

),,(1 TpAΠ  the total profit for the inventory model without shortages ($/time unit) 

),,,( 212 ttpAΠ  the total profit for the inventory model with partial backlogging ($/time unit) 
Decision variables  
A  frequency of advertisement  
p  selling price per unit ($/unit) 

1t  stock-in period for the inventory model with shortages (time unit) 

2t  time period of shortages (time unit) 

T  cycle length for the inventory model without shortages (time unit) 
 

2.2 Assumptions 
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1. A single deteriorating item is considered.  

2. Replenishment rate is infinite. 

3. Customers always try to purchase the products with affordable prices. Obviously, a higher selling 

price attenuates the customers’ demand in a great extent. Consequently, the demand for any product 

can be modeled as a linearly decreasing function of the selling price. Moreover, the advertisement of 

any product is one of the best ways not only to get acquainted with its customers but also to spread 

out the popularity of the product to all categories of customers. Due to advertisement, demand will 

increase and product will be sold-out quickly. That would be ideal in the case of perishable items, 

where their life span is short. In this perspective, it is considered advertisement elasticity rather than 

price elasticity. The advertisement of a product is directly proportional to the demand. In this reason, 

we have considered the advertisement elasticity in order the demand increases quickly. Consequently, 

the demand of the product can be considered as a multiplicative form in the following way:

( , ) ( 1) ( ),γD A p A a bp= + −  

where { }0,1, 2, 3,.....A∈  is the frequency of advertisement, [0,1)γ ∈ is the advertising elasticity of the 

demand function, a is the location parameter of demand rate, b is the shape parameter of the demand 

and ( , ) 0D A p ≥ . 

It is noteworthy that, the frequency of advertisement (A) is either zero or a positive integral number. 

4. The cost of holding a unit of the item in the warehouse is an increasing function of the storage time. 

The holding cost consists of two parts, namely, constant part to hold a unit and linearly time-

dependent part to hold a unit, i.e., htgtH +=)(  where 0, >hg . 

5. The deterioration rate )(tθ is a continuously increasing function of holding time t  of the product. 

This rate increases as much as the product approaches to its maximum lifetime or expired date E; and 

finally it reaches to 100% at time t=E. The deterioration rate function )(tθ  is expressed as follows

tE
t

−+
=

1
1)(θ , ETt ≤≤≤0 as in Sarker (2012) and Teng et al. (2016). Remarkable point is that 

the upper limit of the replenishment cycle length T is the maximum life time E, which reveals that 

after the maximum lifetime product cannot be sold. 

6. Any sold or deteriorated product cannot be returned or repaired. 

7. Shortages are allowed with a partial backlogging rate ),(yB  a decreasing function of the waiting time

y .That is ( ) 1 1B y δy= + and 1)(0 ≤≤ yB with 1)0( =B , here y indicates the waiting time up to the 

arrival of next lot and 0δ > . If 0=δ then the inventory model with partial backlogging reduces to a 

fully backlogging inventory model. 
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8. The supplier requests his retailer to make the order by paying a certainαfraction of the total 

purchasing cost by n equal multiple installments at equal intervals in L units of time prior to the 

delivery time and receive the lot by paying the remaining portion (1-α) of the total purchasing cost at 

the receiving time. 

 

3. Mathematical formulation of the inventory models 

In this section the inventory models, with and without shortages, are developed. 

3.1 The inventory model without shortages 

The retailer makes an order of Q units by paying a certain fraction (α) of the total purchasing cost by n

equal installments at equal intervals in L units of time prior to the delivery time from the supplier. The 

retailer receives the lot at time t=0 by paying the remaining portion (1-α) of the total purchasing cost. 

Thereafter, the lot is ready to be consumed in order to fulfill customers’ demand. The inventory level 

gradually decreases to zero over the period [0, T]due to the combined effect of customers’ demand and 

deterioration. The inventory system is depicted in Figure 1. 

The inventory level at any instant t during the time interval [0, T] is governed by the following 

differential equation: 

)()1()(
1

1)( bpaAtq
tEdt

tdq
−+−=

−+
+ γ ,                                                                    (1) 

with boundary conditions Qq =)0( and 0)( =Tq .  

Considering that 0)( =Tq  then the solution of Eq. (1) is given by: 

TE
tEtEbpaAtq

−+
−+

−+−+=
1
1ln)1)(()1()( γ .                           (2) 

 As q(0)=Q, the order quantity Q per replenishment cycle is given by: 

TE
EEbpaAQ
−+

+
+−+=

1
1ln)1)(()1( γ .               (3) 
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Figure 1. Graphical presentation of the inventory model without shortages. 
 

The relevant components of the profit function are as follows: 

i) Ordering cost (OC): C0. 

ii) Advertisement Cost (AC): AG. 

iii) Purchasing cost (PC): 1( 1) ( )(1 ) ln .
1

γ
p

EC A a bp E
E T

 +
+ − + + − 

 

iv) Interest of loan (IL): The interest of loan from Figure 1 is given by: 









−+

+
+−+






 +

=











++++








=

TE
EEbpaALCI

n
nn

n
L

n
QC

IIL pc
p

c 1
1ln)1)(()1(

2
1)...321( γα

α
. 

v) Holding cost (HC): 

∫∫∫ +=+
TTT

dtttqhdttqgdttqhtg
000

)()()()(

 ( )22 3 2
2 1(1 ) (1 )(1 ) (1 ) ( 1) ( ) ( 1) ( ) .

2 6 4 2 9 12 6
γ γ E Tg h T E T T E TE E Q g A a bp h A a bp

 + + + = + + + + + − − + + − − −           

vi) Sales revenue (SR): 
0

( 1) ( ) ( 1) ( ) .
T

γ γp A a bp dt p A a bp T+ − = + −∫  

Thus, the profit function per unit time is given by: 

[ ]HCILPCACOCSR
T

TpA −−−−−=Π
1),,(1  

T

Q  

n
L  

n
L

n
L  

n

L

n

QpCα
 

n

QpCα
 

QpC)1( α−  

L  

n

QpCα
 

Time 

Quantity 

0
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2 3 2

0
1 (1 )( 1) ( ) ( 1) ( ) ( 1) ( ) ,

4 9 12
γ γ γT T E TA a bp XT C GA YQ g A a bp h A a bp

T
   +

= + − − + + + + − + + − −        
(4)  

 where ( )
6

1
2

)1( 2 hEgEpX +
+

+
+=  and 2)1(

6
)1(

22
11 EhEgCLI

n
nY pc ++++






 +
+= α . 

To ensure ( , ) 0D A p ≥ , the selling price per unit p must be less than or equal to 
b
a . In this case, the main 

objective is to maximize the retailer’s total profit per unit time ),,(1 TpAΠ with respect to the decision 

variables: frequency of advertisements (A), selling price per unit (p) and replenishment cycle length (T) 

under the constraint 0ap
b

− ≤ . Therefore, the problem reduces to the following mixed integer non linear 

optimization problem: 

Maximizing ),,(1 TpAΠ  

subject to 0 0, 0ap T E
b

< − ≤ < ≤  and ( 0)A ≥ is an integer. 

 

3.2 The inventory model with shortages 

Here, an order of Q=(S+R) units is made by the retailer. He pays a certain α fraction of the total 

purchasing cost by n equal installments at equal intervals in L units of time before to the delivery time 

from his/her supplier. At time t=0, the retailer’s on-hand inventory level becomes S after fulfilling the 

total accumulated backlogged shortages R immediately. Due to the resultant effect of both the customers’ 

demand and deterioration, the stock level decreases continuously, and finally, drops at zero level at time

1tt = . Then, the shortages are accumulated depending on the waiting time of the customers during the 

time interval ],[ 211 ttt + . Figure 2 depicts the behavior of the inventory system over the entire cycle length. 

Now, the inventory system is modeled with the following governing differential equations: 

)()1()(
1

1)( bpaAtq
tEdt

tdq
−+−=

−+
+ γ , 10 tt ≤< ,                                      (5) 

and 

)(1
)()1()(

21 ttt
bpaA

dt
tdq

−++
−+

−=
δ

γ

, 211 tttt +≤< ,                                       (6) 

with the conditions (0)q S= , 1( ) 0q t = and 1 2( )q t t R+ = − . 
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Figure 2. Graphical presentation of the inventory model with shortages. 

The solutions of Eq. (5) and Eq. (6) are expressed as follows: 

1
1

0,
1
1ln)1)(()1()( tt

tE
tEtEbpaAtq ≤<

−+
−+

−+−+= γ ,                         (7) 

and 

RtttbpaAtq −−++
−+

= )(1ln)()1()( 21δ
δ

γ

, 211 tttt +≤< .            (8) 

Since (0) at 0q S t= = , hence 

11
1ln)1)(()1(

tE
EEbpaAS
−+

+
+−+= γ .               (9) 

The maximum amount of shortages, with the help of continuity of )(tq at 1tt = , is given by: 

21ln)()1(1 tbpaAR δ
δ

γ +−+= .              (10) 

Therefore, the lot size is given by: 









++

−+
+

+−+= 2
1

1ln1
1

1ln)1()()1( t
tE

EEbpaAQ δ
δ

γ .           (11) 

The relevant components of the total profit function are given by: 

i) Ordering cost (OC): C0. 

1t  

S  

n
L  

n

L

n

L
n
L  

n

RSpC )( +α
 

n

RSpC )( +α
 

L  

Lost sales 

n

RSpC )( +α
 

2t  

Time 

Quantity 

0 Backorders 

)()1( RSpC +−α  
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ii) Advertisement cost (AC): AG. 

iii) Purchasing cost (PC): 2
1

1 1( 1) ( ) (1 ) ln ln 1 .
1

γ
p

EC A a bp E δt
E t δ

 +
+ − + + + + − 

 

iv) Interest of loan (IL): The interest of loan from Figure 2 is given by: 









++

−+
+

+−+





 +

=











++++








= 2

1

1ln1
1

1ln)1()()1(
2

1)...321( t
tE

EEbpaALCI
n

nn
n
L

n
QC

IIL pc
p

c δ
δ

α
α γ . 

v) Holding cost (HC):
1 1 1

0 0 0

( ) ( ) ( ) ( )
t t t

g ht q t dt g q t dt h tq t dt+ = +∫ ∫ ∫  

( )

2

1

22 3 2
11 1 1 1

1(1 ) (1 ) ( 1) ( )(1 ) ln
2 6 1

1(1 ) (1 )( 1) ( ) ( 1) ( ) .
4 2 9 12 6

γ

γ γ

g h EHC E E A a bp E
E t

E tt E t t E tg A a bp h A a bp

+ = + + + + − +  + − 

 + + +
+ + − − + + − − −  

      

vi) Shortage cost (SC): [ ]
1 2

1

2
2

ln 1( 1) ( )( ) .
t t

s
s

t

tC A a bpC q t dt t
+  + + −

− = − 
 

∫
γ δ
δ δ

 

vii) Lost sale cost (LSC): 
1 2

1

2
2

2

ln 111 ( 1) ( ) ( 1) ( ) .
1

t t
γ γ

l l
t

δt
C A a bp dt C A a bp t

δt δ

+  + 
− + − = + − −  +   

∫
 

 

viii) Sales revenue (SR): 
1

2
1 2

0

1( 1) ( ) ( 1) ( ) ln 1
t

γ γp A a bp dt pR A ap bp t δt
δ

 + − + = + − + +  ∫ . 

So, the total profit function per unit time is given by: 

[ ]LSCSCHCILPCACOCSR
tt

ttpA −−−−−−−
+

=Π
21

212
1),,,(

2
1

1 0
1

3 2
1 2 21 1

1 2

1( 1) ( ) ( 1) ( ) (1 ) ln ( 1) ( )
1 41 ,

ln 1(1 )( 1) ( ) ( 1) ( ) ( 1) ( )
9 12

γ γ γ

γ γ γs
l

tEA a bp Xt C GA A a bp Y E g A a bp
E t

t t δt Ct E th A a bp A a bp X C A a bp t
δ δ

 +
+ − − − − + − + − + − 

+ − =  
+ + +   − + − − + + − − + + −          

(12) 

where
6

)1(
2

)1( 2EhEgpX +
+

+
+= , 2)1(

6
)1(

22
11 EhEgCLI

n
nY pc ++++






 +
+= α and 

pc
s

l CLI
n

nCCpX 





 +
+−++= α

δ 2
111 . 
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In order to ascertain 0a bp− ≥ , the selling price per unit p must be less than or equal to 
b
a . Now, 

the objective is to find the optimal frequency of advertisements *A , selling price *p  per unit, the time *
1t

at which the inventory level reaches zero and shortage period *
2t in order to maximize the retailer’s total 

profit per unit time ),,,( 212 ttpAΠ under the inequality constraint 0ap
b

− ≤ . Therefore, the problem 

becomes the following mixed integer non linear optimization problem: 

Maximizing ),,,( 212 ttpAΠ  

subject to Et
b
ap ≤<≤−< 10,00  and ( 0)A ≥ is an integer. 

The next section discusses the optimality of the retailer’s profit function and the derivation of the 

necessary and sufficient conditions for the inventory models.  

 

4.  Solution methodology 

First of all, the optimality for the inventory model without shortage is derived and then that of for the 

inventory model with partial backlogging. In order to explore the concavity, the results of generalized 

concave functions in Cambini and Martein (2009, p.245) are used. According to these results, any 

fractional function of the form 

)(
)()(

xg
xfx =Ψ , nRx∈                 (13)    

is (strictly) pseudo-concave, if )(xf is concave and differentiable and )(xg is positive and affine. 

 

4.1 The inventory model without shortages
 To prove the optimality theoretically, some theorems are stated and proved with the help of the Theorems 

3.2.9 and 3.2.10 of Cambini and Martein (2009).These results state that for a given value of p and A, it 

can be shown that the profit function ),,(1 TpAΠ  is a strictly pseudo-concave function of T . As a result, 

there is a unique optimal solution *T such that the total profit function per unit time ),,(1 TpAΠ  is 

maximized. 

In order to find the optimal replenishment cycle length *T , setting the first order partial 

derivative of ),,(1 TpAΠ with respect to T equals to zero, we find: 

( ) 0
12

)1(
9

2
411

1ln)1()()1( 2
2

0 =














 +

−−−








−+
−







−+
+

+−+++
EThTgT

TE
T

TE
EmYbpaAGAC γ .       (14) 
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To explore the existence of a unique value of ],0( ET ∈  at which ),,(1 TpAΠ is maximized, for 

convenience, define: 

( ){ } 







−−−−+

+
+

−+
+

−+=∆ )35(
364

1ln)1(
)(1)(A

)(
)()1( 22

0
1 EhgEE

E
EY

Ebpa
GAC

bpaA
γ

γ .                   (15) 

So, the following theorem is proposed. 

Theorem 1. For any given positive values of p and A;  

(a) ),,(1 TpAΠ is a pseudo-concave function in T, and hence there exists a unique T satisfying Eq. 

(14) such that ),,(1 TpAΠ is maximized.  

(b) If 01 >∆ , then the total profit per unit time ),,(1 TpAΠ  attains its global maximum value at 

ET =* .   

(c) If 01 ≤∆ ,then the total profit per unit time ),,(1 TpAΠ achieves its global maximum value at

],0(* ET ∈ . 

Proof. See the Appendix A. 

For any given ( 0)A ≥ and 0>T , calculate the first order partial derivative of ),,(1 TpAΠ with respect to

p , we have: 






















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










 +

−++







−+
+

+++

−+++−

=
∂

Π∂

12
)1(

941
1ln)1()1(

)()1()1(
1),,(

2321 TEThTg
TE

EEYAb

TbpaAXTAb

Tp
TpA

γ

γγ

.                (16)
 

The necessary condition to find the optimal selling price per unit *p , by setting the first order partial 

derivative with respect to p  equals to zero, is: 

0
12

)1(
941

1ln)1()(
2

=














 +

−++







−+
++

+−−
TEThTg

TE
E

T
EYbbXbpa .                                     (17) 

This gives: 

( )













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



 +

−++
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





−+
++

+






 +
+

+
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12
)1(

941
1ln)1(

6
1

2
)1(

2
1 22

* TEThTg
TE

E
T

EYhEgE
b
ap .             (18) 
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Theorem 2. For a given value of 0≥A and T>0; the total profit per unit time ),,(1 TpAΠ is a concave 

function in p  and hence there exists a unique 




∈

b
a

b
ap ,
2

* from Eq. (18) such that ),,(1 TpAΠ is 

maximized; otherwise, the optimal selling price is
b
ap =* . 

Proof. See the Appendix B. 

 

Now the optimality of the frequency of advertisement A  is explored.  Since A is an integer number, the 

differential calculus is ineffectual to attain the optimal frequency of advertisement *A . Additionally, the 

objective function ),,(1 TpAΠ , for any given , 0p T > , is a concave function in A over the interval 

),0[ ∞ ; otherwise, the objective function ),,(1 TpAΠ is maximized at 0* =A (see Appendix C). Hence, 

the optimal frequency of advertisement *A , when ),,(1 TpAΠ is concave in A over the interval ),0[ ∞ , 

can be found by comparing the values of    ),,( *
1 TpAΠ  and *

1Π ( , , )A p T    where   =u max{ v : uv ≤  and 

v is integer} and   =u min{v: v u≥ and v is integer}. It is noteworthy point that, if 

* *
1 1Π ( , , ) Π ( , , )A p T A p T   =    , there are two optimal solutions; otherwise, a unique solution exists (see, 

for instance, García-Laguna et al. (2010)).  

Taking into account the concavity of the objective function ),,(1 TpAΠ in A over the set of integer

{0,1,2,3,...},N = )},,(),,1(:min{ 11
* TpATpANAAl Π≤+Π∈=  provides the optimal solution if it is 

unique and the lower of them when two optimal solutions exist. Likewise, 

)},,1(),,(:max{ 11
* TpATpANAAu −Π≥Π∈=  provides the optimal solution if it is unique and the 

upper of them when two optimal solutions exist. The aforementioned conditions are equivalent to: 









−
≤+−+∈=

1

*

)(
)1()2(:min

ψ
γγ

bpa
GAANAAl ,                                                                      (19) 

and *

1

max : ( 1) ,
( )

γ γ
u

GA A N A A
a bp ψ

 
= ∈ + − ≤ 

−                                                                                   
(20)

 

respectively, where 














 +

−++
−+

+
+−=

12
)1(

941
1ln)1(

232

1
TEThTg

TE
EEYXTψ . 

These two expressions are the necessary and sufficient conditions for the optimal frequency of 

advertisement when it is confined to be an integer. If the expression for *
lA is considered by taking into 
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account the unique solution U of the equation 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+ , the optimal *

lA can be 

revealed as follows:  UAl =* . Similarly, if the expression for *
uA  is considered by taking into account 

the unique solution V of the equation
1)(

)1(
ψ

γγ

bpa
GAA

−
=−+ , the optimal *

uA can be revealed as 

follows:  VAl =* . It is noteworthy that the solutions U and V of the aforementioned equations are not 

possible to find out in the closed form. In order to find the values of U and V, the equations are solved by 

using MATHEMATICA. Additionally, the solutions U and V must satisfy the equation    1+= tt  which 

is true if and only if t is not an integer. Consequently, a unique optimal ( )**
ul AA =  frequency of 

advertisement is possible if and only if U and V are not an integer. Otherwise, two optimal solutions for

A are possible, namely, *
lA and 1** += lu AA . Eventually, to find the optimal frequency of 

advertisement *A only one value of either *
lA from 

1)(
)1()2(

ψ
γγ

bpa
GAA

−
=+−+ or *

uA from 

1)(
)1(

ψ
γγ

bpa
GAA

−
=−+ is necessary to be calculated.  

Taking into account Theorem 1 and Theorem 2, the following algorithm is developed for finding the 

optimal solution of the inventory model without shortages. 

 

Algorithm for the optimal solution of the inventory model without shortage 

Step 1. 
Input the inventory parameters 0 , , , , , , , , , , , ,p cC G C a b g h E L n Iα γ and initialize ],0(

2
EET ∈=

and 





∈=

b
a

b
a

b
ap ,

2
8.0 . 

Step 2. Set 1=i and 0)( == AA i . 

Step 3. Using the values of T and ,p  calculate the solution U of the equation 

1)(
)1()2(

ψ
γγ

bpa
GAA

−
=+−+ .  

Step 4. If U is not an integer, set  UAA l
i ==+ *)1(

 then solve Eq. (14) and Eq. (17) for T and p

with the value of )1( += iAA . Otherwise, go to Step 8. 

Step 5. If )()1( ii AA ≠+ , set 1+= ii and go to Step 3. Otherwise, go to Step 6. 
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Step 6. Compute the optimal profit ),,(*
1 TpAΠ with the values of ,p T and )1( += iAA . 

Step 7. Print the optimal solution: ** , pA , *T and * * * *
1 ( , , )A p TΠ . Go to Step 15. 

Step 8. Set  UAA l
i ==+ *)1(

1 and 1*)1(
2 +=+

l
i AA .  

Step 9. If )1(
2

)1(
1

)( ++ ≠= iii AAA or )1(
1

)1(
2

)( ++ ≠= iii AAA , there are two optimal solutions of A , say, 

)1(
1

*
1

+= iAA and )1(
2

*
2

+= iAA . Go to Step 14. 

Step 10. If )1(
2

)1(
1

)( ++ ≠≠ iii AAA , solve Eq. (14) and Eq. (17) for jT and jp by dint of )1( += i
jAA for 

2,1=j . Set 1+= ii  and calculate the solutions jU of 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+

using jT , jp  for 2,1=j .    

Step 11. If each jU  is not an integer, set  j
i

j UA =+ )1( where 1, 2j = . 

(a) If each )()1( i
j

i
j AA =+ , there are two optimal solutions of A , say, )1(

1
*

1
+= iAA and 

)1(
2

*
2

+= iAA . Go to Step 14. 

(b) If )(
1

)1(
1

ii AA ≠+
or 

)(
2

)1(
2

ii AA ≠+
or both 

)(
1

)1(
1

ii AA ≠+
and 

)(
2

)1(
2

ii AA ≠+
, solve Eq. 

(14) and Eq. (17)  for jT and jp by dint of )1( += i
jAA  and then compute  

( )jj
i

j
i TpA ,,)1()(

1
+Π  for 1, 2j = . Find the )1( +i

jA for which ( )jj
i

j
i TpA ,,)1()(

1
+Π is larger 

between ( )11
)1(

1
)1(

1 ,, TpA i+Π  and ( )22
)1(

2
)2(

1 ,, TpA i+Π .  Set )1()1( ++ = i
j

i AA and go to 

Step 3. 

Step 12. If one or both of )2,1( =jU j are not integers, set  j
i

j UA =+ )1( where 2,1=j . When 

)1(
2

)1(
1

++ = ii AA or 1~ )1(
2

)1(
1 =++ ii AA , solve Eq. (14) and Eq. (17) for T and p by dint of 

)1(
1

+= iAA . Set )1(
1

)1( ++ = ii AA and go to Step 3.   Otherwise, go to the next step. 

Step 13. Solve Eq. (14) and Eq. (17) for jT and jp by dint of )1( += i
jAA  and then compute  

( )jj
i

j
i TpA ,,)1()(

1
+Π  for 2,1=j . Find the )1( +i

jA for which ( )jj
i

j
i TpA ,,)1()(

1
+Π is larger 

between ( )11
)1(

1
)1(

1 ,, TpA i+Π  and ( )22
)1(

2
)2(

1 ,, TpA i+Π .  Set )1()1( ++ = i
j

i AA and go to Step 3. 

Step 14. Solve Eq. (14) and Eq. (17) for jT and jp with the value of *
jAA = for 2,1=j . Print the 

optimal solutions: ( )*
1

*
1

*
1 ,, TpA  and ( )*

2
*
2

*
2 ,, TpA  with ( ) ( )*

2
*
2

*
2

*
1

*
1

*
1

*
1

*
1 ,,,, TpATpA Π=Π  . 



 
 

19 
 

Step 15. End. 

 

4.2. The inventory model with shortage 

Here, the concavity of the objective function ),,,( 212 ttpAΠ  in 1,p t and 2t for a fixed value of A  is 

examined in two folds. Firstly, the joint concavity of ),,,( 212 ttpAΠ in ),( 21 tt is investigated for fixed 

values of A and p . Secondly, the concavity of ),,,( 212 ttpAΠ in p for a fixed A is explored at the 

optimal values ),( 21 tt . 

Theorem 3.For any given values of 0≥A  and 0>p ; ),,,( 212 ttpAΠ is a pseudo-concave function of 

1t  and 2t , and therefore there exists a unique pair of values ),( 21 tt such that ),,,( 212 ttpAΠ achieves its 

global maximum value.  

Proof. See the Appendix D. 

To obtain the optimal stock-in period *
1t , optimal stock-out period *

2t , for any fixed A and p , calculate 

the first order partial derivatives of ),,,( 212 ttpAΠ  with respect to 1t  and 2t .   














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12121
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EYX
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bpaA
ttt

γ

,                   (21) 

and 











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
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 +−

++
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γ
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X
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2121
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1)()1()()(

.                                                      (22) 

Therefore, the necessary conditions for the optimal values of 1t and 2t are: 

0)(

1

2 =
∂

⋅Π∂
t

,                                                                                                                                              (23) 

and 

0)(

2

2 =
∂

⋅Π∂
t

.                                                                                                                                              (24) 

By dint of Eq. (23) and Eq. (24), one has 


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
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+
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
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
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This gives: 
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
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
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Xt .                                                (26) 

Eq. (26) reveals that the optimal shortages period can be found with the help of the values of 1,A t  and p .  

On simplification, Eq. (23) can be written as: 
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(27)

 

where ( )
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For any fixed value of A and p , Eq. (27) consists of only one decision variable i.e., 1t . Hence, the 

optimal period of positive on-hand inventory level ( *
1t ) can be easily obtained by solving Eq. (27) for 1t .  

To investigate the existence of a unique value of ],0(1 Et ∈  at which ),,,( 212 ttpAΠ is maximized, 

for convenience, define: 
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So, the following theorem is proposed. 

Theorem 4. For any given values of 0>p and 0≥A ; 

(a) If 02 >∆ , then the total profit per unit time ),,,( 212 ttpAΠ  attains its global maximum value at 

( ) { }





 −= 1)(1,, *

2
*
1 EFEtt

δ
.   
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 (b) If 02 ≤∆ , then total profit per unit time ),,,( 212 ttpAΠ achieves its global maximum value at ( )*
2

*
1 , tt  

where ),0(*
1 Et ∈ and *

2t satisfy Eq. (27) and Eq. (26) respectively.   

Proof. See the Appendix E. 

 

For a given value of 1,A t  and 2t , the first order partial derivatives of ),,,( 212 ttpAΠ with respect to p is 

expressed below as: 
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The necessary condition for the optimal selling price *p  is when the first order partial derivative with 

respect to p  is equal to zero, thus: 
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The optimal selling price per unit )( *p from Eq. (31) is:
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where 2
2 )1(

6
)1(

2
EhEgX +++= and pc

s
l CLI

n
nCCX 






 +
+−+= α

δ 2
113 .  

Theorem 5.  For the given value of 1,A t and 2t ; the ),,,( 212 ttpAΠ is a concave function in p and 

therefore there exists a unique 




∈

b
a

b
ap ,
2

*  from Eq. (32) such that ),,,( 212 ttpAΠ is maximized; 

otherwise, the optimal selling price is
b
ap =*  . 

Proof. See the Appendix F. 
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Now the optimality of the frequency of advertisement A  is examined by analysis similar to the previous 

section. 

Taking into account the concavity of the objective function ),,,( 212 ttpAΠ  in A over the set of the 

integers ,...}3,2,1,0{=N , 








−
≤+−+∈=

2

*

)(
)1()2(:min

ψ
γγ

bpa
GAANAAl delivers the optimal 

solution if it is unique and the lower of them when two optimal solutions exist. Likewise,









−
≤−+∈=

2

*

)(
)1(:max

ψ
γγ

bpa
GAANAAu

 
supplies the optimal solution if it is unique and the 

upper of them when two optimal solutions exist where 

2
2

1

2
1
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1
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1
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1ln
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)1(
941

1ln)1( tCC
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XtEthtg
tE

EEYXt s
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 +
−−−
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δ
ψ .  

The two expressions before mentioned are the necessary and sufficient conditions for the optimal 

frequency of advertisement when it is restricted to be an integer. If the expression for *
lA is considered by 

taking into account the unique solution U of the equation 
2)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+ , the optimal 

*
lA can be revealed as:  UAl =* . Similarly, if the expression for *

uA is considered by taking into 

account the unique solution V of the equation 
2)(

)1(
ψ

γγ

bpa
GAA

−
=−+ , the optimal *

uA can be 

revealed as:  VAl =* . It is remarkable that the solutions U and V of the above-mentioned equations are 

not possible to find out in closed form. In order to find the values of U and V, the equations are solved by 

using MATHEMATICA.         

The following algorithm is developed using Theorem 3, Theorem 4and Theorem 5. This algorithm 

determines the optimal solution for the inventory model with partial backlogging. 

 

Algorithm for determining the optimal solution of the inventory model with shortage 

Step 1. Input the inventory parameters 0 , , , , , , , , , , , , , , ,p c l sC G C a b g h E L n I C Cα γ δ and initialize 

],0(
21 EEt ∈= , 02 =t and 






∈=

b
a

b
a

b
ap ,

2
8.0 .  

Step 2. Set 1=i and 0)( == AA i . 

Step 3. Using the values of 1 2,t t and p , calculate the solution U of the equation 
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2)(
)1()2(

ψ
γγ

bpa
GAA

−
=+−+ .  

Step 4. If U is not an integer, set  UAA l
i ==+ *)1( and solve Eq. (27) and Eq. (31) by putting 

)1( += iAA for 1t and p with the help of Eq. (26). Calculate the corresponding 2t from Eq. (26); 

go to the next step. Otherwise, go to Step 8. 

Step 5. If )()1( ii AA ≠+ , set 1+= ii and go to Step 3. Otherwise, go to Step 6. 

Step 6. Compute the optimal profit ),,,( 21
*

2 ttpAΠ with the values of 1 2, ,p t t and )1( += iAA . 

Step 7. Print the optimal solution: * * *
1, ,A p t , *

2t and * * * * *
2 1 2Π ( , , , )A p t t . Go to Step 15. 

Step 8. Set  UAA l
i ==+ *)1(

1 and 1*)1(
2 +=+

l
i AA .  

Step 9. If )1(
2

)1(
1

)( ++ ≠= iii AAA or )1(
1

)1(
2

)( ++ ≠= iii AAA , there are two optimal solutions of A , say, 

)1(
1

*
1

+= iAA and )1(
2

*
2

+= iAA . Go to Step 14. 

Step 10. If )1(
2

)1(
1

)( ++ ≠≠ iii AAA , solve Eq. (27) and Eq. (31) by putting )1( += iAA for )(
1

jt and )( jp with 

the help of Eq. (26). Calculate the corresponding )(
2

jt from Eq. (26).  Set 1+= ii  and 

calculate the solutions Uj of 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+ using )(

2
)(

1 , jj tt and )( jp for 

1,2j = .    

Step 11. If each Uj is not an integer, set  j
i

j UA =+ )1( where 2,1=j . 

(a) If each )()1( i
j

i
j AA =+ , there are two optimal solutions of A , say, )1(

1
*

1
+= iAA and 

)1(
2

*
2

+= iAA . Go to Step 14. 

(b) If )(
1

)1(
1

ii AA ≠+
or 

)(
2

)1(
2

ii AA ≠+
or both 

)(
1

)1(
1

ii AA ≠+
and 

)(
2

)1(
2

ii AA ≠+
, solve Eq. (27) 

and Eq. (31) by putting )1( += i
jAA for )(

1
jt and )( jp with the help of Eq. (26). 

Calculate the corresponding )(
2

jt from Eq. (26) and then compute  

( ))(
2

)(
1

)()1()(
2 ,,, jjji

j
i ttpA +Π  for 2,1=j . Find the )1( +i

jA for which

( ))(
2

)(
1

)()1()(
2 ,,, jjji

j
i ttpA +Π is larger between ( ))1(

2
)1(

1
)1()1(

1
)1(

2 ,,, ttpA i+Π and 

( ))2(
2

)2(
1

)2()1(
2

)2(
2 ,,, ttpA i+Π .  Set )1()1( ++ = i

j
i AA and go to Step 3. 

Step 12. If one or both of )2,1( =jU j are not integers, set  j
i

j UA =+ )1( where 2,1=j .When 
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)1(
2

)1(
1

++ = ii AA or 1~ )1(
2

)1(
1 =++ ii AA , solve Eq. (27) and Eq. (31) by putting )1(

1
+= iAA  for 

1t and p with the help of Eq. (26). Calculate the corresponding 2t from Eq. (26).  Set 

)1(
1

)1( ++ = ii AA and go to Step 3.   Otherwise, go to the next step. 

Step 13. Solve Eq. (27) and Eq. (31) by putting )1( += i
jAA for )(

1
jt and )( jp with the help of Eq. (26). 

Calculate the corresponding )(
2

jt from Eq. (26) and then compute  ( ))(
2

)(
1

)()1()(
2 ,,, jjji

j
i ttpA +Π  

for 2,1=j . Find the )1( +i
jA for which ( ))(

2
)(

1
)()1()(

2 ,,, jjji
j

i ttpA +Π is larger between 

( ))1(
2

)1(
1

)1()1(
1

)1(
2 ,,, ttpA i+Π  and ( ))2(

2
)2(

1
)2()1(

2
)2(

2 ,,, ttpA i+Π .  Set )1()1( ++ = i
j

i AA and go to 

Step 3. 

Step 14. Solve Eq. (27) and Eq. (31) by putting *
jAA = for )(

1
jt and )( jp with the help of Eq. (26) 

where 2,1=j . Calculate the corresponding )(
2

jt from Eq. (26). Print the optimal solutions: 

( )*)1(
2

*)1(
1

*)1(*
1 ,,, ttpA  and ( )*)2(

2
*)2(

1
*)2(*

2 ,,, ttpA  with

( ) ( )*)2(
2

*)2(
1

*)2(*
2

*
2

*)1(
2

*)1(
1

*)1(*
1

*
2 ,,,,,, ttpAttpA Π=Π  . 

Step 15. End. 

 

5.  Numerical illustration 

This section solves three numerical examples. The first two examples illustrate the inventory model 

without shortages and the second one exemplifies the inventory model with shortages.  

Example 1. The inventory model without shortages 

Let 520$0 =C /order, 100=a , 5.1=b , 5$=pC /unit, 1$=g /unit/week, 25.0$=h

/unit/(week)2,E=4weeks, L=5weeks, 3=n , 05.0=cI /week, α=0.4, 1.0=γ , 50$=G /advertisement. The 

optimal solution can be obtained by dint of the algorithm of the inventory model without shortages in 

section 4.1 as follows: 

Step 1: Initialize
2
ET = and 

b
ap 8.0

= . 

Iteration 1:  

Step 2: Set 1=i and 0)( == AA i .  

Step 3: The solution U of the equation 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+  is 2.6838. 
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Step4: Since U is not an integer, set   32.6838*)1( ===+
l

i AA . Solving Eq. (14) and Eq. (17) for T and

p with the value of 3=A  one can obtain T=2.396928 and p=37.85930. 

Step5: Since )()1( ii AA ≠+ , set 1+= ii and go to Step 3. 

 

Iteration 2: 

Step 3: The solution U of the equation 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+ is 5.78836. 

Step 4: Since U is not an integer, set   65.78836*)1( ===+
l

i AA .Solving Eq. (14) and Eq. (17) for T 

and p with the value of A=6 one can obtain T=2.515376 and p=38.00229. 

Step 5: Since )()1( ii AA ≠+ , set 1+= ii and go to Step 3. 

 

Iteration 3: 

Step 3: The solution U of the equation 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+  is 6.10415. 

Step 4: Since U is not an integer, set   76.10415*)1( ===+
l

i AA .Solving Eq. (14) and Eq. (17) for T 

and p with the value of A=7 one can obtain T=2.552968 and p=38.04934. 

Step 5: Since )()1( ii AA ≠+ , set 1+= ii and go to Step 3. 

 

Iteration 4: 

Step 3: The solution U of the equation 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+  is 6.20208. 

Step 4: Since U is not an integer, set   76.20208*)1( ===+
l

i AA .Solving Eq. (14) and Eq. (17) for T

and p with the value of A=7 one can obtain T=2.552968 and p=38.10817. 

Step 5: As 7)()1( ==+ ii AA , go to Step 6. 

Step 6: The optimal total profit per unit time using A=7, p=38.04934 and T=2.552968 is 

1171.591),,(*
1 =Π TpA . 

Step 7: The optimal solution: 7* =A , 38.049* =p , 2.553* =T and 1171.591),,( ****
1 =Π TpA .  

Therefore, the optimal solution is given by 7* =A , 38.049$* =p , 2.553* =T weeks, 

188.816* =Q  units and the total profit per unit time is 1171.591$),,((max)
1 =Π TpA /week. The concavity 

of the profit function for Example 1 is observed in the Figure3for a fixed value of the frequency of 
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advertisement and also the location of the optimal solution can be identified by the point with magenta 

color. 

 

Figure3. The concavity of the profit function ),,(1 TpAΠ  for 7=A . 

Example 2. The inventory model without shortage 

Let 520$0 =C /order, 100=a , 2.5b = , $15pC = /unit, $2g = /unit/week, 25.0$=h /unit/(week)2, 

E=4weeks, L=5weeks, 3=n , 05.0=cI /week, α=0.4, 1.0=γ , 50$=G /advertisement. The algorithm of 

the inventory model without shortages in section 4.1 provides the optimal solution of the problem as 

follows: 

Step 1: Initialize
2
ET = and 

b
ap 8.0

= . 

Iteration 1:  

Step 2: Set 1=i and 0)( == AA i .  

Step 3: The solution U of the equation 
1)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+ is -0.695453. 

Step 4: Since U is not an integer, set   00.695453-*)1( ===+
l

i AA . Solving Eq. (14) and Eq. (17) for 

T and p with the value of A=0 one can obtain T=2.554998 and p=32.14957.  

Step 5: As 0)()1( ==+ ii AA , go to Step 6. 
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Step 6: The optimal profit per unit time using 0,A =  32.14957=p and 2.254998=T is 

-98.43092),,(*
1 =Π TpA . 

Step 7: The optimal solution: 0* =A , * $32.14957 ,p = 2.254998* =T and * * * *
1Π ( , , ) -87.64017.A p T =  

Thus, the optimal solution is given by 0* =A , 32.15$* =p , 2.255* =T weeks, 63.068* =Q units 

and the total profit is -$87.6402),,((max)
1 =Π TpA / week. The inventory systems are not always 

profitable and the Example 2 reveals that the inventory system is not profitable in this case. Moreover, the 

optimal frequency of advertisement is zero which justifies the results found in Appendix C.  

Example 3.The inventory model with shortages 

For this example, it is considered the same data of the Example 1along with δ=0.4, Cs=$3/unit and 

Cl=$6/unit. The optimal solution using the algorithm of the inventory model without shortages in section 

4.2 can be computed as follows: 

Step 1: Initialize
21
Et = , 02 =t and 

b
ap 8.0

= . 

Iteration 1:  

Step 2: Set 1=i and 0)( == AA i .  

Step 3: The solution U of the equation 
2)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+  is 2.6838. 

Step 4: Since U is not an integer, set   32.6838*)1( ===+
l

i AA . Solving Eq. (27) and Eq. (31) by 

putting A=3 fort1andp with the help of Eq. (26) one can obtain t1=2.251032, p=37.51684. The 

corresponding t2, from Eq. (26), is 0.5588405. 
Step 5: Since )()1( ii AA ≠+ , set 1+= ii and go to Step 3. 

 

Iteration 2: 

Step 3: The solution U of the equation 
2)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+ is 7.23158. 

Step 4: Since U is not an integer, set   87.23158*)1( ===+
l

i AA .Solving Eq. (27) and Eq. (31) by 

putting A=8 for t1 and p with the help of Eq. (26) one can obtain t1=2.429471, p=37.69551. The 

corresponding t2, from Eq. (26), is 0.6608389. 

Step 5: Since )()1( ii AA ≠+ , set 1+= ii and go to Step 3. 

 

Iteration 3: 
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Step 3: The solution U of the equation 
2)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+  is 8.02072. 

Step 4: Since U is not an integer, set   98.02072*)1( ===+
l

i AA . Solving Eq. (27) and Eq. (31) by 

putting A=9 for t1 and p with the help of Eq. (26) one can obtain t1=2.461948, p=37.72961. The 

corresponding t2, from Eq. (26), is 0.6815652. 

Step 5: Since )()1( ii AA ≠+ , set 1+= ii and go to Step 3. 

 

Iteration 4: 

Step 3: The solution U of the equation 
2)(

)1()2(
ψ

γγ

bpa
GAA

−
=+−+  is 8.16652. 

Step 4: Since U is not an integer, set   98.16652*)1( ===+
l

i AA . Solving Eq. (27) and Eq. (31) by 

putting A=9 for t1 and p with the help of Eq. (26) one can obtain t1=2.461948, p=37.72961. The 

corresponding t2, from Eq. (26), is 0.6815652. 

Step 5: As 9)()1( ==+ ii AA , go to Step 6. 

Step 6: The optimal total profit per unit time using A=9, t1=2.461948, t2=0.6815652 and p=37.72961 is

1233.009),,,( 21
*
2 =Π ttpA . 

Step 7: The optimal solution: 9* =A , 2.461948*
1 =t , 0.6815652*

2 =t , 37.72961* =p  and

1233.009),,,( *
2

*
1

***
2 =Π ttpA .  

Hence, the optimal solution is as follows: 9* =A , 37.730$* =p , 2.462*
1 =t weeks, 0.682*

2 =t

week, 3.144* =T weeks, 185.256* =S units, 32.935* =R units, 218.190* =Q units and

(max)
2 1 2Π ( , , , ) $1233.009.A p t t = The concavity of the total profit function is observed from the Figure4, for a 

fixed value of the frequency of advertisement and also the point with magenta color indicates the location 

of the optimal solution. 
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Figure4. The concavity of the profit functions ),,,( 212 tptAΠ for 9=A . 

 

6. Sensitivity analysis 

A sensitivity analysis is carried out in order to investigate the impact of changes of input parameters on 

optimal solution of 1 2, , , ,p t t S R and the total profit per unit time for the Example 3.The results are shown 

in Table 2. 

Table 2. Sensitivity analysis of input parameters on the optimal solution of Example 3. 
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value change 
in the 
original 
values 

*p  *
1t  *

2t  *S  *R  
Total 

profit 

C0
 520 

-20% 8 -0.34 -5.03 -11.04 -7.59 -10.48 2.78 
-10% 8 -0.21 -3.12 -7.03 -5.14 -7.02 1.37 
10% 9 0.11 1.63 3.91 2.2 3.31 -1.33 
20% 9 0.22 3.19 7.82 4.32 6.58 -2.63 

a 100 

-20% 5 -17.53 1.48 27.17 -25.49 -9.92 -49.34 
-10% 7 -8.78 0.62 11.83 -12.77 -4.57 -26.68 
10% 11 8.8 -0.48 -9.47 12.84 3.96 30.79 
20% 14 17.69 0.22 -15.18 28.51 10.54 65.76 

b 1.5 

-20% 12 22.35 3.73 -11.58 11.22 -5.5 41.55 
-10% 10 9.9 1.27 -6.6 4.27 -3.66 18.25 
10% 7 -8.21 -2.65 2.5 -7.07 -1.31 -14.62 
20% 6 -14.98 -4.01 7.32 -11.33 0.01 -26.57 

Cp
 5 

-20% 9 -1.63 3.5 -6.7 7.32 -4 6.13 
-10% 9 -0.81 1.69 -3.36 3.52 -1.97 3.03 
10% 8 0.72 -2.9 0.23 -5.98 -1.77 -2.95 
20% 8 1.52 -4.38 3.53 -8.96 0.02 -5.83 

g 1 

-20% 9 -0.17 2.61 -3.22 4.01 -2.66 1.11 
-10% 9 -0.08 1.29 -1.60 1.96 -1.31 0.55 
10% 8 -0.01 -2.57 -1.51 -4.62 -2.37 -0.53 
20% 8 0.06 -3.78 -0.01 -6.38 -1.14 -1.04 

h 0.25 

-20% 9 -0.01 0.83 -0.62 1.2 -0.54 0.21 
-10% 9 -0.01 0.41 -0.31 0.59 -0.27 0.11 
10% 9 0.005 -0.4 0.31 -0.58 0.27 -0.11 
20% 9 0.01 -0.8 0.61 -1.15 0.53 -0.21 

Cs
 3 

-20% 9 -0.07 -0.24 3.81 -0.25 3.46 0.17 
-10% 9 -0.03 -0.12 1.87 -0.12 1.70 0.08 
10% 9 0.03 0.11 -1.80 0.12 -1.64 -0.08 
20% 9 0.06 0.22 -3.54 0.24 -3.24 -0.16 

Cl
 6 

-20% 9 -0.05 -0.19 3.03 -0.2 2.75 0.14 
-10% 9 -0.03 -0.09 1.49 -0.1 1.36 0.07 
10% 9 0.03 0.09 -1.45 0.1 -1.32 -0.07 
20% 9 0.05 0.18 -2.85 0.19 -2.61 -0.13 

δ 0.4 

-20% 9 -0.11 -1.04 16.05 -1.33 17.15 0.81 
-10% 9 -0.05 -0.48 7.41 -0.62 7.89 0.38 
10% 9 0.05 0.42 -6.44 0.54 -6.80 -0.33 
20% 9 0.09 0.78 -12.09 1.00 -12.73 -0.62 

Ε 4 

-20% 8 -0.02 -10.52 3.91 -8.85 2.4 -2.36 
-10% 8 -0.06 -5.71 0.15 -5.62 -0.84 -1.1 
10% 9 -0.03 4.1 -2.86 2.57 -2.51 0.98 
20% 9 -0.06 7.86 -5.33 4.82 -4.69 1.85 

n 3 

-20% 9 0.25 -0.51 1.05 -1.05 0.6 -0.94 
-10% 9 0.06 -0.13 0.26 -0.26 0.15 -0.23 
10% 9 -0.03 0.06 -0.13 0.13 -0.08 0.12 
20% 9 -0.05 0.1 -0.21 0.21 -0.12 0.19 

L 5 

-20% 9 -0.1 0.21 -0.42 0.43 -0.24 0.38 
-10% 9 -0.05 0.1 -0.21 0.21 -0.12 0.19 
10% 9 0.05 -0.1 0.21 -0.21 0.12 -0.19 
20% 9 0.1 -0.2 0.42 -0.42 0.24 -0.37 

Ic
 0.05 -20% 9 -0.1 0.21 -0.42 0.43 -0.24 0.38 
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-10% 9 -0.05 0.1 -0.21 0.21 -0.12 0.19 
10% 9 0.05 -0.1 0.21 -0.21 0.12 -0.19 
20% 9 0.1 -0.2 0.42 -0.42 0.24 -0.37 

α 0.4 

-20% 9 -0.1 0.21 -0.42 0.43 -0.24 0.38 
-10% 9 -0.05 0.1 -0.21 0.21 -0.12 0.19 
10% 9 0.05 -0.1 0.21 -0.21 0.12 -0.19 
20% 9 0.1 -0.2 0.42 -0.42 0.24 -0.37 

γ 0.1 

-20% 6 -0.2 -2.9 -6.55 -10.76 -12.4 -5.08 
-10% 7 -0.14 -2.04 -4.66 -6.82 -8.04 -2.68 
10% 10 0.04 0.52 1.24 4.13 4.49 2.97 
20% 12 0.14 2.07 5 11.09 12.62 6.23 

G 50 

-20% 11 -0.06 -0.89 -2.06 0.63 0.05 2.56 
-10% 10 -0.02 -0.3 -0.69 0.56 0.36 1.2 
10% 8 0.0004 0.01 0.01 -1.04 -1.04 -1.05 
20% 7 0.02 0.28 -0.66 -2.58 -2.76 -1.98 

 

From Table 2, the following observations are made: 

(i) The optimal values of selling price (p), stock in period without shortage case )( 1t , time period of 

shortage )( 2t , initial inventory level (S), maximum shortage (R)and total profit per unit time are 

insensitive with respect to the location parameter of holding cost ),(g  shape parameter of holding 

cost ),(h shortage cost )( sC , lost sale cost )( lC , lead time )(L , rate of chargeable interest )( cI

,partial payment fraction )(α  and advertisement cost )(G . However, the initial highest stock level is 

less sensitive with respect to the location parameter of holding cost )(g . On the other hand, highest 

shortage level is less sensitive with respect to shortage cost )( sC and opportunity cost )( lC .  

(ii) The total profit per unit time is highly sensitive with respect to the location parameter a and b . The 

location parameter of the demand ( a ) has the greatest positive impact on increasing the total profit. 

Notice that a higher value of a helps to augment the customers’ demand and consequently, to 

increase the retailer’s total revenue. On the other hand, the shape parameter of the demand rate b  

has the greatest negative impact on the total profit. Note that higher value of b causes to abate the 

customers’ demand and so, to abate the retailer’s total revenue. So this suggests to the decision 

maker (retailer) must give foremost attention on the demand parameters instead of reducing all costs 

for increasing the total profit. 

(iii) Maximum shortage level (R) is highly sensitive with respect to the changes in replenishment cost 

( ),oC advertisement elasticity ( ),γ backlogging rate ( )δ and location parameter ( ).a Among the 

mentioned parameters, the backlogging parameter )(δ has the greatest impact on R; decreasing it. 
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(iv) Highest stock level (S) is highly sensitive in a positive way with respect to the changes in location 

parameter ( ),a  advertisement elasticity ( )γ and maximum lifetime (E). This shows the fact that if a

increases, then the customers’ demand also increases and so, the retailer need to store a large amount 

of products to handle customers’ high demand. For a higher maximum lifetime product, the retailer 

orders a large amount of products in order to reduce ordering cost. On the other hand, S is highly 

sensitive in a negative way with respect to the changes in shape parameter of demand ( b )and 

purchasing cost (Cp). For a higher value of b , customers’ demand decreases significantly and then, 

retailer needs to store a small amount of products in order to avoid the higher carrying cost. For a 

higher unit purchase cost, the retailer orders a small amount of the product. 

(v) The parameters replenishment cost (C0) shape parameter of demand ( b ), purchasing cost ( pC ), 

holding cost parameters ( and ),g h  interest charge rate ( cI ), fraction amount of prepayment on 

purchasing cost (α ), advertisement elasticity ( )γ and advertisement cost (G) have an impact on the 

optimal shortages period 2( )t in positive way. For example, if the values of the mentioned 

parameters increase, then the optimal shortages period also increases. Among these parameters, the 

shape parameter )(b of the demand has the greatest impact on 2t . This reveals that if b increases, 

then customers’ demand decreases and hence, the retailer orders a small amount of products. 

Consequently, all products are consumed within a short period and shortages period augments 

significantly. On the other hand, the parameters location parameter ( ),a  purchasing cost (Cp), 

shortage cost (Cs), opportunity cost (Cl), backlogging rate ( ),δ maximum lifetime (E) and number of 

equal pre-payment ( n ) have impact on 2t as follows if the values of the mentioned parameters 

increase, then 2t  decreases. The location parameter )(a  of the demand has the greatest effect on 2t ; 

for example, a higher value of a increases the demand significantly and hence, the retailer makes a 

large order size and the shortages reduces significantly.  

(vi) Price of the product ( )p is highly sensitive with respect to the demand parameter a in a positive way 

and it is also highly sensitive with respect to the other demand parameterb but in a negative way. 

The price p is moderately sensitive relating to the unit purchase cost whereas less sensitive with 

regard to the rest of the parameters. Another interesting observation is that a higher selling price does 

not always give a higher total profit. 

(vii) The stock-in period *
1( )t is highly sensitive with respect to maximum lifetime )(E and unit purchase 

cost )( pC . It reveals that, on the one hand, for a higher maximum lifetime product the retailer 

(decision maker) orders a large amount of products. On the other hand, for a higher unit purchase 
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cost retailer orders a small amount of product. Also *
1( )t  is moderately sensitive with respect to the 

parameters replenishment cost ( ),oC  location parameter )(a  , shape parameter (b), fixed parameter 

of the holding cost )(g   and advertisement elasticity ( )γ . However, the scale parameter of the 

holding cost )(h , shortage cost )( sC , lost sale cost )( lC , rate of chargeable interest )( cI , 

backlogging rate ( )δ , partial payment fraction )(α , number of equal pre-payment ( n ) and 

advertisement cost )(G have almost no impact on 1t . 

(viii) The frequency of advertisement )(A is highly sensitive with respect to the parameters purchasing 

cost (Cp), location parameter ( ),a  shape parameter (b), advertisement elasticity ( )γ , maximum 

lifetime (E) and advertisement cost (G). Among these parameters, the location parameter of demand

)(a , maximum life time )(E and advertising elasticity )(γ have impact on A  as follows if the 

values of the mentioned parameters increase, then A also increases. On the other hand, shape 

parameter (b), purchasing cost (Cp) and advertisement cost (G) affect the optimal frequency of 

advertisement in a negative way. 

 

7. Managerial implications 

The following findings are obtained from the sensitivity analysis. These are also the suggestions to the 

manager/ the decision maker in order to enhance the total profit of the organization. 

• As the location parameter )(a and shape parameter )(b of the demand rate have the greatest effect 

on the retailer’s total profit in positive sense and negative manner respectively, the decision 

maker must give a meticulous concentration on boosting the customers’ demand by implementing 

an effective marketing policy instead of reducing inventory related costs.  

• As a much effective advertisement boosts the customers’ demand in a great manner by creating 

the brand awareness and promoting the information of the products to the potential customers, 

therefore manager must develop an effective advertisement and telecast through a popular media 

with affordable cost per advertisement by negotiating with the media companies. 

• The sensitivity analysis reveals that the total profit augments when the number of equally spaced 

prepayments increases during the lead time. For that reason, the manager must select the 

manufacturer or supplier who allows a higher number of equally spaced advance payment 

policies with a small portion of the total purchasing cost. 

• The deterioration rate is an increasing function of holding time of the product and this rate 

increases as much as the product approaches to their maximum lifetime or expired date. For this 

reason, the customers always want to purchase the products which have longer expiration dates so 
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that the products can be preserved for a longer time. Consequently, the products with a higher 

maximum lifetime attract more customers and help to augment the revenue in a greater extent. 

Hence, the manager is suggested to select the products with higher maximum lifetimes.  

• The sensitivity analysis also shows that the unit purchase cost has the greatest impact on the 

retailer’s total profit per unit time among all the cost parameters. Thus, the manager must reduce 

the unit purchase cost by negotiating with the suppliers/manufacturers ensuring them that they are 

going to make a higher order size if the unit purchase cost is lower. 

• The retailers always try to run their business without any discontinuation not only to keep their 

popularity in the today’s competitive market environment but also to hold their regular customers 

meeting the demands. Furthermore, inventory systems are not always profitable. When the 

inventory system is not profitable, the decision maker should avoid the advertisement policy.    

 

8. Conclusions 

This research work develops two inventory models (without shortages and with shortages) considering 

advanced payment for a deteriorating product which has a maximum lifetime. The inventory models 

assume that the holding cost follows a linearly time-dependent increasing function. The demand is 

dependent on the selling price as well as the frequency of advertisement when advertisement number is 

confined to be a positive integer. In both inventory models, a mixed-integer constraint optimization is 

formulated and solved by exploring the existence of the optimal values of the decision variables for 

maximizing the total profit. To validate proposed inventory models, three numerical examples are 

presented and solved by dint of the proposed solution algorithms. In the bottom line, several managerial 

insights are found by performing a sensitivity analysis observing the effect of changes on different 

parameters. When the inventory system is not profitable, the decision maker should avoid the 

advertisement policy. The retailer should select the supplier who provides the products with higher 

maximum lifetimes of the particular type of item and also allows a higher number of equally spaced 

advance payment policies with a small portion of the total purchasing cost. 

For further research, one can extend the proposed inventory model with shortages by including 

realistic features such as nonlinear demand, nonlinear holding cost, stock-dependent demand, stock-

dependent demand, and time-dependent demand under inflation. Moreover, allowing multiple delayed 

payments within equal sized credit periods from the delivery time and quantity discounts based on the 

order size can be salient extensions. Also, the model inventory model with shortages can be explored by 

introducing imprecise environments such as fuzzy-valued inventory parameters and interval-valued 

inventory parameters. These are some interesting research directions that the researchers and 

academicians can do in the near future. 
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Appendix A. Proof of the Theorem 1. 

For convenience, denote  
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TTg =)(1 . 

Now Eq. (4) is written in the form:
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If the value of the expression ( )
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+ is always non-negative then )(1 Tf is strictly 

concave. Now the expression ( )
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+  is always positive for any 0>T as 
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0)1(
1

1
2

3

>+−
−+

+ E
TE

E . For that reason, )(1 Tf ″ is a negative valued function for all 0>T and 

hence, the )(1 Tf is a differentiable and concave function. Moreover, TTg =)(1 is a positive and 

affinefunction. For a given value of A and p ; ),,(1 TpAΠ is a strictly pseudo-concave function of T  and 

therefore, there exists a unique optimal solution *T . Consequently, the part (a) of the Theorem 1 is 

proved. 

The first order partial derivative of ),,(1 TpAΠ  with respect to T  is: 
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Note that it is not possible to find the value of 
T

TpA
∂

Π∂ ),,(1 at the replenishment cycle length 0=T but 

the limiting value at 0=T with the help of L’Hopital’s rule can be easily determined.  For the 

convenience, first note that 
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On the one hand, if 01 >∆  then ),,(1 TpAΠ is a strictly increasing function over the entire cycle length 

],0[ T where ET ≤<0 .  Consequently, the total profit per unit time is maximized at ET =* . With this, 

the proof of part (b) of Theorem 1 is completed.  

On the other hand, if 01 ≤∆  then there exists a unique point between 0 and E where the profit function

),,(1 TpAΠ attains its global maximum value. This is the proof of part (c) of Theorem 1. 

 

Appendix B. Proof of the Theorem 2. 

The first order and second order partial derivatives of ),,(1 TpAΠ with respect to p  are:  
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Consequently, ),,(1 TpAΠ is a concave function with respect to p for a given value of 0 and 0A T> >  

within ),0[ ∞  and thus there exists a unique optimal solution ),0[* ∞∈p  satisfying 0)(1 =
∂

⋅Π∂
p

such that 

profit function per unit time is maximized. After rearranging the terms, Eq. (B1) is rewritten as: 
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In the right hand side of Eq. (B3), specifically inside of brackets the first term is a positive factor of 

purchasing cost (PC), the second term is a positive factor of interest of loan (IL) and the third, fourth and 

fifth terms are positive factors of holding cost (HC). As a result, 0)(1 =
∂

⋅Π∂
p

is solvable for p if

02 <− bpa  i.e.,
b
ap
2

> . But to ensure the demand 0),( ≥pAD , the selling price per unit p must be 

equal or less than
b
a

 
i.e.,

b
ap ≤ . Combining these two inequalities, it is concluded that there exists a 

unique 




∈

b
a

b
ap ,
2

* such that profit function per unit time is maximized. On the other hand, if 

0)(1 =
∂

⋅Π∂
p

provides the unit selling price
b
ap > , then the customers’ demand rate ( )()1( bpaA −+ γ ) 

becomes negative which contradicts the practical scenario. In this case, the optimal selling price is

b
ap =*  .This completes the proof. 

Appendix C. 
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For any given , 0p T > , the first order partial derivative of ),,(1 TpAΠ with respect to A is: 
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Again, the second order partial derivative of ),,(1 TpAΠ with respect to A is: 
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After rearranging the terms of (C2), one has  
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In the right hand side of (C3), specifically inside of the third bracket the first term is the total revenue and 

remaining all terms are different inventory costs during the entire cycle length. When the summation of 

all terms inside the third bracket is positive, the model is profitable and then 0)(
2
1

2

<
∂

⋅Π∂
A

. Thus, the total 

profit per unit time is concave with respect to A in ),0[ ∞ .  On the other hand, when the model is not 

profitable, then 0
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Eq. (C1), 0)(1 <
∂

⋅Π∂
A

  which reveals that the total profit function per unit time is always decreasing 

function for A in ),0[ ∞ . So, the optimal total profit function per unit time can be found at 0=A .   

 

Appendix D. Proof of the Theorem 3. 

For convenience, define the following auxiliary functions from Eq. (12) 
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and 

21212 ),( ttttg += .                                                                                                                                   (D2) 

Therefore, from Eq. (12), the retailer’s total profit per unit time, for any given positive values of A and 

p , becomes
),(
),(),,,(

212

212
212 ttg

ttfttpA =Π . In order to prove that the ),,,( 212 ttpAΠ is jointly pseudo-

concave function in ),( 21 tt it is necessary to show that ),( 212 ttf is a differentiable and (strictly) joint 

concave function in ),( 21 tt . To construct the Hessian matrix for ),( 212 ttf , calculate all possible second 

order partial derivatives with respect to 1t and 2t .   
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Then, the Hessian matrix for ),( 212 ttf  is: 
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As the first principal minor is negative and the second principal minor is positive, the Hessian matrix for

),( 212 ttf is negative definite. For that reason, ),( 212 ttf  is a differentiable and (strictly) concave function 

with respect to 1t and 2t  simultaneously. Moreover, the function 21212 ),( ttttg += is a positive, 

differentiable and affine function, so the retailer’s total profit function per unit time ),,,( 212 ttpAΠ is 

jointly pseudo-concave function in ),( 21 tt , and has only one maximum value.        

As a result, the objective function ),,,( 212 ttpAΠ , for any fixed A and p , attains the global maximum 

value for a unique pair of values ),( 21 tt . This completes the proof. 

 

Appendix E. Proof of the Theorem 4. 

Performing the implicit differentiation in Eq. (25) with respect to 1t , one has 
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The above result reveals that, for any fixed A and p , the stock-out period 2t is an increasing function of 

stock-in period 1t . 
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The first order partial derivative of ),,,( 212 ttpAΠ with respect to 1t by dint of Eq. (25) can be expressed 

as follows: 
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If 01 →t , then one can find also 02 →t  from Eq. (25). It is not possible to find the value of 
1
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01 =t but the limiting value at 01 =t with the help of L’Hospital’s rule can be easily determined. Then, for 
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In addition, according to the result of Theorem 4, ),,,( 212 ttpAΠ is a pseudo-concave function of 1t and

2t .  

If 02 >∆ , then ),,,( 212 ttpAΠ is a strictly increasing function with respect to 1t  over the interval ],0[ E . 

Consequently, total profit is maximized at Et =*
1 and the corresponding optimal value of *

2t , from Eq. 

(25), is { }1)(1
−EF

δ
. Hence, the proof of part (a) of Theorem 4 is completed.  

On the other hand, if 02 ≤∆ , then there exists a unique value of 1t between 0 and E where the profit 

function ),,,( 212 ttpAΠ attains its global maximum value (by mean value theorem). This is the proof of 

part (b) of Theorem 4. The corresponding optimal value of *
2t can be obtained from Eq. (25).  

 

Appendix F. Proof of the Theorem 5. 

For a given value of 0,0 1 >≥ tA and 02 >t , the first order and second order partial derivatives of 

),,,( 212 ttpAΠ with respect to p are: 
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Thus, ),,,( 212 ttpAΠ is a concave function in p for a given value of 0,0 1 >> tA and 02 >t  within

),0[ ∞ and for that reason, there exists a unique optimal solution ),0[* ∞∈p  satisfying 0
)(2 =

∂
⋅Π∂

p
such 

that ),,,( 212 ttpAΠ is maximized. After rearranging the terms, Eq. (F1) is expressed as follows: 
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Every term inside the brackets of the right hand side of Eq. (F3) is positive because of these are positive 

factors of different inventory costs. Consequently, 0
)(2 =

∂
⋅Π∂

p
is solvable for p if 2 0a bp− <  i.e., 

b
ap
2

> . But to ensure the demand 0),( ≥pAD , the selling price per unit p must be equal or less than

b
a

i.e., 
b
ap ≤ .As a result, combining these two inequalities, there exists a unique 




∈

b
a

b
ap ,
2

*
such 

that the profit function per unit time is maximized. On the other hand, if 0)(2 =
∂

⋅Π∂
p

provides the unit 

selling price
b
ap > , then the customers’ demand rate ( )()1( bpaA −+ γ ) becomes negative which 
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contradicts the practical scenario. In this case, the optimal selling price is
b
ap =* . This completes the 

proof.   
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