
PyDiophantus Maze Game: Play it to Learn Mathematics or Implement it to

Learn Game Programming in Python

Dimitra Koupritzioti, Stelios Xinogalos

Abstract

Serious games or educational games have attracted the interest of instructors and researchers

for several years. In the field of education, serious games are being used for motivating

students, attracting their interest in cognitively demanding fields and making the teaching and

learning process more fun. Moreover, learning through implementing games has been

proposed as an effective alternative to the traditional instructor-centered approach to teaching

programming. Towards this direction the study presented in this article aims to investigate

whether it is feasible to learn programming concepts, as well as game programming concepts,

through implementing a game in Python. More specifically, the study presented has the

following goals: firstly, to review and comparatively analyze existing game engines and

libraries that can be used by novice programmers for implementing simple games in Python;

secondly, to investigate whether it is feasible to implement a simple but yet meaningful game

that can be used as a prototype for learning programming concepts and game programming

concepts in Python. In order to reach the second goal a serious game was implemented as a

case study, using the free and open source Python library of pygame that based on the

aforementioned comparative analysis is appropriate for novices. The PyDiophantus Maze

game that was implemented can be used for teaching and learning game programming in

Python, but also for learning mathematics. The article concludes with proposals for utilizing

the game in mathematics and (game) programming education, as well as plans for further

research.

Keywords: serious games, educational games, mathematics, programming, game

programming, game library, Python

1. Introduction

Game-based learning is a term used to describe any initiative that mixes computer games

(videogames) and education. This may entail anything between the introduction of

commercial games in educational processes and the application of slightly interactive

multimedia wrappers around traditional educational content (Moreno-Ger et al., 2008).

Consequently, the design of serious games or educational games is a broad subject that

groups very different approaches and methodologies. Balancing fun/entertainment and

education is an important concern in the design process. On one extreme, efforts may focus

on translating the official educational content into a game-like environment, such as adding

playability on top of preexisting learning material. On the other extreme, commercial games

whose contents and models are rich and detailed can be used for educational purposes in ways

that even their creators had not envisaged. A middle ground approach involves the use of

games specifically designed for learning. Several challenges are inherent in this approach,

such as the difficulty of designing a truly entertaining and engaging game with learning

goals/tasks involved and the associated costs which may be substantial and hard to justify.

Given that game design is not an exact science and fun is a subjective concept, results may be

mixed.

A Science Learning Game is a computer game whose purpose is to educate the player on a

STEM (Science, Technology, Engineering or Mathematics) topic through gameplay. Such

games can specifically support formal or informal STEM education, where alignment with the

school curriculum may be a consideration. In another scenario, outside the education system,

players may be engaged in “crowd science” where they help solve pieces of complex puzzles

or problems that are of interest to scientists conducting research. Problems may be factored

into pieces addressable through collective or crowdsourced multiplayer game play sessions

(Yampolsky & Scacchi, 2016).

Besides the interest of instructors and researchers on using educational games in STEM

education or education and training in general, there is also a great interest on teaching and

learning (serious) game programming (Xinogalos, 2018) to and by students respectively.

However, building video games is an effort-intensive and error-prone software-development

task (Guana et al., 2015). So, game engines which offer reusable components that simplify

common game related tasks like rendering, physics related computations and input are usually

used to bring a game to reality and even more to teach game programming to novices. This

frees developers from having to write code to handle these tasks from scratch so that they can

focus on the details that make their game unique (Paul, Goon, & Bhattacharya, 2012).

This article presents a study investigating the potential of implementing a game in Python as a

means of learning programming concepts, as well as game programming using Python. In

order to support novices in implementing such a game, a review and comparative analysis of

Python game libraries was carried out. Based on the results of this comparative analysis,

pygame was used for implementing a serious game for teaching and learning mathematics as

a case study. This game is analyzed in terms of the programming concepts/constructs or game

programming concepts that can be taught to students either by presenting it as a case study or

by asking students to implement it. The educational game that was implemented is a maze

game called PyDiophantus and is targeted to STEM education. Although PyDiophantus was

implemented as a case study it is fully functional and can be utilized for practicing on

evaluating arithmetic expressions and priority of operators.

The rest of the article is organized as follows. In section 2 the methodology of the study is

presented. Section 3 focuses on the issue of selecting a Python game engine or library that is

appropriate for novices and presents a review of relevant work and a comparative analysis of

six free and open source Python game engines and libraries. In section 4 the gameplay and the

configuration capabilities of the serious game that was implemented as a case study are

presented. Section 5 presents an overview of the (game) programming concepts and

constructs utilized in the game and proposes various possibilities of utilizing it in (game)

programming education. The article concludes with proposals for further research.

2. Methodology of the study

The study presented in this article has the following research questions:

Research question 1 (RQ1): What is the best free and open source game engine or

library that can be used by novices for implementing simple games in Python?

Research question 2 (RQ2): Is it possible to implement a simple but yet meaningful

game that can be used as a prototype by novices for learning programming

concepts/constructs and game programming concepts in Python?

In order to investigate RQ1 a review of existing literature on reviewing, analyzing or

comparatively analyzing game engines was carried out. Although several studies exist in the

literature, we were only able to locate just a few references on Python game engines and

libraries. However, this is not surprising since Python has gained a great interest as a

programming language the last years. Based on the criteria used in the relevant work six free

and open source game engines and libraries for Python were studied. A review and

comparative analysis of these engines is presented.

Taking into account the results of the review and comparative analysis carried out in the

context of RQ1, a game prototype was implemented for investigating RQ2. The game was

analyzed in terms of the fundamental programming concepts/constructs, as well as the game

programming concepts that it includes and as a consequence that could be learnt by novices

through studying the game as a case study or implementing it with or without guidance from

an instructor.

3. Review of Python game engines and libraries

3.1 Related work

Several papers comparing game engines have been published but they are typically not

limited to a single scripting language but rather mostly focus on the type of game.

Vasudevamurt et al. (2015) define a comprehensive grouping, analysis and comparison

framework for game engines, focusing on engines that can be used for the development of

“serious games” which they define as games that have a non-entertainment goal and context.

In their analysis, the authors consider more than 100 serious games and the engines they were

built on and they separate engines in three groups based on their popularity, namely, actively

used (very popular), somewhat used (not so popular) and next generation (recently released

with cutting edge features).

Andrade (2015) conducts a survey about popular game engines and after presenting the main

features of each engine presents a comparative table summarizing the game genre and type of

graphics supported (2D/3D), the publishing target (where developed games can be played),

the starting price for commercial usage, the scripting language and the supported platforms

where developers can work. The overall conclusion is that there is no such thing as “the best

game engine”. The choice of a game engine should be based on the kind of game, the prior

experience of the developer and how much effort they are willing and are able to put into its

development and if required on learning a new platform. An additional consideration is

whether the developer is getting into the game industry for the long run or just trying to get

acquainted with the technologies. In the first case, the time required to learn a complex engine

with many features may be justified while in the second one, a simpler engine with fewer

components may be just enough to provide a working prototype. Developers that have no

prior experience in building games should also take the time to experiment with a couple of

different options and get a feel of different editor interfaces and game abstractions. Additional

factors that need to be considered before reaching a decision are the size and activity of the

game engine’s community, as a larger and more vibrant community means that there will be

more support and the breadth, depth and quality of the engine’s documentation and samples.

Trenholme and Smith (2008) present a survey on game engines for developing first-person

virtual environments. The parameters they summarize in their final table are the availability

of an integrated level editor, whether the game source code is available, the software

development kit (SDK) bundled with the engine, its documentation and various other

parameters such as the size and activity of the community, whether certain features require

paid licenses and others. The authors note that in many cases it would be hard to imagine an

application for which one game engine would be suited and others not. All the engines they

consider provide some source code to users, typically partial that can be altered and

recompiled to affect the gameplay. The existence of a strong and active online community

supporting the engine, particularly with official developer support, is considered an important

plus as is the minimum required specification for off-the-shelf hardware.

Cowan and Kapralos (2017) also focus on engines and frameworks used for serious games. In

order to come up with a list of engines for comparison, authors surveyed three databases of

academic publications, namely Google Scholar, ACM Digital Library, and IEEE Xplore

Digital Library for names of game engines mentioned in papers related to research on

serious/educational games. The 20 most popular engines (in academic writings) were then

searched on Google to determine their popularity. In a separate survey, authors attempted to

discover which engines were most popular among serious game developers by considering

publications where an actual serious game was created using a particular engine. By

combining these two surveys authors ended up with a list of 10 game engines (with only one

using Python as a scripting language – Cocos). The parameters they summarized in a table for

the selected engines where the level editor, the support for scripting, the support for C++,

networking, 3D graphics, shader effects, support for dynamic shadows, physics, artificial

intelligence, licensing (free for non-commercial/ free for commercial), support for mobile

devices and a web player.

Christopoulou and Xinogalos (2017) focus on comparing game engines for desktop and

mobile devices (Android and iOS). The comparison framework was based on several detailed

features of the engines. The two most popular engines, namely Unity and Unreal Engine 4

were then selected for a hands-on, empirical study where the engine’s usability, the learning

curve, the process of exporting for mobile devices, as well as the game’s quality and

application size were evaluated.

It is clear that the relevant work on game engines has not investigated engines and libraries

based on Python, with just a few exceptions. However, this is not surprising since Python has

gained a great interest as a programming language the last years.

3.2 Overview of Python game engines and libraries

In this section six free and open source game engines or libraries supporting Python are

presented, as those can be tested and used in classrooms without additional costs. Notable

engines that are commercial products, such as BigWorld (http://bigworldtech.com/) which is a

middleware platform for the development of massively multiplayer online games and virtual

worlds, and Shark 3D (https://spinor.com/), a software solution for creating and running

interactive virtual 3D worlds are not presented.

pygame Engine

pygame (https://www.pygame.org) is a free and open source software library written in C and

Python whose purpose is to facilitate the creation of multimedia applications and games.

Pygame is built on top of the Simple DirectMedia Layer (http://www.libsdl.org/) which is a

popular free and open source library that provides low level access to audio, keyboard,

mouse, joystick, and graphics hardware via OpenGL and Direct3D. SDL & pygame are

highly portable and run on any device and operating system. The initial release of pygame

was back in 2000 so it already has a long history in programming terms.

Pygame is supported by a vibrant community of developers and users who contribute to an

extensive documentation, tutorials and videos with easy to follow examples and sample code.

This makes pygame ideal for a classroom environment or a programmer that dabbles with

game creation for the first time.

It must also be noted that other popular engines or libraries are built on top of pygame, such

as Ren'Py, a popular software tool for virtual storytelling.

Pyglet Engine

Pyglet (https://bitbucket.org/pyglet/pyglet/wiki/Home) is a cross-platform windowing and

multimedia library for Python intended for games and multimedia applications. Pyglet

supports windowing and event handling, OpenGL graphics, music and sounds and runs on

Windows, OS X and Linux. Pyglet only requires the installation of Python and does not have

any other external dependencies. It is distributed under the BSD license.

Pyglet allows the developer to utilize multiple games windows and multiple monitors/

desktops. Practically any format of images, audio and video files is supported using the

FFmpeg encoding algorithm while there is built-in support for popular formats such as wav,

png, bmp, and others. Although Pyglet is written in pure Python its performance does not

suffer the degradation associated with the language due to advanced batching techniques used

for drawing sprites and animations.

Kivy Engine

Kivy (https://kivy.org/#home) is an open source Python library that expedites the

development of applications that make use of user interfaces that are novel, such as multi-

touch apps. Kivy is cross platform and runs on Linux, Windows, OS X, Android, iOS, and

Raspberry Pi without any modifications to the source code.

Kivy is free to use, under an MIT license and is a community project, led by professional

software developers. The graphics engine is built on OpenGL and GPU acceleration is

http://bigworldtech.com/
https://bitbucket.org/pyglet/pyglet/wiki/Home

supported to boost performance. For performance reasons, many parts are written in C. The

framework is stable and well documented in order to support less experienced developers.

Delta 3D Engine

Delta3D is an open-source gaming and simulation engine which is primarily used for training

game applications. It is licensed under the standard Lesser GNU Public License (LGPL).

Delta 3D is actually a unifying layer that sits atop of several open source projects (Darken et

al., 2005). Delta 3D can also coexist with commercial software.

Delta 3D has a high-level, cross-platform C++ API that runs on Windows and Linux. This

API is designed to accommodate both experienced developers who can use lower levels of

abstraction and novices who can develop content through the level editor. Developers can

write Python script either to the Delta3D API or to the underlying tools. The engine is

completely modular and allows swapping of modules when better options become available.

Delta3D handles networking and includes record and playback capabilities for recording and

replaying gameplay, an object viewer, a particle editor, a binary space partition compiler, and

a runtime debug GUI. It also uses advanced algorithms to render continuous levels of detail

for terrain so that it effectively renders.

Delta3D is used for several training game applications, often in military contexts. For

example, Delta3D was used in an application that trains Marine Corps forward observers and

teaches them how to call for and adjust artillery fire (McDowell et al., 2006). Another

example is a prototype training application where sailors learn how to fight on board fires

(McDowell et al., 2006). Delta 3D inherited the developer communities of many of the open

source projects within it.

Cocos 2D Engine

Cocos2d (http://python.cocos2d.org/) is an open source framework used for building games

and other (potentially interactive) applications with a graphical user interface. Cocos2d is

distributed under a BSD license and relies on Pyglet besides Python.

Cocos2d simplifies the management of flow control, facilitates the switch between different

scenes, supports fast and easy loading of sprites (e.g., images) and linking sprites to actions or

effects. It also includes a particle system, tiled maps and collision detection. Additionally, it

has built in classes for menus and text rendering. Cocos2d hardware acceleration is based on

OpenGL. The framework is well documented, with programming guides and video tutorials.

Panda 3D Engine

Panda3D (https://www.panda3d.org/) was developed by Disney’s VR Studio for their

Toontown Online game, a 3D massively multiplayer online game for children (Mine et al.,

2003). The engine was released as free software in 2002 and has since been developed as an

open source project. Carnegie Mellon University's Entertainment Technology Center is also

involved in the engine’s development as are contributors from around the world. As its name

suggests, Panda3D is a 3D engine, and more specifically a library of subroutines for 3D

rendering and game development. The library is written in C++ while the scripting language

is Python. This means that game development consists of writing a set of Python commands

that invoke library functions. Panda3D comes with installer packages for Windows, macOS

http://python.cocos2d.org/
https://www.panda3d.org/

and Linux. All Python versions starting with 2.6 up to the most recent (3.7) are supported and

the only external dependency is a working graphics driver.

Panda3D is released under the Modified (Revised) BSD license, a permissive free software

license with very few restrictions on usage. Although the engine core is completely free some

of the included third party libraries are not free software and have restrictions in use,

especially for commercial games. Panda3D was created for commercial game development

and as such, it is a powerful engine with many tools: scene graph browsing, performance

monitoring, animation optimizers, built-in physics engine and particle system and a simple

artificial intelligence library. Panda3D also facilitates the debugging of game code and is

tolerant of faults that may cause crashes in other engines. Panda3D provides out of the box

support for advanced rendering techniques (normal mapping, gloss mapping, cartoon shading

and inking) and allows developers to write their own shaders. These features facilitate rapid

game development but require advanced programming knowledge. Hence, Panda3D is not a

tool for beginners or amateurs.

3.3 Comparative analysis of Python game engines and libraries

In this section we attempt to compare the game engines that provide scripting support for

Python. The factors selected for comparing the game engines were based on the existing

literature reviewed in section 3.1. Certain factors were left out because they were a common

feature of all engines, namely the scripting language (Python) and the license (open source).

The list of comparison factors emerged as a result of the available and usable information for

Python game engines combined with the most popular features we encounter in game engine

comparison papers. We considered a feature supported if open source extensions, modules or

plugins for the engine are available to support it. This is indicated in Table 1 by an

“Extension” label.

Table 1. Comparison of Python game engines

 pygame Pyglet Kivy Delta 3D Cocos 2D Panda 3D

Graphics 2D 3D 2D 3D 2D 3D

Level/ World

editor

Extension X Extension   

Texture editor Extension     

Physics      

Networking      

Mobile devices  No    

Written in Python, C,

Cython, and

Assembly

Python Python/

Cython

C++ Python C++/

Python

Programming

experience

Low Low Medium High Medium High

Cross-platform

developer

environment

     

License GPL BSD MIT LGPL MIT Revised

BSD

As the authors in the comparison studies presented in section 3.1 all note, ranking game

engines is not a trivial task or even a good idea at all, as there is no single best game engine

but rather an engine most suitable for the task at hand. In this sense, Table 1 is not meant to

provide a score for each engine. If any conclusions are to be drawn, the first one is that the

two most determining factors when selecting a game engine are the type of graphics needed

for an application and the developer experience or else coding ability. Most other features

have significant overlaps between engines, and this is generally reasonable, given that we

limited the selection of engines to those using Python as a scripting language and having an

open source license. Of course, if the target deployment platform is not supported by the

engine, we have another eliminating factor in the selection process.

3.4 Selection of a Python game engine for novices

Given the fact that the goal was to develop a simple 2D board game in Python, suitable both

for educational applications in mathematics but also suitable as a prototype for teaching

programming to students with limited or no experience in Python and games programming,

pygame was a rational choice. It provides the basic tools without requiring previous

knowledge of game building and has an excellent set of tutorials and demos that cover all

needs of a complete novice. Furthermore, one can build a game on pygame in stages, by first

completing its core logic, then designing the game board, then user interaction etc.

The main features of pygame are:

 Building games with pygame is easy and fun. Even with limited programming

experience, one can jump right into building simple games.

 pygame does not require OpenGL for rendering graphics. This lack of dependency is

important because of several compatibility/installation issues that plague OpenGL on

many platforms.

 Easy and efficient use of multi-core CPUs.

 Core functions implemented in C (10-20 times faster than Python) or assembly (100 times

faster than Python).

 Compatible with virtually all operating systems and fully portable. Pygame can also be

used on hand held devices and game consoles.

 pygame’s core is small and deliberately simple for easy maintenance. Additional

functions are developed separately as external libraries.

Pygame provides functions for creating programs with a graphical user interface instead of a

command line interface so game windows contain images and colors. Every game in pygame

contains a main game loop that runs until exited and has the following three functions

(Sweigart, 2012):

1. Event handing

2. Game state update

3. Game screen update

The game state is essentially the set of game variable values. Indicative variables are the

players’ health and positions, marks made on the game board, player scores, current player,

etc. Any change in a variable results in a change in the game state. For example, if a player

sustains damage his health value is lowered. Game state can be “frozen” when the game is

paused and/or saved when the game is stopped.

Game state is typically updated by the game main loop in response to events (for example a

mouse click) or the passage of time, which is checked many times per second. Changes in the

game state may correspond to changes in the game screen. For instance, if a player uses the

arrow keys to change his/her location, the position of the avatar on the screen will also

change. The game loop in pygame is depicted in Figure 1.

Figure 1. Game loop in pygame (Sweigart, 2012)

4. The PyDiophantus maze game

4.1 Gameplay and educational goals

PyDiophantus is an educational game prototype that was named after the programming

language Python and the ancient Greek mathematician Diophantus that was prominent for his

work on algebraic equations. PyDiophantus aims to serve as a teaching aid in mathematics

and particularly in the teaching of arithmetic expressions, their evaluation and the priority of

operators. For instance, it can be used by students at home for practicing or in classroom to

check student progress and understanding of operators and operations at any level, since it is

configurable.

The game is single player and takes place on a board that works like a maze. The player starts

from the top left block and has to navigate to the bottom right block in order to win the game.

The player initially moves one block at a time, like a rook would in chess (only horizontal and

vertical movement). Diagonal movement is optionally enabled following a number of

consecutive right answers. Every destination block contains a mathematical expression whose

value the player is required to enter (Figure 2). If the answer is correct, the player can proceed

to his/her next move unobstructed (Figure 3). If a wrong answer is provided, a wall is erected

in one of the four sides of the current block (on the side corresponding to the selected

direction of movement) that prohibits movement to the particular direction (Figure 4). Every

time the player answers correctly, the amount of blocks s/he can traverse in a single move

(offset) is increased by one. Conversely, a wrong answer decreases the offset by one until it

reaches its minimum value which is also one.

When there is one block for winning the game the FINISH block is highlighted in green

(Figure 5). If the player manages to finish the game (Figure 6) the FINISH block is

highlighted in red (Figure 6). If the player gives multiple wrong answers, s/he can be boxed in

a certain board tile with no more possible moves (Figure 7). In this case, the player is

informed that s/he has lost and all player actions cease to be processed. After the end of the

game, regardless of whether the player has won or lost, a “Play again” button appears on the

board and the player can start a new game with the current game configuration.

Figure 2. The player is required to compute the value

of a mathematic expression.

Figure 3. The player gave a correct answer and the

current offset is 2.

Figure 4. The player gave a wrong answer.

Figure 5. The player can win at the next move.

Figure 6. The player has won the game.

Figure 7. The player has been trapped and lost the

game.

4.2 Game configuration

Several parameters related to the game are configurable via a plain text configuration file

(config.py) included in the main code directory. These parameters are related both to the size

of the board but also to the number of operands included in expressions the players are

required to calculate, the range of numbers used (in digits) and the operators that will be

randomly selected in the expression. The game configuration file contains the parameters

presented in Table 2.

Table 2. Game configuration parameters

Parameter Role

ROWS Number of board rows.

COLUMNS Number of board columns. Because of the way the walls (horizontal and

vertical) are implemented in the current version of the game, the number

of columns must be equal to ROWS+1. Other than that, there are no

restrictions on their values.

NUM_OPERANDS Number of operands that will be included in the expression.

USE_SUBSTRACTION Indicates whether subtraction will be included in the expression. The only

operation that is obligatory is addition and all others are optionally

switched on or off.

USE_MULTIPLICATION Indicates whether multiplication will be included in the expression. For

instance, for elementary school children who haven’t been taught how to

multiply numbers, it can be turned off.

NUM_DIGITS The number of digits of operands included in the expression (determines

the range of numbers that will be used).

ALLOW_NEGATIVES Indicates whether negative numbers are allowed.

Moreover, the file includes some parameters that could be used in a future extension of the

game for indicating whether division (USE_DIVISION), powers (USE_POWER) and

parentheses (USE_PARENTHESIS) will be included in the expression.

In Figure 8 the configuration file and the corresponding board are presented for a 5 × 6 board

and mathematical expressions including 3 operands, using subtraction, multiplication (and

addition), 3-digit numbers, with negatives allowed.

ROWS = 5

COLUMNS = 6

NUM_OPERANDS = 3

USE_SUBSTRACTION = True

USE_MULTIPLICATION = True

USE_DIVISION = False

USE_POWER = False

NUM_DIGITS = 3

ALLOW_NEGATIVES = True

USE_PARENTHESIS = False

Figure 8. A sample configuration for a 5 × 6 board.

5. Utilizing PyDiophantus for learning game programming in Python

The PyDiophantus maze game consists of approximately 500 lines of code and implements

several programming concepts/constructs and their implementation in Python, as well as

game programming concepts/constructs using the free and open source library pygame.

In Table 3 we present the programming concepts and constructs that are used in the game.

From Table 3 it is clear that the game implements most of the programming constructs

presented in an introductory programming course.

Table 3. Programming concepts and constructs used in the game.

Programming

Concept/construct

Example

Variables Several variables are needed for keeping updated the state of the game. For example,

variables are needed for keeping the values from the configuration file, the current

position of the player, the potential next move/tile etc.

Expressions &

assignments

Several expressions and assignment statements are needed throughout the game for

updating the variables keeping the state of the game and the player. For example,

assignment statements are used for assigning to variables the results of the calculations

(expressions), the screen width and height based on the board dimensions (read from

the configuration file) etc.

Conditional

statements (if, if/else)

Checking the values read from the configuration file and updating appropriately the

corresponding variables with the allowed operations, number of digits for the numbers

used and so on.

Checking for potential future moves/tiles based on current location of the player, wall

obstacles, offset etc.

Loop statements (for,

while)

A for loop is used for drawing the maze on the board.

A while loop is used for implementing the main game loop.

Random numbers Generating arithmetic expressions by randomly concatenating numbers of given digits

and operands.

Data structures (array) Arrays are used for keeping the potential future tiles as physical coordinates on the

board and as matrix coordinates, erected vertical and horizontal walls, allowed

operators that are used on the expressions that the player is asked to evaluate etc.

Functions Several functions are used, such as: a function that returns the arithmetic expression and

the correct result; function that displays a message on a given position; function that

places the tiles on the board; function that places objects on the initial game board etc.

Event handling The player clicks on the next tile, the play again button etc.

Classes A class for adding buttons.

Importing libraries

and classes

The pygame library.

The TextInput class by Silas Gyger, downloaded from

https://github.com/Nearoo/pygame-text-input under the MIT license. This class lets the

user input a short, one-line piece of text at a blinking cursor that can be moved using

the arrow-keys.

Besides the aforementioned programming concepts, several predefined pygame objects along

with their properties and methods were used in the game in order either to modify important

game parameters, show/edit the game window and event handling. Table 4 summarizes the

pygame objects and their methods used in the game as well as their role/function.

https://github.com/Nearoo/pygame-text-input

Table 4. Pygame objects and methods.

Object / role Methods / function

Pygame

main pygame object
init
Initialize all imported pygame modules

quit

Uninitialize all pygame modules

pygame.time

pygame module for monitoring time
Clock

Create an object to help track time

pygame.display

pygame module to control the display window and

screen

set_mode

Initialize a window or screen for display

set_caption

Set the current window caption

set_icon

Change the system image for the display window

update

Update portions of the screen for software displays

quit

Uninitialize the display module

pygame.image

pygame module for image transfer
load

Load new image from a file

pygame.draw

pygame module for drawing shapes
rect

Draw a rectangle

pygame.font

pygame module for loading and rendering fonts
Font

Create a new Font object from a file

pygame.event

pygame module for interacting with events and

queues

get
Get events from the queue

pygame.mouse

pygame module to work with the mouse
get_pos

Get the mouse cursor position

The possibilities of utilizing the game for teaching programming and/or game programming

are several. Specifically, the game could be used for an:

 Introduction to programming with Python. As already mentioned, the game

implements most of the programming concepts and constructs taught at an

introductory programming course irrespectively of the programming language used.

Consequently, the game could be utilized in such a course in various ways. For

example, the students could play the executable version of the game and get familiar

with it, and then the game could be gradually implemented as the various

programming concepts/constructs are presented. The game could be implemented

either in the context of the labs offered in the context of the course or as a sequence

of assignments. The game could be implemented from scratch or a skeleton of the

game could be provided in order for the students to focus on specific aspects of the

game that are in accordance with the programming concepts/constructs under

investigation. Alternatively, the source code of the game could be presented to

students and then they could be asked to extend it with new functionality as proposed

by Theodoraki & Xinogalos (2014).

 Introduction to the programming language of Python. The game could be utilized by

students that have already been introduced to programming with another

programming language, as a quick introduction to the programming language of

Python.

 Introduction to game programming. The game could be utilized in the context of a

course on game programming or serious games programming (Xinogalos, 2018) as a

case study of a fully functional serious game prototype with many possibilities of

extensions. Several game programming issues and concepts could be presented in the

context of the game, such as: the game loop; event handling; game state update; game

draw – rendering text and graphics; utilization of game libraries (Pygame); utilization

of game libraries extensions. Once again the game could be implemented from

scratch, a skeleton could be provided to students, or finally the source code of the

game could be used for presenting to students the process of programming a (serious

or not) game and fundamental game programming concepts/constructs and afterwards

the students could be asked to implement specific extensions.

A potential extension to the particular game could be related to the degree of complexity of

the arithmetic operations. For example, more calculations could be presented, such as powers

and parenthesis. Another extension could focus on the user interface. An example of such an

extension could be a menu which gives the players the option to configure the game

parameters on the fly and start a new game without relaunching the application. For bigger

boards, a save function could be useful and a player could be allowed to resume a game s/he

has previously progressed up to a point. In case of usage in classrooms, a scoreboard function

may also be included where children are rewarded for attempts and correct answers or

increased complexity of games played.

Finally, it should be noted that appropriate material, such as an interactive tutorial, could be

prepared in order for the game to be used as a self learning tool for an introduction to

programming concepts and constructs, or an introduction to Python in the case of a person

having prior programming experience, or an introduction to (serious) games programming.

6. Conclusions

Serious games are considered to be effective tools for teaching and learning various subjects

to learners of all ages. Moreover, game programming has attracted the interest of students

from the Computer Science and Information Technology fields of study, but also from other

fields such as Education. Programming games has also been proposed as a more effective

approach to introducing novices to programming and well known educational programming

environments, such as Scratch and Greenfoot, have been developed for supporting this

approach.

This article focuses on investigating the possibilities of teaching and learning (game)

programming using Python, a programming language that has attracted the interest both of the

educational community and the software market. The main goals of the study presented were

to investigate if there is a Python game engine or library that can be used by novices for

implementing simple 2D games in Python (RQ1), as well as if it is possible to implement a

simple but yet meaningful game that can be used as a prototype by novices for learning

programming concepts/constructs and game programming concepts in Python (RQ2).

Regarding RQ1 several studies have reviewed and/or comparatively analyzed game engines

and libraries. However, little research has been carried out specifically for Python game

engines and libraries. Six free Python game engines and libraries were comparatively

analyzed using common metrics utilized in relevant work. Specifically, pygame, Pyglet, Kivy

Delta 3D, Cocos 2D and Panda 3D were analyzed using the following metrics: graphics

(2D/3D); level/world editor; texture editor; physics; networking; support for mobile devices;

language(s) used for implementing the game engine/library; the programming experience

required for using the engine; support for cross-platform development and the license used.

As previous works have concluded for game engines based on various technologies, there is

also no such thing as the best Python game engine or library for all purposes. However, when

the target group is novice programmers pygame is a good choice in terms of the prior

programming experience required and the support provided through tutorials and demos. This

was verified also by using pygame for implementing the game presented in this article.

In order to investigate RQ2, a game prototype called PyDiophantus was implemented using

Python and pygame. PyDiophantus is an educational maze game prototype that can be used as

an additional tool for familiarizing students with arithmetic expressions and priorities of

operators. The game is fully functional and consists of approximately 500 lines of code. The

game utilizes most of the programming concepts/constructs taught in an introductory

programming course, as well as several game programming concepts. Moreover, it can be

easily extended for showcasing many more (game) programming concepts. For example, an

animated sprite could be added for moving around the maze as the player progresses in the

game. The possibilities of using PyDiophantus as a case study or as a project implemented by

students for teaching and learning programming concepts respectively, Python or even

fundamental game programming concepts and processes are several.

It is clear that it would be interesting to study what the educational and entertainment impact

of the game is both on learning mathematics and game programming. This will give us the

chance to draw conclusions on the effectiveness of using PyDiophantus for practicing on

arithmetic expressions or learning (game) programming in Python and pygame respectively.

References

Andrade, A. (2015). Game engines: a survey. EAI Endorsed Trans. Serious Games, 2(6), e8.

Christopoulou, Ε., & Xinogalos, S. (2017). Overview and Comparative Analysis of Game

Engines for Desktop and Mobile Devices. International Journal of Serious Games, Vol. 4,

Nr. 4, 21-36.

Cowan, B., & Kapralos, B. (2017). An overview of serious game engines and frameworks. In

Recent Advances in Technologies for Inclusive Well-Being (pp. 15-38). Springer, Cham.

Darken, R., McDowell, P., & Johnson, E. (2005). Projects in VR: The Delta3D open source

game engine. IEEE computer graphics and applications, 25(3), 10-12.

Guana, V., Stroulia, E., & Nguyen, V. (2015, May). Building a game engine: A tale of

modern model-driven engineering. In 2015 IEEE/ACM 4th International Workshop on Games

and Software Engineering (pp. 15-21). IEEE.

McDowell, P., Darken, R., Sullivan, J., & Johnson, E. (2006). Delta3D: a complete open

source game and simulation engine for building military training systems. The Journal of

Defense Modeling and Simulation, 3(3), 143-154.

Mine, M. R., Shochet, J., & Hughston, R. (2003). Building a massively multiplayer game for

the million: Disney's Toontown Online. Computers in Entertainment (CIE), 1(1), 6.

Moreno-Ger, P., Burgos, D., Martinez-Ortiz, I., Sierra, J. L., & Fernandez-Manjon, B. (2008).

Educational game design for online education. Computers in Human Behavior, 24(6), 2530-

2540.

Paul, P. S., Goon, S., & Bhattacharya, A. (2012). History and comparative study of modern

game engines. International Journal of Advanced Computed and Mathematical

Sciences, 3(2), 245-249.

Sweigart, A. (2012). Making Games with Python & Pygame. North Charleston: CreateSpace.

Theodoraki, A. and Xinogalos, S. (2014). Studying Students’ Attitudes on Using Examples of

Game Source Code for Learning Programming. Informatics in Education, Vol. 13, No 2, 265-

277.

Trenholme, D., & Smith, S. P. (2008). Computer game engines for developing first-person

virtual environments. Virtual reality, 12(3), 181-187.

Vasudevamurt, V. B., & Uskov, A. (2015). Serious game engines: Analysis and applications.

In 2015 IEEE International Conference on Electro/Information Technology (EIT) (pp. 440-

445). IEEE.

Xinogalos, S. (2018). Programming Serious Games as a Master Cource: Feasible or

not? Simulation & Gaming, Vol. 49, Issue 1, 8-26.

Yampolsky, M., & Scacchi, W. (2016). Learning game design and software engineering

through a game prototyping experience: a case study. In Proceedings of the 5th International

Workshop on Games and Software Engineering (pp. 15-21). ACM.

