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ABSTRACT As video content is responsible for more than 70% of the global IP traffic, related resource
allocation approaches, e.g., using content caching, become increasingly important. In this context, to avoid
under-provisioning, it is important to rapidly detect and respond to changes in content popularity dynamics,
including volatility, i.e., changes in the second order moment of the underlying process. In this paper,
we focus on the early identification of changes in the variance of video content popularity, which we address
as a statistical change point (CP) detection problem. Unlike changes in the mean that can be well captured by
non-parametric statistical approaches, to address this more demanding problem, we construct a hypothesis
test that uses in the test statistic both parametric and non-parametric approaches. In the context of parametric
models, we consider linear, in the form of autoregressive moving average (ARMA), and, nonlinear, in the
form of generalized autoregressive conditional heteroskedasticity (GARCH) processes. We propose an
integrated algorithm that combines off-line and on-line CP schemes, with the off-line scheme used as a
training (learning) phase. The algorithm is first assessed over synthetic data; our analysis demonstrates that
non parametric and GARCH model based approaches can better generalize and are better suited for content
views time series with unknown statistics. Finally, the non-parametric and the GARCH based variations of
our proposed integrated algorithm are applied on real YouTube video content views time series, to illustrate
the performance of the proposed approach of volatility change detection.

INDEX TERMS Content popularity dynamics detection, change point analysis, variance change detection,
volatility detection.

I. INTRODUCTION
Understanding the popularity characteristics of online
content and predicting the future popularity of individual
videos are of great importance. They have direct impli-
cations in various contexts [1], such as service design,
advertisement planning, network management [2], and so
on. As an example, an efficient content caching scheme
should be popularity-driven [3], meaning that it should incor-
porate the future popularity of content into the caching
decision making. In this framework, novel cache replace-
ment methods that are ‘‘popularity-driven’’ have recently
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appeared, e.g., the algorithms proposed in [4], based
on learning the popularity of content and using it to
determine which content should be retained and which
should be evicted from the cache. Other important applica-
tions include content delivery networks (CDNs) in which
‘‘analytics-as-a-service’’ approaches are employed and infor-
mation centric networks (ICNs) with emphasis on the Internet
of things (IoT) [5].

Higher order moments of the underlying random process
are unarguably important for the efficient statistical char-
acterization of content popularity; in particular, ‘‘volatility’’
plays a central role in capturing the underlying dynamics of
content views. As an example, in caching applications, it has
been established in [6] that a major factor greatly impacting
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efficiency is related to demand volatility; this reflects the
fact that files might not be constantly requested following
a stationary model, but rather, only be requested once or
twice and subsequently exhibit vanishing demand in time
(e.g., volatility in YouTube content). Based on these find-
ings, an efficient strategy for resource provisioning should
in principle consider not only conditional mean demands but
also demand fluctuations, thus avoiding under-provisioning
or over-provisioning.

To analyze the underlying statistics of content views data,
the latter are typically represented as a time series. Time series
data are sequences of measurements over time, describing
the behavior of systems. The behavior can change over time
due to external events and/or internal systematic changes in
dynamics/distribution. Success in revealing such patterns can
be translated to the ability to respond rapidly to these changes.
In this direction, there has recently been a surge of research
in the area of content popularity prediction using artificial
intelligence (AI) [7]. In this context, machine learning based
methods (e.g., deep learning) need effective feature mining
and a huge mass of labeled examples to provide successful
performance [8], [9]. In applications in which real time con-
tent popularity monitoring is required this might become a
challenge. As an example, in [10] the authors propose an
off-line deep learning approach to detect popularity that is
subsequently integrated into the on-line caching policy in fog
radio applications; however, whenever there is an important
change in the underlying dynamics of content popularity,
it follows that a new off-line training might be required to
run the algorithm properly.

In this work, we alternatively turn our attention to
lightweight statistical procedures that fall in the general con-
text of AI (instead of deep learning specifically), in order
to operate in an on-line manner (real-time) and to keep the
size of the required set of historical data as small as possible.
Our proposed algorithm is autonomous, in the sense that all
its parameters are determined without manual intervention
during a training period; furthermore, the training period is
limited to only a few hundred data points (instead of thou-
sands or millions as is typical in deep learning).

Importantly, instead of attempting to predict the evolu-
tion of content popularity, in this work we rather focus on
detecting changes in its underlying statistics, and doing so in
real-time. To this end, we propose the use of on-line change
point (CP) analysis; to complement our work [11], [12] that
focused on the identification of changes in the mean of a time
series, here, we alternatively investigate the performance of
corresponding on-line algorithms to identify changes in the
variance of a time series using CP analysis.

In general, CP methods are either off-line or on-line.
Off-line algorithms operate retrospectively and identify CPs
in a historical dataset, a thorough study can be found in
[13]. On-line algorithms [14] monitor in real time a data
sequence and aim to detect CPs as soon as they occur. In this
work, we propose an efficient combination of an off-line and
various on-line procedures for the detection of changes in the

FIGURE 1. Simulated time series with CPs in the mean (solid line) and the
variance (dashed line) for (a) separated and (b) simultaneous changes in
the mean/variance. Horizontal lines illustrate the mean value.

second order statistics of video content popularity, as soon as
they occur (real-time). The proposed detector is built upon
our earlier proposal for a real-time CP detector of mean
changes in data series, that we applied to monitor the average
number of video content [11], [12]. Albeit, the monitoring
of changes in the variance of a time series is much more
challenging.

To further illustrate our motivation behind this work,
we note that an overall approach considering both mean and
variance changes allows for a more efficient handling of con-
tent popularity changes as highlighted in Fig. 1. For example,
Fig. 1(a) depicts that a crucial popularity change may affect
only the variance parameter, in the specific example at the
third segment of the time series. On the other hand, Fig. 1(b),
depicts that in the case of a simultaneous change in the mean
and the variance, e.g., in the second segment of the time
series, the latter is critical to estimate the actual impact of
this change. Monitoring the variance may also be used as a
measure of uncertainty, determining the degree of fluctuation
of popularity around its expectation; for instance, compare
the behaviour of the time series in Fig. 1(b) after the first and
the second CP (second and third segments of the data series,
respectively).

To identify changes in the variance, a more elaborate test
statistic is employed in the present study. With respect to
[11], [12], we further introduce novel on-line tracking mech-
anisms based on autoregressive moving average (ARMA)
and generalized autoregressive conditional heteroskedastic-
ity (GARCH) models. The most important novel aspects of
this paper are listed below:

• We show that variance CP detection is important in the
context of content popularity.

• We introduce a relevant on-line detection algorithm,
enhanced by the following two mechanisms: (a) an
offline CP detection over training data for the estimation
of the on-line test parameters; and (b) identification
of the change magnitude in the pro- and post-change
variance structure.

• Our algorithm supports three alternative on-line tests
for content popularity detection – based on ARMA and
GARCHmodels as well as a non-parametric approach –
covering a wide-range of time series characteristics.

• We performed experiments both on synthetic and
real time series datasets. Our results show that:
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(i) the GARCH and the non-parametric approaches
perform better when the time series does not follow a
linear model; (ii) overall, these approaches can general-
ize better with respect to the true alarm rates; and (iii) the
non parametric approach can identify CPs more rapidly.

In future work we intend to expand the algorithm to include
additional dimensions that can be volatility indicators, such as
the number of likes, viewer comments, content size, as well as
network parameters such as the utilization of servers, in order
to enhance the agility of the volatility estimation of the so
called ‘‘content workload’’ as a whole. We will also investi-
gate the algorithm’s scalability properties, theoretically and
experimentally, i.e., identify the number of videos that can be
analyzed in parallel.

The rest of this contribution is structured as follows:
In Section II, background concepts and high level prop-
erties of the proposed integrated algorithm are discussed.
In Section III, the offline training is presented in detail,
while Section IV presents three different approaches for the
construction of the online test statistic. The integrated algo-
rithms are assessed on synthetic data in Section V and applied
to real YouTube content view data in Section VI. Conclu-
sions and discussion on future enhancements are included in
Section VII.

II. BACKGROUND CONCEPTS AND INTEGRATED
ALGORITHM
A. CHANGE POINT ANALYSIS
Change point (CP) detection refers to the problem of iden-
tifying data structures that do not correspond to the antici-
pated ‘‘normal’’ behavior. We note that, to the best of our
knowledge, this is the first work in the literature proposing an
automated mechanism for the detection of volatility changes
in a time series in the context of content popularity detection.

The theory of CP analysis is typically pertinent to anomaly
detection. In the domain of networking in particular, the the-
ory of CP detection has played an instrumental role in
the modelling of network traffic monitoring represented
through time series [15] and network anomaly/intrusion
detection [16]; for a comprehensive review the interested
reader may refer to [17]. In this framework, CP detection
techniques [18] are used for the identification of: (i) point
anomalies and outliers, i.e., data points deviating distinc-
tively from the bulk of collected data; (ii) pattern anomalies,
i.e., groups of data points that are collectively anomalous
with respect to historical data; and, (iii) CP anomalies due
to changes in the time series’s statistical structure (in the
mean/variance and in general in the underlying distribution).
In this work, we focus on the detection of CP anomalies and
consider the other two categories as disturbances. The reason-
ing behind this choice is that, on one hand, a resource allo-
cation scheduler should be insensitive to instantaneous/very
short-term changes in resource demand (e.g., represented as
outliers in the content demand), but, on the other hand, should
be highly responsive to changes in the underlying statistics of
the demand.

B. PARAMETRIC AND NON PARAMETRIC CP DETECTION
ALGORITHMS
Statistical based approaches are categorized as paramet-
ric [19] and non-parametric [14]. Non-parametric methods
do not make use of a particular time series model fit and
apply directly the observed data to themonitoring procedures.
In this context, CUSUM based methods are non-parametric
by design. For example, the authors in [20] provide a
CUSUM stopping rule with application in computer vision
problems. A CUSUM approach for CP detection on obser-
vations with an unknown distribution before and after a
change, has been recently developed in [21]. Furthermore,
an algorithm based on the Shiryaev-Roberts procedure was
proposed in [22], to detect anomalies in computer network
traffic.

On the other hand, parametric methods utilize as inputs
values obtained from a specific model that has been fit to the
original data (instead of using the original data set directly).
As an example, Kalman filtering is combined with several
CP methods in [23]. In [24], traffic flows are modeled using
Markov chains and an anomaly detection mechanism based
on the generalized likelihood ratio test (LRT) algorithm.
Further examples assuming specific distribution for the data
include [25], in which a bivariate sequential generalized
LRT algorithm was proposed, assuming that the packet rate
and the packet size follow a Poisson and a normal distri-
bution, respectively. Other, non residual methods, include
estimates’ detectors based on the differences between the
estimated model parameters (see [13], [26]), or based on
the quasi-likelihood scores estimators of the parameters of a
GARCH process [27].

C. VIDEO CONTENT POPULARITY PREDICTION
VS DETECTION
The prediction of video content popularity characteristics
and dynamics [28], as well as models to predict popular-
ity evolution, e.g., [29] and [30], is a well studied topic in
the literature. Among others, in [31], the authors perform a
detailed analysis to characterize the YouTube traffic within
a campus network and conclude that in this scenario the
content popularity can be well approximated by the Zipf
distribution. A comprehensive survey on video traffic models
can be found in [32]. Overall, several methods have been
proposed in this context, including time series models, regres-
sion models [33]–[35] and machine learning (deep neural
networks) techniques [36], [37].

Focusing on time series modelling in particular, linear,
non linear and hybrid models have invariably been proposed.
In early works, linear time series models have been used,
e.g., the authors in [38] introduce an ARMA(7, 7) model to
describe and predict the daily views of individual videos.
Alternatively, in [39], by taking into consideration seasonal-
ity, an autoregressive integrated moving average (ARIMA)
model is used to forecast the popularity of online con-
tent. Other approaches include fractional ARIMA (FARIMA)
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models, that capture both short-range dependence (SRD) and
long-range dependence (LRD) statistical properties [40].

Recently, non linear models have further been proposed to
take into account the conditional heteroskedasticity and the
conditional volatility of the data series (seen as a stochas-
tic process). In these cases, GARCH models are involved.
For example, in the comparative study [41], the authors
showed that a hybrid ARIMA/GARCH model was superior
to FARIMA and wavelet neural network models, while in
[42], a similar hybrid FARIMA/GARCH approach was also
introduced. In essence, the existing hybrid models consider
the second order characteristics of a time series as a sup-
plementary element to further improve the forecasting or
estimation of the content popularity. More precisely, these
solutions assume conditional heteroskedasticity for the errors
of the ARMA or FARIMA model. An exception can be
found in [43], where a video demand predictor forecasts the
volatility and correlation of the streaming traffic associated
with different videos, based on multivariate GARCHmodels.

On the other hand, the problem of detecting (i.e., estimat-
ing), non-parametrically and in real time, CPs on content
popularity sequences, has not been adequately investigated
yet. Among of only a handful of related studies, in our pre-
vious works [11], [12], [44] we proposed and implemented a
real-time, non-parametric and low-complexity video content
popularity CP detector (as opposed to predictor) for changes
in the mean value of video content popularity. In the present
contribution, in contrast to [11], [12], we introduce an inno-
vative online algorithm for the detection of CPs in the second
order statistics of content popularity data. We also present
an enlarged statistical framework, that includes parametric as
well as non-parametric detectors.

Our algorithm can be used as a ‘‘stand alone’’ mechanism,
but may also be a helpful complementary tool for prediction
approaches. With respect to the latter, it can be employed
in validating whether assumptions made by a prediction
model are still reasonably satisfied, or, whether the prediction

model/procedure needs adjustment. Since, data are often
influenced by a multitude of external factors, stationarity
assumptions cannot be guaranteed over the whole monitoring
period, especially for long time ranges.

D. OVERVIEW OF THE PROPOSED INTEGRATED
ALGORITHM
We summarize in Fig. 2 the overall algorithm as a flow
diagram that links an off-line (training) and an on-line phase,
as well as their individual components. Without loss of gener-
ality we assume an arbitrary time instance ms as the starting
point of a monitoring period. Then, the off-line analysis is
applied to the historical (training) data until t = ms, resulting
in the division of the data sequence in stable subsequences.
The last subsequence is the training sample representing the
initial sample of the on-line phase. During the training stage,
if a parametric approach is chosen, we estimate the model
parameters (e.g., ARMA or GARCH) and any other nec-
essary statistical characteristics that describe the last stable
subsequence’s (time series) behavior. We note that without
having first obtained a statistically robust division of the
training sample into stable subsequences, the estimation of
a model’s parameters could be seriously impacted.

Next, an on-line detector is implemented for a monitoring
period t = ms+1, . . . ,ms+l . If a CP is detected at cp∗on, the
CP magnitude on the data structure is evaluated. The new
starting point for the subsequent monitoring window is then
set tom′s = cp∗on+d , where d is a constant specifying a period
assuming no change. Alternatively, if no change is detected
after l instances, the procedure restarts automatically from the
time point m′s = ms+l . The reasons behind this choice are
twofold. First, to keep the algorithm running over awindow of
size at most l, in order to keep the computational complexity
low (lightweight), as opposed to allowing increasing window
sizes. Second, to facilitate the fast responsiveness of the algo-
rithm, as will be demonstrated through numerical examples in
Section V.

FIGURE 2. Flow diagram of the real-time variance CP detector for content views data.
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III. OFF-LINE PHASE
In this Section, the training phase of the algorithm is dis-
cussed and the fundamental components of the off-line
scheme are presented. We choose a retrospective CP scheme
to ascertain that the on-line phase is indeed carried out
on homogeneous data. We note that standard off-line CP
schemes can only detect a single CP. To address the
issue of detection of multiple CPs, we modify the basic
scheme with a novel time series segmentation heuristic, that
belongs to the family of binary segmentation algorithms,
similarly to [11], [12].

Let {Xn : n ∈ N} be a time series representing the content
views, for a specific video. Since we are interested only
in the variance fluctuation of the underlying random value
(r.v.), we assume a constant, over time, expected value E(Xi),
where E(·) denotes expectation. The stability of the mean
value can be ensured by a data transformation, such as taking
the first differences , 1n = Xn − Xn−1, thus rendering
E(Xi) = 0.
Considering the training phase, we have to check if the

variance structure remains stable over the whole training
period N . Consequently we study the null hypothesis,

H0 : σ
2
1 = · · · = σ

2
N , (1)

where σ 2
n = Var(Xn) = E(X2

n ), given that we have modified
the time series so that E(Xn) = 0. The (general) alternative
hypothesis is designed to allow the existence of multiple
changes li ∈ {1, . . . ,N }, i = 1, . . . , r , where r is the
multitude of changes,

H1 : σ
2
1 = . . . = σ

2
l1 6= σ

2
l1+1 = . . . = σ

2
l2 6= . . .

· · · 6= σ 2
lτ−1+1 = . . . = σ

2
lτ 6= σ

2
lτ+1 = . . . = σ

2
N . (2)

We develop a CP detector that only requires very gen-
eral sufficient assumptions to be satisfied by the time series
of content views. More specifically, we followed the work
in [45] in which the authors introduce a non-parametric test
statistic that requires only that the time series {Xn : n ∈ N}
can be approximated, with a distance measure, by an
s-dependent r.v. This assumption assures that time series
needs not be s-dependent itself. We also note that several pop-
ular weak dependent time series models for the description
of video views satisfy the above assumption, e.g., ARMA or
GARCH models. The exact form of the procedure is given in
the quadratic scheme,

TSoffN =
1
N
STn �̂

−1
N Sn, (3)

with (·)T denoting transposition, and, it converges in distribu-
tion asymptotically to,∫ 1

0
B2(n)dn, (N →∞), (4)

where (B(n) : n ∈ [0, 1]) are independent standard Brownian
bridges. (4) can be used to derive the critical values (cvoff )

of the test statistic TSoffN by Monte Carlo simulations that
approximate the paths of the Brownian bridge on a fine grid.
As an example, using this approach, the crossing boundaries
of (4) for alarm rates of 5% and 1% can be found to be 1.8
and 2.6, respectively.
The detector Sn is a variation of the squared CUSUM

method,

Sn =
1
√
N

(
n∑
i=1

vech[X̃iX̃Ti ]−
n
N

N∑
i=1

vech[X̃iX̃Ti ]

)
, (5)

where the vech(.) operator denotes the half-vectorization
of a matrix (as the covariance matrix is symmetric,
half-vectorization contains all the strictly necessary informa-
tion) and X̃i = Xi − XN , with XN = 1

N

∑N
j=1 Xj the sample

average.
Since the procedure (3) is non-parametric, the dependence

between the observations enters only in the form of the
long-run covariance �N , expressed as

�N =

N∑
i=1

Cov(vech[X0XT0 ], vech[XiX
T
i ]) (6)

To build a consistent estimator of�N , denoted by �̂N , various
different approaches exist. This estimation problem is well
studied and we focus on the kernel based approach through
the use of Newey-West estimator (see [46]),

�̂N = 6̂0 +

W∑
w=1

kBT

(
w

W + 1

)(
6̂w + 6̂

T
w

)
, (7)

where kBT (.) corresponds to the Bartlett weight,

kBT (x) =

{
1− |x|, for |x| 6 1
0, otherwise,

(8)

and 6̂w denotes the empirical auto-covariance matrix for
lag w,

6̂w =
1
N

N∑
n=w+1

(
Xn − X

) (
Xn−w − X

)T
. (9)

Following common practice in literature we chose W =

log10(N ). To summarize, the existence of a CP is announced
if TSoffN > cvoffV and the estimated time of change is,

cp∗off =
1
N
argmax
16n6N

TSoffN . (10)

Finally, to face the potential of detecting multiple CPs
on the historical data set, we have integrated an extended
version of the binary segmentation (BS) algorithm, proposed
in [11], to the original test TSoffN . The algorithm combines
the standard BS and the iterative cumulative sum of squares
(ICSS) [47] methods and operates briefly as follows: First,
a single CP is searched in the historical sample. In case of no
change, the procedure stops and H0 is accepted. Otherwise,
the detected CP is used to divide the time series into two time
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series in which new searches are performed. The procedure
is iterated, until no more CPs are detected. In the last step,
we consider the CPs estimated previously in pairs and check
if H0 is still rejected in the segment delimited by each
pair. If not, the CPs that fall in the particular segment are
eliminated.

IV. ON-LINE METHODS
In this Sectionwe present three alternative on-line approaches
and discuss jointly for each one the preparation stage and
the corresponding on-line CP detector. The on-line phase is
based on the assumption of an homogeneous data sequence
of length m ∈ N+, determined by the off-line phase, for
which,

σ 2
1 = · · · = σ

2
m. (11)

Our aim is to test if (11) holds as new observations become
available in a time real framework. Hence, the statistical
problem is formulated as the following hypothesis test,

H0 : σ
2
1 = · · · = σ

2
m = σ

2
m+1 = · · · ,

H1 : σ
2
m+1 = · · · = σ

2
m+l−1 6= σ

2
m+l = σ

2
m+l+1 · · · ,

m, l ∈ N+. (12)

In general, any on-line CP method can be described as a
stopping time procedure with stopping time τ (m),

τ (m) = min{l ∈ N : TSon(m, l) ≥ b}. (13)

The value of the test statistic TSon(m, l) is calculated online
for every l in the monitoring period. The rule stops, and a
change is announced, if the test statistic exceeds the boundary
function b = cvong. The critical value cvon is derived from
the asymptotic behavior of the detector TSon/g under the
null hypothesis, for which Pr (τ (m) <∞) = α, α ∈ (0, 1)
the significance level. We note that γ, γ ∈ (0, 12 ] is a
sensitivity parameter; the larger the value of γ , the smaller
the value of b, which leads to a quicker detection of a
potential CP, at the cost of an increase in the false alarm
rate.

Below, we consider three on-line CP approaches, based
on the general assumptions for the underlying process: i) a
non-parametric approach based on [48], denoted by NP; ii) a
linear time series (ARMA) approach as in [49], denoted by
L; and, iii) a nonlinear time series (GARCH) approach like
in [50], denoted by NL. The quantities {TSon, b, cvon, g} will
be indexed accordingly.

A. NON-PARAMETRIC (NP) APPROACH
Non-parametric approaches work directly with the observed
data and are ideal for datasets with a high degree of model
fitting ambiguity. In this framework, in the preparation phase
we only compute a particular form of the long-run estima-
tor, avoiding the difficulties related to the estimation of a
parametric model.

The proposed procedure is applied under the assumption
that the observations {Xn : n ∈ Z} satisfy the generalized
dependence concept of L-2 near epoch dependence (see [51]).
Since the test is model-independent, the dependence between
observations is captured through the long-run function Dn,
expressed as

Dn := lim
n→∞

E
(
1
n
AiATi

)
, (14)

where Ai =
∑i

t=1
(
X2
t − E

(
X2
t
))
. We also assume that Dn is

finite under the H0 hypothesis, which is necessary for the
convergence of the asymptotic null behaviour.

As explained above, the long-run factor is computed
in the preparation phase, considering the training sample.
For its evaluation we choose the kernel estimation method,
as in [52]. More specifically,

D̂m =
u∑
i=1

u∑
j=1

kBT

(
i− j
r

)
V̂iV̂ T

j , (15)

is an estimator of Dm, V̂t = 1
√
m

(
X2
t −

1
m

∑m
i=1 X

2
i

)
and

kBT (·) is the Bartlett kernel, already mentioned in (7).
The test statistic is expressed as

TSonNP(m, l) =
l
√
m
D̂
−

1
2

m

(
m+l∑
i=m

X2
i −

1
m

m∑
i=1

X2
i .

)
(16)

The boundary function bNP = cvonNPgNP is strictly
aligned with the chosen size of the monitoring period
l normalized to the length of the training period, denoted
by H = l/m. Then the weight function is expressed as
gNP =

(
1+ l

m

) ( l
m+l

)γ
, γ ∈ [0, 1/2) and the critical value

is derived from the asymptotic behavior of the stopping rule,

lim
m→∞

Pr{τ (m) <∞}

= lim
m→∞

Pr
{
TSonNP ≥ bNP(α)

}
= lim

m→∞
Pr
{
TSonNP
gNP
≥ conNP(α)

}
= Pr

(
sup

n∈[0,1]

(
H

1+ H

) 1
2−γ |W (n)|

nγ

)
= α. (17)

B. LINEAR (L) PARAMETRIC APPROACH USING AN
AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODEL
Parametric approaches, monitor the estimated values
obtained from a specific model fit to the observed time-
series. This is very efficient whenever a parametric model
sufficiently describes the dependence structure of the real
data. We present two residual based parametric schemes,
constructed from the residuals of the model fit to the data,
starting with an ARMA model. In the preparation stage,
the model residuals are estimated, under the assumption of
a homogeneous underlying process. Under H0, the residuals
before and after the beginning of the monitoring should
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behave similarly. On the other hand, if a CP exists in the
monitoring period, the residuals are expected to deviate from
those in the training period.

ARMAprocesses provide linear and parsimonious descrip-
tions of (weakly) stationary processes. A time series
{Xn : n ∈ N} is called an ARMA(p, q) process of orders p
and q, if it satisfies the stochastic equation,

φn(B)(Xn − µn) = θn(B)εn, n ∈ Z, (18)

where µn are mean parameters (usually non stationary),
φn(z) = 1−φ1nz−· · ·−φpnzp and θn(z) = 1−θ1nz−· · ·−θqnzq

are the autoregressive andmoving average polynomials of the
model respectively, and B the backshift operator. It is also
assumed that the ARMA process is causal and invertible, i.e.,

φn(z) 6= 0 and θn(z) 6= 0, for all |z| ≤ 1. (19)

The error terms {εn : n ∈ Z} are a sequence of indepen-
dent and identically distributed (i.i.d) r.v. with zero mean,
E(ε1) = 0 and constant variance, E(ε21 ) = σ

2.
The ARMAmodel in (18) depends on p+q+2 parameters,

represented by the vector βn = (µn, φn, θn, σ 2
n ), where φn =

(φ1n, · · · , φpn) and θn = (θ1n, · · · , θqn). In the defined train-
ing period of size m the parameters of the ARMA model are
not time dependent, i.e., they are the same for the observations
X1, · · · ,Xm, denoted by β0 in the following,

β0 = (µ0, φ0, θ0, σ
2
0 ). (20)

The preparation stage is applied to the training sample for
two reasons. Firstly, in order to specify the order (p, q) of the
corresponding ARMA model, by selecting the combination
that provides the lower value for the Bayes information
criterion (BIC),

BIC = −2 ln(L̂)+ k ln(n), (21)

where L̂ is the maximum value of the likelihood function
of the model, k is the number of the estimated parameters
and n is the sample size. Secondly, in order to estimate the
parameters β0 of the ARMA model through the estimators
β̂0 = (µ̂0, φ̂0, θ̂0, σ̂

2
0 ), computed, for example, by the method

of maximum likelihood estimation or least squares.
Then, the model residuals are given by

ε̂n = X̂n −
p∑
i=1

φ̂i0X̂n−i −
q∑
i=1

θ̂i0ε̂n−i, (22)

where X̂n = Xn− µ̂0. The detector is built from the (squared)
residuals ε̂n, as:

1
√
m
TSonL (m, l) =

1
√
mη̂m

∣∣∣∣∣∣
m+l∑

n=m+1

ε̂2n −

m∑
n=1

ε̂2n

∣∣∣∣∣∣ , (23)

where η̂2m is a weakly consistent estimator of the moment
η2m = E

[(
ε2m − σ

2
m
)2]

.

Finally, the boundary function is expressed as bL =
cvonL gL , where gL =

(
1+ l

m

) ( l
m+l

)γ
, γ ∈ [0, 1/2) and the

critical value is obtained according to [49] as

lim
m→∞

Pr{τ (m) <∞} = lim
m→∞

Pr
{
TSonL
gL
≥ conL (α)

}
= Pr

(
sup

n∈(0,1)

|W (n)|
nγ

≥ cvonL (α)

)
=α.

(24)

C. NONLINEAR (NL) PARAMETRIC APPROACH USING A
GENERALIZED AUTOREGRESSIVE CONDITIONAL
HETEROSKEDASTICITY (GARCH) MODEL
A time series {Xn : n ∈ Z} follows the GARCH(p, q)
process, if,

Xn = σnεn,

σ 2
n = ωn +

q∑
i=1

αinX2
n−i +

p∑
j=1

βjnσ
2
n−j,

where ωn > 0, αin, βjn > 0 and {εn : n ∈ Z} is a sequence of
i.i.d r.v. with E(ε1) = 0 and E(ε21 ) = 1. We estimate the set
of parameters θm during the initial training period, denoted
in the following by θ0 = (ω0, α10,, · · · , αq0, β10, · · · , βp0);
the estimation is performed by applying the Gaussian
maximum-likelihood estimator (GMLE) θ̂0 of θ0 on the
lastm observations, as proposed in [53]. The GMLE function
is given by

Fm(θ;X1, · · · ,Xm) =
m∏
n=1

1√
2πσ̂ 2

n

exp
(
−
X2
n

2σ̂ 2
n

)
, (25)

where σ̂ 2
n are constructed recursively, as,

σ̂ 2
n = ωn +

q∑
i=1

αinX2
n−i +

p∑
j=1

βjnX2
n−j. (26)

Then, the GMLE of θm is,

θ̂m = argmax
θ∈2

Fm(θ;X1, · · · ,Xm)

= argmin
θ∈2

1
m

m∑
n=1

(
X2
n

σ̂ 2
n
+ ln(σ̂ 2

n )
)
. (27)

The residuals of the GARCH process are subsequently
obtained from the GMLE as

ε̂n =
Xn

σ̂n(θ̂m)
. (28)

Based on the (squared) residuals, the test statistic is
described as in [54],

TSonNL(m, l) =
√

m
Var(ε̂2m)

∣∣∣∣∣1l
l∑

n=1

ε̂2n −
1
m

m∑
n=1

ε̂2n

∣∣∣∣∣ , (29)

where Var(ε̂2n ) denotes the variance of the squared residuals
of the training period, i.e., Var(ε̂2m) = E(ε̂4m)−

(
E
(
ε̂2m
))2

.
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Considering the boundary function bNL = cvonNLgNL ,
we choose to work with gNL = 1 as in [50]; consequently,
the critical value is given by

lim
m→∞

Pr{τ (m) <∞} = lim
m→∞

Pr
{
TSonNL ≥ cv

on
NL(α)

}
= Pr

(
sup

n∈(0,1)
|W (n)| ≥ cvonNL(α)

)
=α.

(30)

D. EVALUATION OF THE CRITICAL VALUES FOR THE CPS
TESTS
The on-line critical values for the three procedures are esti-
mated usingMonte Carlo simulations, similarly to the off-line
case, considering that

cvonNP(α) = sup
n∈[0,1]

(
H

1+ H

) 1
2−γ |W (n)|

nγ
, (31)

cvonL (α) = sup
n∈(0,1)

|W (n)|
nγ

, (32)

cvonNL(α) = sup
n∈(0,1)

|W (n)|. (33)

With respect to the estimation of the magnitude of a
detected CP denoted by cp∗on, in the NP scenario, we estimate
the deviation of the variance in pre-CP and post-CP data
by comparing the variance of a pre-determined historical
subsample, Var(Xms : Xcp∗on−h) to the variance ‘‘in the range’’
of the detected CP as Var(Xcp∗on−h : Xcp∗on+h), accounting for
the fact that a time lag±h is required to establish the presence
of an actual change.

Wefinally propose an alternative scheme to predict the post
CP behavior in the case of a parametric model. We apply the
parametric model (ARMA or GARCH) on the time horizon
tcp∗on−h, . . . , tcp∗on , in which we assume that the actual change
has already occurred. Thus, a well defined subsample is
provided to fit the model parameters and predict the next
values using this adaptive model.

V. PERFORMANCE EVALUATION OF THE VARIANCE CP
DETECTION APPROACHES ON SYNTHETIC DATA
In this Section, we evaluate the performance of the integrated
algorithm with the three aforementioned variations of the
on-line phase – NP, L and NL, – on two sets of synthetic data.
In further detail, we report the results of Monte Carlo simula-
tions using either an ARMA(1,1) or a GARCH(1,1) process
to generate the time series; as a reminder, both ARMA and
GARCH are well known models that have been shown to fit
well video content popularity dynamics (see section II).

The synthetic sample size under consideration is N =
1000 while we introduce a variance CP at cp∗ = 500; this
is achieved by transforming the initial parameters vector of
the chosen model. Evaluations are conducted based on 1000
repetitions for a significance level α = 0.01. In all tests we
set the beginning of the monitoring period at ms = 200,
the monitoring window length at l = 100 and the minimum

interval between two successive CPs at d = 80 (this latter
choice is justified by experiments with real data that will be
presented in Section V). We experiment with two values for
the sensitivity parameter γ ∈ {0, 0.25} (as a reminder, γ only
affects cvonNP and cvonL , see (31) and (32)).

We first evaluate the performance of the three alternative
on-line procedures in the integrated algorithm, for a wide
range of ARMA(1,1) models. We recall that the variance of
an ARMA(1,1) model depends on themodel parameters φi, θi
and the variance of the error terms σ 2

i , i.e.,

Var(Xn) =

(
1+ 2φiθi + θ2i

)
σ 2
i

1− φ2i
.

We consider a change by transforming the time series model
defined by the parameter vector β0 to one of the vectors
βi, i = 1, 2, 3, 4.
• Model 0: β0 = (φ0, θ0, σ0) = (0.4, 0.2, 0.5),
• Model 1: β1 = (0.4, 0.2, 1),
• Model 2: β2 = (0.3, 0.3, 1.5),
• Model 3: β3 = (0.5, 0.3, 1.5),
• Model 4: β4 = (0.4, 0.2, 2).
We use Model 0 as the baseline. In Model 1 a small change

in the error variance is introduced, which increases the uncer-
tainty.Models 2 and 3 lead tomedium changes in the variance
and also transform the dependence structure between the r.v.
On the other hand in Model 4 a large change is introduced by
increasing the uncertainty.

In Table 1 we report the results of the simulation study.
We depict the aggregate percentage of the CPs over the
multitude of the simulations. For every test and each iteration
we calculate the exact number of CPs detected:
• 0 when no CPs are detected, denoting the percentage of
false negatives in all cases but the first (in which β0 does
not change); in this latter case it corresponds to the true
success rate;

• 1 when a single CP is detected, denoting the true success
rate in all cases but the first, in which it corresponds to
a false positive rate;

• > 1 when more than one CPs are detected, denoting the
percentage of false positives, in all cases other than the
first. To obtain the overall false positive percentage, this
value needs to be added to the false positive percentage
above.

Furthermore, we denote by ĉp∗ the median of the time
instance of the identification of the true CP, evaluated in all
cases but the first. The closest this number to the true point
of the CP at 500, the quicker the detection and the better the
responsiveness of the integrated algorithm.

Initially, we discuss the impact of the choice of the sen-
sitivity parameter γ in the L and NP approaches. Studying
Table 1, we conclude that γ = 0 is the most reason-
able choice in the case of medium or more significant
changes in the variance, since it leads to significantly lower
false positive rates. On the other hand, in the case of only
small changes in the variance, captured in our study in the
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TABLE 1. Results from an ARMA generating process and for one change in the variance.

TABLE 2. Results from a GARCH generating process and for one change in the variance.

transformation from the β0 to the β1 model, a higher value
of γ is needed (intuitively, for smaller changes a larger
sensitivity is required). Therefore, depending on whether
smaller or larger deviations need to be rapidly detected we
can fine-tune the value of γ . For the sake of simplicity, in the
following we focus on γ = 0 (larger deviations).
According to Table 1, the three approaches provide appro-

priate empirical sizes, and the false alarm rates are in all
cases close to the significance level α = 0.01. Overall the
L procedure outperforms the NP and the NL, both in terms
of the true alarm rates as well as in terms of the detection
time; this is intuitive as in this first experiment the underly-
ing process is generated by a linear ARMA(1,1) model and
therefore a linear parametric model is excellently suited to
capture the underlying dynamics. Furthermore, comparing
the NP and the NL approaches, Table 1 illustrates that the
NP is more sensitive than the NL approach, leading to more
accurate detection for small changes at the cost of increased
false positive rates in the case of larger changes. The opposite
is true for theNL approach that appears to bemore ‘‘conserva-
tive’’. Moreover, the fact that the NP procedure is statistically
more sensitive leads to a quicker detection of a CP as captured
through ĉp∗.

We proceed to themore challenging case of a GARCH(1,1)
generating model, with parameter vector θi = (ωi, αi, βi) that
fully describes the model and unconditional variance,

Var(Xn) =
ωi

(1− αi − βi)
.

To examine the alarm rates we assume the following models,
• Model 0: θ0 = (ω0, α0, β0) = (0.05, 0.4, 0.3),
• Model 1: θ1 = (0.5, 0.2, 0.1),
• Model 2: θ2 = (0.5, 0.3, 0.2),
• Model 3: θ3 = (1, 0.3, 0.2).
GARCH is a varying volatility model, allowing volatil-

ity changes over time. Being more elaborate and complex
in terms of the dependence of the variance on the model
parameters, the higher false alarm and the lower true alarm
rates in Table 2 are reasonable. In this case, the L proce-
dure seems fully inappropriate irrespective of the choice of
γ = 0 or γ = 0.25, suffering from very high false positive
rates, since constant variance is assumed. The NL procedure,
as expected, surpasses both the L and the NP procedures, as it
is excellently suited to capture the GARCH process. More
specifically, the true alarm rate estimation is stable for the
different magnitudes of changes, with a detection time lag
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FIGURE 3. Estimated a) frequency and b) cumulative frequency of the
number of CPs per time series, for three different Video Sets.

ranging from 50 instances for small changes to 31 instances
for larger changes. On the other hand, the NP procedure
appears to capture well the actual changes for γ = 0, with
success rates relatively close to the those of theNL procedure,
especially formedium/large changes. However, for γ = 0.25,
the approach leads to ineligible false positive rates, despite
the fact that it can identify small changes more efficiently.
The NP method also achieves faster detection of changes,
with ĉp∗ ranging from 5 to 28 time instances.
Based on the analysis of the Monte Carlo results for the

three procedures under the two different time series generat-
ing models, we can synthesize our overall conclusions in the
following two points:
1) The NL and the NP approaches adapt better to a wider

range of models and underlying assumptions; if there
are indications of a highly nonlinear underlying proce-
dure the NP approach could render better results;

2) The L approach is strongly related to the ARMAmodel
assumptions and therefore it is advisable to be applied
only if these can be readily shown to hold.

VI. ILLUSTRATION OF THE INTEGRATED ALGORITHM
USING REAL DATA
Finally, we study the performance of the proposed algorithms
on monitoring real YouTube video traces provided within
the framework of the CONGAS project [55]; the dataset
consists of 882 videos traces and the observation period is
of N = 1000 time instances.

In this Section, we only adopt the non parametric (NP) and
the GARCH (NL) approaches. We exclude the ARMA (L)
approach from the evaluation, based on the conclusions of the
previous Section. We work with the centered simple returns
of the content popularity time series,

Yn = (Xn+1 − Xn)−
1

900

900∑
n=1

(Xn+1 − Xn),

n = 1, . . . , 900

and then apply the methods on Yn.
In order to clarify some general characteristics of the

dataset, in terms of changing content dynamics, we first
apply the off-line algorithm to the video traces. In Fig. 3,
we consider three video sets; Video Set 1 contains the whole
dataset, Video Set 2 contains the videos with average number

FIGURE 4. Interim time between consecutive CPs: a) Boxplot including
the interval (5% − 95%) (dashed line) and (10% − 90%) interval (dotted
line), b) Cumulative frequency for the interim time of consecutive CPs.

FIGURE 5. Boxplot of the number of upward and downward CPs, per time
series.

of visits E ((Y (1) : Y (1000)) ≥ 10 and Video Set 3 contains
the videos with average number of visits greater or equal
to 20. Fig. 3, depicts a high percentage of rejecting the H0
hypothesis, for a significance level of α = 0.05. Especially
for the Video Sets 1 and 2, the rejection of the assumption of
normal behavior exceeds 60% and 65% of the time series,
respectively. This result confirms that a sufficiently high
number of time series provide content popularity anomalies,
for example in Video Set 3, in 10% of the cases there are over
than four CPs per time series. This small analysis confirms
the suitability of change point analysis as a viable approach
for the detection of changes in video content popularity
dynamics.

Subsequently, in Fig. 4, we analyze the interim time
between consecutive CPs. The respective boxplot diagrams
illustrate the existence of sufficiently large intervals between
consecutive changes; this fact supports our subtle assump-
tion in Section III regarding the existence of a sufficient
gap between two consecutive CPs (e.g., > 80 instances).
In particular, 90% and 95% of the intervals correspond to
consecutive CPs exceeding 100 and 80 time instances, respec-
tively. This outcome assures that a sufficiently large training
window after a detected change can be applied, denoted by
the parameter d .
Additionally, Fig. 5, illustrates the time instances of

upward (increase in volatility) and downward changes
(decrease in volatility) in the form of a boxplot. It is shown
that upward changes occur earlier in time than downward
changes.

We consider now the performance of the on-line approach,
by illustrating the estimated CPs in the second order charac-
teristics of different time series. We choose the beginning of
the monitoring period at ms = 200, the sensitivity parameter
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FIGURE 6. CPs detected in the mean (first row) and variance (second and third row) for three different content views time series. Solid and dashed
lines represent an upward and a downward change, respectively.

γ = 0 and the significance level α = 0.05. To fit a
GARCH(p, q) model we consider all the possible combina-
tions of the p, q = 1, · · · , 4 and choose the orders p, q that
minimize the Akaike information criterion (AIC).

The corresponding results are depicted in Fig. 6 at the
top of the next page. The first row of results represent the
detected changes in the mean value by using the RCPD
algorithm presented in [11]. In the second and third row the
estimated CPs in the variance are depicted, for the same time
series, by applying on the first order differences Yn the non
parametric (NP) approach and the GARCH (NL) approach,
respectively. Solid lines represent upwards changes while
dashed lines represent downward changes.

Firstly, we observe that the variance changes are closely
connected to a corresponding mean change. In particular,
variance changes are less in multitude and seem to be related
to themost significantmean changes, which can be intuitively

explained by considering that if the average number of views
changes significantly, the variance in the number of views
at the respective interval will follow a similar trend. The
importance of jointly studying the changes in the mean and
the variance value is also depicted in Fig. 6. For instance,
in Fig. 6a, to describe or handle the content popularity dynam-
ics it is crucial to estimate quickly the‘‘explosion’’ in variance
after time instances 500 or 700, that leads to a high instability
of the values from the mean. On the other hand, variance
‘‘reduction’’ detection is also important, as it implies that
values remain relatively constant, like in Fig. 6a between time
instances 600 and 700.

Both the NP and the NL approaches provide similar results
in terms of the number of CPs and the detection time of the
estimated CPs. More precisely, in Fig. 6a, both procedures
detect the same number of changes, while the NP method
gives a slightly quicker detection.
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Focusing on the capability of the proposed algorithm to
estimate the magnitude of a detected CP, we use the GARCH
model. We estimate the parameters of the model considering
10 time instances before the detected change and forecast
the variance for 10 time instances after the CP. For the time
series in Fig. 6b, the actual variance after each change is 7.92,
12.51 and 38.66, while the predicted variance values are 7.39,
13.52 and 39.24, respectively. As we observe, in this case
the NL algorithm can efficiently describe the post change
variance behavior.

In the future, we will develop a joint approach identify-
ing CPs simultaneously in the first and the second order
characteristics, providing an aggregated and compact view of
content popularity dynamics.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented an integrated algorithm for the
detection of changes in the variance of a time series. We pro-
posed to combine an off-line approach during which algorith-
mic and model parameters are learned. Subsequently, during
the on-line part of the algorithm, changes in the variance of
the time series are identified using a stopping time procedure.
Whenever the value of a test statistic surpasses a predefined
critical value, a change is declared.

To develop the test statistic we proposed three different
approaches: i) a non-parametric approach, ii) a parametric
approach using an ARMA model, and, iii) a parametric
approach using a nonlinear GARCH model. Our studies
using synthetic data indicated that the ARMA paramet-
ric approach does not generalize well. Due to this fact,
we only performed experiments on real data using the
non-parametric and the GARCH approaches. We concluded
that both can equally well identify large deviations in the
variance and that in the general case the non-parametric
approach can provide quicker detection of CPs in the datasets
studied in this work. In the future, we will develop joint
detectors for the mean and the variance of video content
popularity.
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