Please use this identifier to cite or link to this item:
Title: Privacy-preserving recommendations in context-aware mobile environments
Authors: Polatidis, Nikolaos
Georgiadis, Christos K.
Pimenidis, Elias
Stiakakis, Emmanouil
Type: Article
Subjects: FRASCATI::Natural sciences::Computer and information sciences
Keywords: Privacy
User interface
Mobile recommender systems
Issue Date: 2017
Publisher: Emerald
Source: Information and Computer Security
Volume: 25
Issue: 1
First Page: 62
Last Page: 79
Abstract: Purpose – This paper aims to address privacy concerns that arise from the use of mobile recommender systems when processing contextual information relating to the user. Mobile recommender systems aim to solve the information overload problem by recommending products or services to users of Web services on mobile devices, such as smartphones or tablets, at any given point in time and in any possible location. They use recommendation methods, such as collaborative filtering or content-based filtering and use a considerable amount of contextual information to provide relevant recommendations. However, because of privacy concerns, users are not willing to provide the required personal information that would allow their views to be recorded and make these systems usable. Design/methodology/approach – This work is focused on user privacy by providing a method for context privacy-preservation and privacy protection at user interface level. Thus, a set of algorithms that are part of the method has been designed with privacy protection in mind, which is done by using realistic dummy parameter creation. To demonstrate the applicability of the method, a relevant context-aware data set has been used to run performance and usability tests. Findings – The proposed method has been experimentally evaluated using performance and usability evaluation tests and is shown that with a small decrease in terms of performance, user privacy can be protected. Originality/value – This is a novel research paper that proposed a method for protecting the privacy of mobile recommender systems users when context parameters are used.
ISSN: 2056-4961
Other Identifiers: 10.1108/ICS-04-2016-0028
Appears in Collections:Department of Applied Informatics

Files in This Item:
File Description SizeFormat 
Georgiadis_2017_Privacy-preserving recommendations.pdf314,87 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.