Please use this identifier to cite or link to this item: https://ruomo.lib.uom.gr/handle/7000/733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakostas, Panagiotis-
dc.contributor.authorSifaleras, Angelo-
dc.contributor.authorGeorgiadis, Michael C.-
dc.date.accessioned2020-08-27T06:18:28Z-
dc.date.available2020-08-27T06:18:28Z-
dc.date.issued2022-
dc.identifier10.1007/s11590-020-01630-yen_US
dc.identifier.issn1862-4472en_US
dc.identifier.issn1862-4480en_US
dc.identifier.urihttps://doi.org/10.1007/s11590-020-01630-yen_US
dc.identifier.urihttps://ruomo.lib.uom.gr/handle/7000/733-
dc.description.abstractThis work presents efficient solution approaches for a new complex NP-hard combinatorial optimization problem, the Pollution Location Inventory Routing problem (PLIRP), which considers both economic and environmental issues. A mixed-integer linear programming (MILP) model is proposed and first, small problem instances are solved using the CPLEX solver. Due to its computational complexity, General Variable Neighborhood Search (GVNS)-based metaheuristic algorithms are developed for the solution of medium and large instances. The proposed approaches are tested on 30 new randomly generated PLIRP instances. Parameter estimation has been performed for determining the most suitable perturbation strength. An extended numerical analysis illustrates the effectiveness and efficiency of the underlying methods, leading to high-quality solutions with limited computational effort. Furthermore, the impact of holding cost variations to the total cost is studied.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOptimization Lettersen_US
dc.subjectFRASCATI::Natural sciences::Mathematics::Applied Mathematicsen_US
dc.subjectFRASCATI::Natural sciences::Computer and information sciencesen_US
dc.subject.otherVariable Neighborhood Searchen_US
dc.subject.otherFacility Locationen_US
dc.subject.otherVehicle Routing Problemen_US
dc.subject.otherInventory Managementen_US
dc.titleVariable neighborhood search-based solution methods for the pollution location-inventory-routing problemen_US
dc.typeArticleen_US
dc.contributor.departmentΤμήμα Εφαρμοσμένης Πληροφορικήςen_US
local.identifier.volume16en_US
local.identifier.firstpage211en_US
local.identifier.lastpage235en_US
Appears in Collections:Department of Applied Informatics

Files in This Item:
File Description SizeFormat 
VNS_based_solution_methods_for_the_pollution_location_inventory_routing_problem.pdf539,42 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons