Please use this identifier to cite or link to this item: https://ruomo.lib.uom.gr/handle/7000/1804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaparis, Konstantinos-
dc.contributor.authorLetchford, Adam N.-
dc.contributor.authorMourtos, Ioannis-
dc.date.accessioned2023-11-29T19:46:56Z-
dc.date.available2023-11-29T19:46:56Z-
dc.date.issued2022-
dc.identifier10.1016/j.orl.2022.01.005en_US
dc.identifier.issn0167-6377en_US
dc.identifier.urihttps://doi.org/10.1016/j.orl.2022.01.005en_US
dc.identifier.urihttps://ruomo.lib.uom.gr/handle/7000/1804-
dc.description.abstractThe max-cut problem is a fundamental combinatorial optimisation problem, with many applications. Poljak and Turzik found some facet-defining inequalities for the associated polytope, which we call 2-circulant inequalities. We present a more general family of facet-defining inequalities, an exact separation algorithm that runs in polynomial time, and some computational results.en_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOperations Research Lettersen_US
dc.subjectFRASCATI::Natural sciences::Computer and information sciencesen_US
dc.subject.otherMax-cut problemen_US
dc.subject.otherPolyhedral combinatoricsen_US
dc.subject.otherCutting planesen_US
dc.titleGeneralised 2-circulant inequalities for the max-cut problemen_US
dc.typeArticleen_US
dc.contributor.departmentΤμήμα Οργάνωσης & Διοίκησης Επιχειρήσεωνen_US
local.identifier.volume50en_US
local.identifier.issue2en_US
local.identifier.firstpage122en_US
local.identifier.lastpage128en_US
Appears in Collections:Department of Business Administration

Files in This Item:
File Description SizeFormat 
ORL-D-21-208-R2.pdf149,88 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons