Please use this identifier to cite or link to this item:
Title: Multiobjective heuristic state-space planning
Authors: Refanidis, Ioannis
Vlahavas, Ioannis
Type: Article
Subjects: FRASCATI::Natural sciences::Computer and information sciences
Keywords: planning
heuristic search
mutliple criteria
multiobjective search
Issue Date: Apr-2003
Publisher: Elsevier
Source: Artificial Intelligence
Volume: 145
Issue: 1-2
First Page: 1
Last Page: 32
Abstract: Modern domain-independent heuristic planners evaluate their plans on the single basis of their length. However, in real-world problems, there are other criteria that also play an important role, e.g., resource consumption, profit, safety, etc. This paper enhances the GRT planner, an efficient domain-independent heuristic state-space planner, with the ability to consider multiple criteria. The GRT heuristic is based on the estimation of the distances between each fact of a problem and the goals. The new planner, called MO-GRT, uses a weighted strategy and a multiobjective heuristic function, computed over a weighted hierarchy of user-defined criteria. Its computation is based on sets of non-dominated cost-vectors assigned to the problem facts, which estimate the total cost of achieving the facts from the goals, using alternative paths. Experiments show that a change in the criteria weights or scales affects both the quality of the resulting plan and the planning time. The proposed approach can easily be adapted to other modern heuristic state-space planners.
ISSN: 0004-3702
Other Identifiers: 10.1016/S0004-3702(02)00371-5
Appears in Collections:Department of Applied Informatics

Files in This Item:
File Description SizeFormat 
Refanidis.dvipostprint132,84 kBTeX dviView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.