Please use this identifier to cite or link to this item:
Title: Fast and Accurate k-Nearest Neighbor Classification Using Prototype Selection by Clustering
Authors: Ougiaroglou, Stefanos
Evangelidis, Georgios
Type: Conference Paper
Subjects: FRASCATI::Natural sciences::Computer and information sciences
Keywords: Classification
k-Nearest Neighbors
Data Reduction
Prototype Selection and Generation
Issue Date: 2012
First Page: 168
Last Page: 173
Volume Title: 2012 16th Panhellenic Conference on Informatics
Abstract: Data reduction is very important especially when using the k-NN Classifier on large datasets. Many prototype selection and generation Algorithms have been proposed aiming to condense the initial training data as much as possible and keep the classification accuracy at a high level. The Prototype Selection by Clustering (PSC) algorithm is one of them and is based on a cluster generation procedure. Contrary to many other prototype selection and generation algorithms, its main goal is the fast execution of the data reduction procedure rather than high reduction rate. In this paper, we demonstrate that the reduction rate and the classification accuracy of PSC can be improved by generating a larger number of clusters. Moreover, we compare the performance of the particular algorithm with two state-of-the-art algorithms, one selection and one generation, using six real life datasets. The experimental results indicate that the classification performance of the Prototype Selection by Clustering algorithm is comparable with that of its competitors when using many clusters.
ISBN: 978-1-4673-2720-6
Other Identifiers: 10.1109/PCi.2012.69
Appears in Collections:Department of Applied Informatics

Files in This Item:
File Description SizeFormat 
2012_PCI.pdf571,14 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons