Please use this identifier to cite or link to this item:
Title: Chaotic Jaya Approaches to Solving Electromagnetic Optimization Benchmark Problems
Authors: Coelho, Leandro dos S.
Mariani, Viviana C.
Goudos, Sotirios K.
Boursianis, Achilles D.
Kokkinidis, Konstantinos-Iraklis D.
Kantartzis, Nikolaos V.
Type: Article
Subjects: FRASCATI::Natural sciences::Computer and information sciences
Keywords: Chaotic maps
Electromagnetic optimization
Java optimization algorithm
Evolutionary computation
Issue Date: 2021
Publisher: MDPI
Source: Telecom
Volume: 2
Issue: 2
First Page: 222
Last Page: 231
Abstract: The Jaya optimization algorithm is a simple, fast, robust, and powerful population-based stochastic metaheuristic that in recent years has been successfully applied in a variety of global optimization problems in various application fields. The essential idea of the Jaya algorithm is that the searching agents try to change their positions toward the best obtained solution by avoiding the worst solution at every generation. The important difference between Jaya and other metaheuristics is that Jaya does not require the tuning of its control, except for the maximum number of iterations and population size parameters. However, like other metaheuristics, Jaya still has the dilemma of an appropriate tradeoff between its exploration and exploitation abilities during the evolution process. To enhance the convergence performance of the standard Jaya algorithm in the continuous domain, chaotic Jaya (CJ) frameworks based on chaotic sequences are proposed in this paper. In order to obtain the performance of the standard Jaya and CJ approaches, tests related to electromagnetic optimization using two different benchmark problems are conducted. These are the Loney’s solenoid benchmark and a brushless direct current (DC) motor benchmark. Both problems are realized to evaluate the effectiveness and convergence rate. The simulation results and comparisons with the standard Jaya algorithm demonstrated that the performance of the CJ approaches based on Chebyshev-type chaotic mapping and logistic mapping can be competitive results in terms of both efficiency and solution quality in electromagnetics optimization.
ISSN: 2673-4001
Other Identifiers: 10.3390/telecom2020015
Appears in Collections:Department of Applied Informatics

Files in This Item:
File Description SizeFormat 
telecom-02-00015-v2.pdf512,48 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons